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Executive Summary (Zusammenfassung)
Pontryagin’s Maximum Principle and the Hamilton-Jacobi-Bellman equation are the most fa-
mous results characterization of solutions of optimal control problems. The first one, nowadays
often called Pontryagin’s Minimum Principle, provides necessary conditions utilizing varia-
tional calculus, while the later one also provides necessary conditions based on Bellman’s Prin-
ciple of Optimality. There exist many versions of the minimum principle. Among them are
variations that consider constraints and sufficient conditions. Furthermore, a time-discrete for-
mulation of the principle has been developed. Nevertheless, a generalization of the first order
criteria to output-feedback systems has not been published. In this report the existing theory
will be extended to allow these type of dynamical systems and a rigorous proof using variation
methods will be given. The original minimum principle is then derived as a special case of the
obtained criteria. Furthermore, general equality and inequality constraints will be taken into
account.
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1 Introduction
In the 1950s many famous results in the field of Optimal control (OC) [1, 2] have been devel-
oped. It has become and continued to be a very important topic. Nowadays it is indispensable in
the fields of robotics, aviation, and even financial economics. Given ordinary differential equa-
tions which characterize the development of the system’s states, OC aims to optimize a given
objective function representing e.g. costs or gains. Historically the optimization problems were
stated as maximization problems, while nowadays from application point of view it is more
often desired to minimize costs or the deviation from a target state. Around 70 years ago two
famous results, the Hamilton-Jacobi-Bellman equation (HJBE) based on Bellman’s principle of
optimality [3] regarding end pieces of optimal trajectories and Pontryagin’s Maximum Princi-
ple (PMP) which characterizes optimal solutions, have been developed. The nowadays more
often called Pontryagin’s Minimum Principle has been derived by Lev Semenovich Pontryagin
and his students [4–6]. Their idea was to consider small variations of an optimal trajectory and
characterize its optimality using the resulting change in the objective [1, 7] or in other words
they utilized the idea of differential calculus from Rn and applied it to function spaces. In con-
trast to the HJBE, a free final time and free final state can be taken into account using PMP.
Unfortunately, PMP can not directly be used to obtain a feedback-law but is rather utilized for
numerical solutions.
Using PMP not only constraints in form of a dynamical system can be considered but also
equality and inequality constraints regarding the state and input variables [8–10]. Additionally,
terminal state [11–13] can be included.
In contrast to the HJBE the minimum principle only delivers necessary conditions. However, if
second order derivatives are taken into account PMP can be extended to deliver sufficient condi-
tions [11, 14]. Furthermore, PMP and the HJBE must characterize the same optimal trajectory.
Thus, they can be transformed into each other [15]. Despite all of the mentioned extensions and
applications, a version of PMP which is applicable to output-feedback systems is still missing
in the literature. Consequently, PMP needs to be extended to allow such systems in Section 2.
In the following Section 3 the newly obtained results will be combined with known ones from
the literature, i.e. including time-dependent equality and inequality constraints for the input and
output. Later in Section 4, the in Section 2 derived equations are transformed into an output-
feedback version of the HJBE. Finally, concluding remarks and further research perspectives
will be given in Section 5.

2 Pontryagin’s Minimum Principle for output-feedback
When criteria for optimal control laws and optimal trajectories are derived, typically optimiza-
tion problems like

min
u(·)

tf∫
0

ℓ
(
τ, x(τ), u(τ)

)
dτ + L

(
tf , x(tf )

)
s.t. ∀t ∈ R≥0 : ẋ(t) = f

(
t, x(t), u(t)

)
x(0) = x0 ∈ Rnx

(1)
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are considered. Here f ∈ C1
(
R≥0 × Rnx × Rnu ;Rnx

)
is the function representing the systems

dynamics, ℓ ∈ C1
(
R≥0 × Rnx × Rnu ;R

)
is the stage cost, and

L ∈ C1
(
R≥0 × Rnx ;R

)
the terminal cost function. The numbers nx, nu ∈ N are the di-

mensions of the state and input space, respectively, while the final time is denoted with tf . For
this setup Lev Semenovich Pontryagin and his students derived the well known Pontryagin’s
Minimum Principle, which can be split up into four cases letting the final time tf and the final
state x(tf ) = xf be free or fixed. In the following, the minimum principle which is obtained via
variational calculus will be extended to also include input to output systems, i.e. systems where
not all state variables x can be measured. To prepare for the actual derivation, the following
lemma is given.

