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Abstract

Cognitive radar is a new acquisition technique that forms a closed loop between radar receiver, radar transmitter and
environment, similar to the perception-action cycle in human cognition. The continuous adaptation of the acquisition
parameters based on previously acquired information also harbours great potential for future SAR missions. As an
example, this paper presents a spaceborne cognitive SAR concept for ship detection. The concept foresees a two-stage
process to improve the overall ship detection probability compared to conventional approaches. First, a wide-swath
mode with coarse resolution is utilized to cover a large maritime area. From these SAR data, the positions of potential
ships shall be detected, however, due to the low signal-to-clutter ratio, with a high false alarm rate. In the second step,
a high-gain mode with fine resolution is used to look at the presumed ship positions and either confirm or reject the
presence of ships with high fidelity. This radar concept could be realized on a single platform using a hybrid mode. In the
context of this investigation, the cognitive functionality is distributed on two separate SAR satellites operated in a convoy
configuration, where the leading satellite performs the first coarse-detection step and the companion satellite implements
the high-fidelity detection step including intelligent digital beamforming of one or more spotlight beams accessible via
phased array antennas.

1 Introduction

The general motivation behind synthetic aperture radar
(SAR) is always some form of information extraction from
a scene. A lot of effort is made to continuously improve the
information gain for different scenarios. In principle, re-
trieving optimal information from a scene via SAR can be
understood as a complex optimisation problem with mul-
tiple degrees of freedom as well as physical and technical
constraints. To optimize the radar acquisition for a specific
scenario, in the following, spaceborne ship detection, con-
sidering the radar transmission process is crucial. It affects
all steps from the concept and design of a radar system over
hardware choices (e.g. bandwidth) to the actual operation.
Detecting the position of ships and their trajectories is of
high interest for different reasons. Examples include typ-
ical reconnaissance missions, detection of waste dumps,
tug boats or investigations regarding the ’Nord Stream’
pipeline explosion. However, detecting ships of unknown
positions in large maritime areas is currently not feasible
reliably due to the bad signal-to-clutter ratio of wide-swath
low-resolution modes respecting limitations of onboard re-
sources.
Cognitive Radar, a term coined by Simon Haykin, is a
promising SAR concept that can alleviate many issues tra-
ditional SAR operations face. He suggested a theoreti-
cal concept for a radar system that dynamically adapts its
active illumination to an observed environment in a feed-
back loop via Bayesian inference from the received radar
echo[1]. Moreover, he references similar behaviour in the

echolocation of some bats and argues that they face related
challenges when searching for food. When assuming ob-
jects in the near distance certain bats change their trans-
mission from single to multiple clicking sounds, thus gen-
erating a richer neural response [1][2].
Similarly, modern phased array antennas allow a fast adap-
tation to dynamic scene changes through digital beam-
forming (DBF) on transmit and receive and thus, an adap-
tive radar acquisition, in principle. Utilizing DBF, sophis-
ticated hybrid acquisition modes can be realized as de-
scribed, e.g., in [3]. Consequently, the aforementioned op-
timisation task can be faced by switching between these
hybrid modes, mimicking the bat. DBF introduces many
degrees of freedom for possible adaptations of the radar
illumination to the scene which becomes crucial for more
complex and dynamic scenes, e.g., a varying number of ac-
tive spotlight beams. Furthermore, feature extraction and
subsequent mode change seem tractable via modern ma-
chine learning methods. Both tasks can be addressed with
a variety of algorithms, some of which are too difficult
to implement on classical computers in a reasonable time.
This may be different on modern quantum computers due
to possible algorithm scaling advantages.

2 Problem Description

The acquisition of SAR data is constrained by power, illu-
mination time, computation speed, heat generation as well
as ambiguities induced by the use of multiple channels [3].
Originating in Küpfmüller’s uncertainty principle, the re-



lation Wg

δaz
between swath-width on the ground Wg and az-

imuth resolution δaz is subject to an upper bound for the es-
tablished SAR acquisition process, such that a well-known
trade-off between swath-width and resolution in azimuth
arises [4, p.4 & 16-20].
The main challenge for ship detection is that ships are
small compared to the ocean and that ocean waves gen-
erate a lot of clutter when reflecting radar signals. Ef-
fectively, a threshold of the signal-to-clutter ratio must be
overcome to sense them reliably. As a consequence, a use-
ful radar acquisition must reach the necessary resolution
and power which is not feasible for large areas concern-
ing the physical and technical limitations of present SAR
satellites. Therefore, possible solution paths consist of in-
creasing the efficiency of different aspects of the acquisi-
tion process. A simple but promising idea is to limit the
area that has to be searched with sufficient resolution (for
small ships) in the first place, thus reducing resource us-
age. This allows for the illumination of the remaining area
with higher gain and therefore improved local information
retrieval. Prior information is crucial, to reduce the area of
interest and its acquisition process contributes to the over-
all resource demand. This idea could take shape when the
search space can be limited geographically, e.g., in the fol-
lowing concept: By only considering those locations moti-
vated by the coarse detection step, for high-resolution ac-
quisitions, the effective area to be searched for ships with
high resolution can be reduced.

3 Methods

As a suitable setup to test our hypothesis we suggest the
detection of an unknown number of ships in the ocean us-
ing two SAR satellites in a convoy configuration as shown
in Fig. 1. To simplify the operational complexity and the
management of resources the following assumptions are
made here: The leading satellite is continuously scanning
the ocean in a low-resolution wide-swath (ScanSAR) mode
and the companion satellite uses a high-resolution hybrid
spotlight mode, with one or more active beams repeatedly
switching illumination to the position of maximum detec-
tion likelihood of unknown ships. All accumulated SAR
data from both satellites are taken into consideration to
continuously update a growing probability density map of
ship detection for the whole scene. The detection algorithm
on the leading satellite is then adjusted to estimate a high
number of falsely positive but almost no falsely negative
ship detections. The companion satellite, with high reso-
lution and gain, then validates the possible detection area
with high fidelity.
Since different currently operational spaceborne systems
seem to converge to the upper limit for Wg

δaz
[4] and with the

additional assumption of different acquisition modes con-
verging to the same limit, we consider cognitive radar as a
process of assigning a limited number of high-resolution
cells to a scene. From this perspective, it conceptually
seems comprehensive to distribute resolution as a form of
attention to different positions in a scene, hence, improving
the overall information extraction and saving resources.

The cognitive aspect of this distribution process can be

Figure 1 Cognitive radar concept consisting of a feed-
back loop of a leading scanning satellite with a high false
alarm rate tasking another to validate possible ship detec-
tions with higher resolution but smaller swath-width by
relocating its spotlight to the most promising positions in
the ocean based on the current state of accumulated SAR
data. The spotlight repositioning and the underlying de-
cision process are both denoted in pink. Multiple such
beams could be active at the same time.

divided into firstly analyzing the scene from the received
radar echo and secondly planning an action, in our sce-
nario the positioning of the spotlight beams. Effectively,
a cognitive radar introduces (computational) complexity to
save resources where high gain would not be useful. This
allows higher resource usage for locations of more promis-
ing information content leading to an expected detection
advantage based on a useful choice of resolution distri-
bution. Binary classification based on the high-resolution
data allows a final detection step for that area. Proper im-
plementation of cognitive radars seems to have remained
a major challenge in the last years. This could be due to
the necessary algorithm complexity of an effective cogni-
tive radar as well as the limited onboard processing capa-
bilities. Typically the hardware on board is not capable
of reconstructing the final SAR image directly which is a
useful representation of the collected data for scene anal-
ysis as it contains the received radar signal focused to the
corresponding positions in the scene.
Therefore in this paper, the further assumption is made,
that enough computational power was accessible for the
SAR image reconstruction as well as the optimisation of
the adaptive transmission of the spotlight satellite. To re-
duce computational demand, a combination of efficient
algorithms and sufficient computational power becomes
obligatory and possible speedups could be based on di-



verse hardware choices. Many machine learning algo-
rithms are highly parallelizable and therefore profit dras-
tically from using graphical processing units (GPUs) and
related tensor cores. Especially for large amounts of data,
e.g., from scanning a large area for ships, the scaling of
algorithms becomes important. Moreover, some (quantum
machine learning) algorithms are expected to have scaling
advantages when scheduling subroutines on proper quan-
tum computers which extend the classical Turing model
of computation [5][6][7]. As quantum computers will not
likely be onboard of satellites soon, more realistic scenar-
ios would involve information transmission to a ground sta-
tion, e.g., using geostationary relay satellites.