Lemma 1 (Variation approximation).
For some k, n,m ∈ N let f : Abb(R;Rn) → Rm, g : Abb(R;Rn)k → Rm and
x, x1, . . . , x,,∆x,∆x1, . . . ,∆x, : R → Rn be C1-functions and t,∆t ∈ R. Then the follow-
ing identities hold.

a) f(x+∆x)− f(x) = Df(x) ·∆x+ o(∆x)

b) g(x1 +∆x1, . . . , xk +∆xk)− g(x1, . . . , xk) =
k∑

i=1

Dxi
g(x1, . . . , xk) ·∆xi

+ o(∆x1, . . . ,∆xk)

c) f(x+∆x)(t+∆t)− f(x)(t) = Dxf(x)(t) · ẋ(t) ·∆t+Dxf(x)(t) ·∆x(t)

+o
(
∆t,∆x(t)

)
d)

t+∆t∫
t

f(x)(τ) dτ = f(x)(t) ·∆t+ o(∆t)

Proof. (a) Follows from the definition of the derivative.

(b) The idea is to add clever zeroes and use the result of (a).

g(x1 +∆x1, . . . , xk +∆xk)− g(x1, . . . , xk)

= g(x1 +∆x1, . . . , xk +∆xk)− g(x1, x2 +∆x2, . . . , xk +∆xk)

+ g(x1, x2 +∆x2, . . . , xk +∆xk) + . . .− g(x1, . . . , xk +∆xk)

+ g(x1, . . . , xk +∆xk)− g(x1, . . . , xk)

(a)
=

k∑
i=1

Dxi
g(x1, . . . , xk) ·∆xi + o(∆x1, . . . ,∆xk)

(c) Again a clever zero can be added and the result of (a) together with the chain rule is
utilized.

f
(
(x+∆x)(t+∆t)

)
− f

(
x(t)

)
= f

(
(x+∆x)(t+∆t)

)
− f

(
(x+∆x)(t)

)
+ f
(
(x+∆x)(t)

)
− f

(
x(t)

)
(a)
= Dxf

(
x(t)

)
· ẋ(t) ·∆t+Dxf

(
x(t)

)
·∆x(t) + o

(
∆t,∆x(t)

)
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(d) The claim follows via application of the fundamental theorem of calculus.

In the following, the optimal control problem (OCP)

min
u(·)

tf∫
0

ℓ
(
τ, y(τ), u(τ)

)
dτ + L

(
tf , y(tf )

)
(2a)

s.t. ∀t ∈ R≥0 : ẋ(t) = f
(
t, x(t), u(t)

)
(2b)

∀t ∈ R≥0 : y(t) = h
(
t, x(t)

)
(2c)

x(0) = x0 ∈ Rnx (2d)

is considered. In addition to the OCP in (1) the output function
h ∈ C1

(
R≥0 × Rnx ;Rny

)
is added. The stage cost function ℓ as well as the terminal cost

L now depend on the output values y ∈ Rny instead of the states x but remain of class C1.
Furthermore, ny ∈ N is the dimension of the output. To incorporate the constraints (2b) and
(2c) Lagrange multipliers λ ∈ C1

(
R≥0;Rnx

)
and µ ∈ C1

(
R≥0;Rny

)
are introduced. In the

field of control theory the multipliers λ are better known as co-states.
At this point it shall be noted that using this setup, i.e. the output function h does not depend
on the input, one could simply substitute the output in the stage and terminal cost and applying
the chain rule together with the classic version of PMP. The details can be found in an overview
paper [16] that is currently being published. As outlined in [16], having the output function
dependent on the input and the final time or the final state free, one can not use this approach
so easily. The reasons for this will be seen in the following derivations (see Remark 1) using
variational calculus and will be discussed in Remark 3.
Following well known strategies, the Hamiltonian of the OCP (2) states as

H(t, x, y, u, λ, µ) := ℓ(t, y, u) + λ⊤ · f(t, x, u) + µ⊤ · h(t, x) (3)

and is of class C1 as well. Following the steps outlined in [1] the total cost

J(·) :=
tf∫
0

ℓ
(
τ, y(τ), u(τ)

)
dτ + L

(
tf , y(tf )

)
is defined. Utilizing the Hamiltonian (3) the total cost is rewritten as

J(tf , yf , x, y, u, λ, µ) =

tf∫
0

H
(
τ, x(τ), y(τ), u(τ), λ(τ), µ(τ)

)
dτ

+

tf∫
0

−λ(τ)⊤ · ẋ(τ)− µ⊤(τ) · y(τ) dτ + L
(
tf , y(tf )

) (4)

Introducing functions ∆x ∈ C1
(
R≥0;Rnx

)
, ∆y ∈ C1

(
R≥0;Rny

)
, ∆u ∈ C1

(
R≥0;Rnu

)
,

∆λ ∈ C1
(
R≥0;Rnλ

)
, and ∆µ ∈ C1

(
R≥0;Rnµ

)
as well as ∆tf ∈ {t ∈ R : t ≥ −tf} and

∆yf ∈ Rny variations of a solution (tf , yf , x, y, u, λ, µ) of (2) are denoted with
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(tf + ∆tf , yf + ∆yf , x + ∆x, y + ∆y, u + ∆u, λ + ∆λ, µ + ∆µ). An illustration of dif-
ferent trajectories in x- and y-space with the same start and end point is given in Fig. 1. To find
criteria for optimality, the first variation ∆J of the total cost function needs to be investigated.

∆J = J(tf +∆tf , yf +∆yf , x+∆x, y +∆y, u+∆u, λ+∆λ, µ+∆µ)

− J(tf , yf , x, y, u, λ, µ)

=

tf∫
0

H(τ, x+∆x, y +∆y, u+∆u, λ+∆λ, µ+∆µ)−H(τ, x, y, u, λ, µ) dτ

+

tf∫
0

−(λ+∆λ)⊤( ˙x+∆x) + λ⊤ẋ− (µ+∆µ)⊤(y +∆y) + µ⊤y dτ

+

tf+∆tf∫
tf

H(τ, x+∆x, y +∆y, u+∆u, λ+∆λ, µ+∆µ) dτ

+

tf+∆tf∫
tf

−(λ+∆λ)⊤( ˙x+∆x)− (µ+∆µ)⊤(y +∆y) dτ

+ L
(
tf +∆tf , (y +∆y)(tf +∆tf )

)
− L

(
tf , y(tf )

)
Lemma 1
=

tf∫
0

∇xH(τ, x, y, u, λ, µ) ·∆x+∇yH(τ, x, y, u, λ, µ) ·∆y dτ

+

tf∫
0

∇uH(τ, x, y, u, λ, µ) ·∆u+∇λH(τ, x, y, u, λ, µ) ·∆λ dτ

+

tf∫
0

∇µH(τ, x, y, u, λ, µ) ·∆µ− λ⊤∆̇x− ẋ⊤∆λ− µ⊤∆y − y⊤∆µ dτ (5)

+H
(
tf , x(tf ), y(tf ), u(tf ), λ(tf ), µ(tf )

)
·∆tf − λ⊤(tf ) · ẋ(tf ) ·∆tf

− µ⊤(tf ) · y(tf ) ·∆tf +
∂

∂t
L
(
tf , y(tf )

)
·∆tf +∇yL

(
tf , y(tf )

)
· ẏ(tf ) ·∆tf

+∇yL
(
tf , y(tf )

)
·∆y(tf ) + o

(
∆tf ,∆y(tf ),∆x,∆y,∆u,∆λ,∆µ

)
If (tf , yf , x, y, u, λ, µ) is an optimal solution of (2), the first variation ∆J vanishes as

(∆tf ,∆yf ,∆x,∆y,∆u,∆λ,∆µ) approaches zero. To be able to obtain the optimality crite-
ria from Equation (5) the terms −λ⊤ · ∆̇x, ∆y(tf ), and ẏ(tf ) need to be evaluated further. The
term −λ⊤ · ∆̇x has to be reshaped such that there is no dependence on the derivative of ∆x.
Keeping in mind that ∆x(0) = 0, since all trajectories start in x0, integration by parts yields the
desired outcome.

tf∫
0

−λ⊤(τ) · ∆̇x(τ) dτ = −λ⊤(tf ) ·∆x(tf ) +

tf∫
0

λ̇⊤(τ) ·∆x(τ) dτ (6)
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x(0)

x(tf )
y(0)

y(tf )

h

Figure 1: Optimal solution (solid line) and suboptimal solutions (dashed lines) in x- and y-space
as well as the reachable region and its image (hatched area) when starting in x(0)

∆y(tf ) is in a first step stated in terms of ∆x(tf ), since it is now already included in (5) and in
general there is no inverse function of h(t, ·).