3.1 Scene Analysis and Feature Extraction
A good scene analysis includes extraction of useful fea-
tures, in our example at least an estimation of likely ship
positions, based on the low-resolution acquisition of the
leading satellite and builds the backbone for the subsequent
intelligent adaptation step. Depending on the task other in-
formation could be useful. Prior information about, e.g.,
the type of ships of interest, an estimated number thereof
or their size and possible trajectories could be beneficial
for detection. Such additional information is not consid-
ered here.
One of many effective machine learning architectures for
regression and classification are support vector machines
(SVMs) that are useful for spaceborne ship detection on
real SAR images [8]. Moreover, in 2014 Rebentrost et al.
[6] presented a quantum SVM which can achieve an up to
exponential speedup in computation time compared to the
classical SVM in the number of features and the training
size. Given some conditions, the time complexity of their
quantum SVM algorithm only scales polynomially in the
logarithm of the input data size on a quantum computer.
Since a lot of area has to be classified quickly and therefore
efficiently based on the SAR data of the leading satellite
an exponential scaling advantage makes quantum SVMs a
promising subroutine for cognitive radar. More precisely,
the ScanSAR acquisition leads to a roughly constant infor-
mation inflow that needs to be processed in real time such
that the spotlight satellite can optimally relocate its beam
just in time. For constant speed and distance between both
satellites, the upper bound for the available computation
time would remain constant as well.
In [8] the authors report a low number of falsely negatively
classified ships using SVMs compared to convolutional
neural networks. Since the spotlight satellite depends on
prior detection by the scanning satellite, this observation
aligns well with our chosen cognitive radar concept as it
also should result in a low number of overall falsely nega-
tive detections of the combined acquisition.

3.1.1 Support Vector Machines
After supervised training, support Vector Machines
(SVMs) allow binary classification of contiguous regions
in input data d [9], such as reconstructed SAR images,
containing information d(a, r) for each point in the space
spanned by the position in azimuth a and position in the

Figure 2 Schematic description of the binary classifica-
tion procedure of a support vector machine (SVM) (a) in
the original space x and (b) the non-linear kernel map-
ping z = φ(x) where the two classes are separable via
the hyperplane determined by the support vector w. The
image is taken from [9].

range r, in our scenario the classification into ship and
background. Thus, regions containing ships can be sep-
arated from regions containing no ships in principle. An
illustration is given in Fig. 2. Trained SVMs allow for the
classification of points and by construction also contigu-
ous regions of points into different categories. In our case,
the resolution cells belonging to the same ship build such a
contiguous region labelled into the same class = +1, corre-
sponding to ship detection instead of background detection
(class = -1). By construction (eq. 1) other cells can be
labelled the same way individually and consequently dif-
ferent ships are labelled into the same class.
Typically, the regions corresponding to two classes cannot
be separated by a flat surface or straight line. Therefore,
one transforms the data, e.g., the SAR image, through a
so-called kernel map φ into a typically higher-dimensional
space z = φ(x) in which a classification above and be-
low a correspondingly dimensional hyperplane is possible.
This hyperplane is uniquely described by its normal vector
w and the calculation in z instead of x is known as ’kernel
trick’ [6][9]. The classification of whether a point belongs
to a region containing ships is then done by the sign of
the scalar product of the transformed input data (the SAR
image) with the high dimensional support vector and the
scalar bias b, both determined during training on labelled
data

class = sign {wTφ(x) + b} (1)

and hence is also efficiently computable for new data. Dif-
ferent choices of the transformation φ are common and
shall be tested for our scenario. Determining w typically
involves minimising an Euclidean norm respecting all data
points.
For classification problems that are more complex than bi-
nary, e.g., different ship types, multiple classifiers could
be logically linked to map into more complex classes, yet
inducing overhead. For our detection scenario binary clas-
sification is sufficient.
The scalar product of high dimensional vectors (in eq. 1)
is native to quantum computers such that the kernel evalu-
ation can be done directly in the high dimensional (quan-
tum) state, allowing for an up to exponential speedup in



time complexity [6].

3.2 Action Planning
Using extracted features to find an optimal exploration pol-
icy is a highly nontrivial task in general. Effective algo-
rithms, involving an agent making systematic choices, live
in the overlap between machine learning (ML) and artifi-
cial intelligence (AI).
In contrast to supervised learning (e.g. for training SVMs),
with explicit labels for the desired output, there are rein-
forcement learning (RL) procedures involving an ’agent’
making decisions that ideally maximize an (overall) reward
when interacting with its environment. By trial and error,
it learns successful policies. This mimics the way intel-
ligent biological systems typically learn in nature. The
agent could be any form of network capable of decisions
and learning. One could couple a reward to successful in-
formation retrieval and thereby implicitly teach said agent
to use its actions, dependent on its state, in a way that max-
imizes his reward and thus, our information gain about the
scene. In our scenario, the detection of one or more ships
should lead to a reward for the RL agent if the ship was
not detected before. Punishing resource inefficiency with
a negative reward should be useful for training as well.
Depending on the complexity, a large number of simula-
tions will be necessary for the agent to learn to steer one
or more beams effectively in terms of detection success.
The most prominent algorithms involve a discretization of
the accessible state-action space and a subsequent visit of
all its elements for global optimisation which is infeasi-
ble for many practical applications. The agent could, e.g.,
randomly choose where to locate the spotlight beam by
sampling from a uniform distribution, or better, the predes-
tined probability density map. The actor-critic class of al-
gorithms also allows continuous-state reinforcement learn-
ing based on gradient evaluation, rather than trying every
possible solution, with possible advantages from hybrid
quantum-classical ML models. In [10] a hybrid version of
actor-critic is used for proton beam target steering at CERN
which could also be applicable to digital beam forming
to steer, e.g., the spotlight beams of our second satellite.
Especially exploring large state-action spaces seems well
suited for exploiting the superposition of different states
in a quantum computer. In [11] a quantum actor-critic
network is reinforced to plan flight trajectories of a (sim-
ulated) UAV to support independent moving smartphone
users with an optimal wifi connection between buildings
and to save resources. Like other authors, they report faster
convergence and better expressibility of variational quan-
tum circuits over classical neural networks. Similar ap-
proaches could be very useful for the action planning step
in our concept where possible quantum advantages would
be most important and plausible, alike.
Many different reinforcement learning algorithms are ex-
plored in active research, e.g., for detection and tracking
using multi-function radars [12]. Possible quantum advan-
tages could apply to many of them, with strong implica-
tions for the effectiveness and efficiency of our cognitive
radar concept. Especially if the quantum computer is lo-

cated at a ground station it would be easier to send the cur-
rent probability density map to a ground station in real-time
than the whole SAR data, making the planning step better
suited for practical quantum advantages in the future. Re-
garding our explicit detection scenario in Fig. 1, we will
start with less complex, reliable algorithms in future work.
The spotlight satellite could centre its beam(s) on the
coarse resolution cells of the leading satellite in descend-
ing order of the estimated likelihood of ship detection. A
next step could be to consider the flight direction as an ad-
ditional constraint. The relation between classification and
probability can be fitted via Platt scaling (logistic regres-
sion and cross-validation) [13]. Consequently, the primary
satellite should have a high number of false positive esti-
mations, such that as few ships as possible are neglected.
Moreover, using a high-gain spotlight for the validation of
most likely ship positions might not be ideal regarding re-
source usage compared to the actual information gain. For-
mulating a generally optimal exploration strategy a priori
might not be feasible as it could sensitively depend on the
particular scenario. For example, increasing the number
of active spotlight beams and (heterogeneously) reducing
their individual resolutions drastically increases the com-
plexity and degrees of freedom leading to possibly very
different optimal strategies than with just one beam.
Ideally, future systems could autonomously self-organize
the beam-steering as well as the number of active beams
and their corresponding resources, likewise. Not only is
agent-based self-organization interesting in itself in these
scenarios from a complex systems perspective, but also
potent regarding highly dynamic adaptation capabilities in
future SAR missions with a better trade-off between infor-
mation retrieval and resource usage.
For many scenarios, e.g., a mostly empty ocean, the ex-
pected increase in detection performance using a (simple)
cognitive radar compared to established SAR acquisition
modes should be worth its computational cost.

4 Results

In the following, we show first results for the scene analy-
sis step using support vector machines. Figure 3 shows the
support vector machine based pixel-wise classification of a
maritime scene. Given an unknown preprocessed SAR im-
age from the public SARscope dataset [14], a probability
for the presence of a ship is calculated for every resolution
cell. The resolution in the dataset ranges between 0.5 and 3
m. The segmentation on the right has the same origin and
is used as ground truth to quantify the prediction accuracy.
A sliding window of seven resolution cells, in azimuth and
range each, is used as feature space for the support vec-
tor classifier (SVC) to predict a class for the centre of the
window. This way the scene can be analyzed and a prob-
ability density map estimated for each resolution cell and
thus the whole scene. Based on such a map subsequent
beam-steering could follow in future work. Exemplary for
a larger window size of 31× 31 resolution cells some win-
dows are shown in Fig. 4. For the training, validation and
test dataset of processed images and their segmentation in



Figure 3 Left: Image from the test set in [14], Middle:
Estimated pixel-wise ship detection probability predicted
by a support vector classifier utilizing a sliding window of
size 7×7 as feature-space, Right: Segmentation from [14]

[14] such windows were built and the SVC trained on those
originating from the training set. To guarantee parity of the
classes many windows without a ship in their center were
discarded. The SVC was implemented using the ’scikit-
learn’ python package [15] with a Gaussian radial basis
function (RBF) for the kernel mapping φ in equation 1.
It estimates a class label and its corresponding probability
via Plattscaling of cross-validation. The accuracy of the
trained classifier on the aforementioned windows is shown
in Fig. 5 for different window sizes.

Figure 4 Examples of windows of 31×31 resolution cells
in azimuth and range with a label below stating whether
their center-pixel (red) belongs to a ship.

Figure 5 Classification accuracy on sliding (square) win-
dows for different sets of the SARscope dataset [14] and
different lengths of a square window. For all sets, empty
windows were randomly discarded such that half of the
remaining windows were centred on pixels belonging to
ships.

5 Discussion

The results show that a support vector classifier can be used
for ship detection that is translation invariant regarding the

detection performance and the ship’s position due to the
sliding window approach. It suppresses moderate levels
of ocean clutter and finds practically all ships in the [14]
dataset. Fig. 3 suggests that even very small ships would
be detected given the high resolution. While the SVC’s
nonlinear sensitivity to intensity seems promising, its sen-
sitivity to shapes is not sufficient such that other objects,
e.g., in harbours are falsely positively classified as ships.
This problem can be addressed by additional edge detec-
tion filters or intensity gradients of the windows similar to
[8].
We also implemented quantum support vector classifiers
via the ’qiskit’ python package [16] that simulates a quan-
tum kernel mapping using one simulated qubit per fea-
ture. Outside of the kernel mapping it relies on the ’scikit-
learn’ SVC implementation and can therefore also estimate
a class probability. While its possible scaling advantage
remains interesting for the analysis of large scenes using
many features, e.g., large sliding windows, windows of size
3 × 3 (nine qubits) seem practically infeasible on a simu-
lated quantum computer using this implementation. This
is due to the large Hilbert Space spanned by the quantum
encoding and probably partly to scikits missing GPU sup-
port which typically speeds up the multiplication of large
matrices utilising parallelisation.

6 Outlook

In future work, we will demonstrate the action planning
aspect of our cognitive radar concept by reducing the im-
age quality of high-resolution data to simulate the scanning
satellite. Then we will estimate a probability density map
as in this work and further use it to simulate the intelli-
gent steering of one or more spotlight beams of the second
satellite that would then locally grant access to higher res-
olution and allow us to quantify the concept’s effectiveness
on real data.
We plan to implement reinforcement learning routines to
steer the spotlight beam(s), utilizing and continuously up-
dating a probability density map. Furthermore, phased ar-
ray antennas and possibly multiple satellites allow us to
extend our concept to arbitrary complexity, in principle,
e.g., by switching between the hybrid acquisition modes
described in [3], and possibly to adapt to complex dynam-
ical scene changes. Thus, better information retrieval and
resource demand reduction compared to established SAR
operations should be achievable in these scenarios. Never-
theless, effectiveness, efficiency and especially reliability
of the action planning routine will be crucial for the use-
fulness of any cognitive radar.
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