∆y(tf ) = h
(
tf , (x+∆x)(tf )

)
− h
(
tf , x(tf )

)
Lemma 1 (a)

= ∇xh
(
tf , x(tf )

)
·∆x(tf ) + o

(
∆x(tf )

) (7)

The following Fig. 2 shows the relation between the variation of the endpoints
∆xf = (x + ∆x)(tf + ∆tf ) − x(tf ) of the state trajectories and the variation at the final
time ∆x(tf ). Once again using Lemma 1 (c) with f(·) being the identity, ∆x(tf ) can be stated

t

x

∆xf
∆x(tf )

x(0)
x(tf )

(x+∆x)(tf )

(x+∆x)(tf +∆tf )

tf tf +∆tf

Figure 2: Variation of the endpoint in x−space

in terms of ∆xf and ∆tf .

∆x(tf ) = ∆xf − ẋ(tf ) ·∆tf + o(∆tf ) (8)

The last term that need to be taken care of is the derivative ẏ(tf ). It can be calculated using
(2c). Thus, later all terms containing the derivatives at the final time tf are cancelled out.

ẏ(tf ) =
∂

∂t
h
(
tf , x(tf )

)
+∇xh

(
tf , x(tf )

)
· ẋ(tf ) (9)

Remark 1. (a) Equation (9) shows why the control input u can not be included in the output
function h. It would lead to the additional term ∇uh

(
tf , x(tf ), u(tf )

)
· u̇(tf ) and, there-

fore, the knowledge of as well as a condition for the derivative u̇. Similarly, if the output
function depends on the input, one obtains ∇uh

(
tf , x(tf ), u(tf )

)
· ∆u(tf ) as additional

term in (7). Stating ∆u(tf ) in terms of ∆uf := (u + ∆u)(tf + ∆tf ) − u(tf ) and ∆tf
would again require the knowledge of u̇(tf ), see Equation (8).
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(b) If on the other hand the final time tf and the final output yf respective final state xf would
be fixed in the OCP (2), ∆tf would vanish and, therefore, (5) does not depend on ẏ(tf ).
Additionally, if the final output yf is fixed, ∆y(tf ) vanishes and h

(
t, x(t)

)
can be replaced

with h
(
t, x(t), u(t)

)
.

Coming back to the deviation of PMP the Equations (6)-(9) are combined with (5) such that
the first variation ∆J of the total cost yields the following identity.

∆J =

tf∫
0

∇xH ·∆x+∇yH ·∆y +∇uH ·∆u+∇λH ·∆λ+∇µH ·∆µ dτ

+

tf∫
0

λ̇⊤ ·∆x− ẋ⊤ ·∆λ− µ⊤ ·∆y − y⊤ ·∆µ dτ − λ⊤(tf ) ·∆xf

+H
(
tf , x(tf ), y(tf ), u(tf ), λ(tf ), µ(tf )

)
·∆tf − µ⊤(tf ) · y(tf ) ·∆tf

+
∂

∂t
L
(
tf , y(tf )

)
·∆tf +∇yL

(
tf , y(tf )

)
· ∂

∂t
h
(
tf , x(tf )

)
·∆tf

+∇yL
(
tf , y(tf )

)
· ∇xh

(
tf , x(tf )

)
·∆xf + o

(
∆tf ,∆xf ,∆x,∆y,∆u,∆λ,∆µ

)
∆J must vanish as (∆tf ,∆xf ,∆x,∆y,∆u,∆λ,∆µ) approaches zero. Since the variation is
arbitrary, each component of (∆tf ,∆xf ,∆x,∆y,∆u,∆λ,∆µ) can be treated individually, i.e.
their coefficients need to vanish as well.

∆x : 0 = ∇xH
(
t, x(t), y(t), u(t), λ(t), µ(t)

)
+ λ̇⊤(t)

= λ⊤(t) · ∇xf
(
t, x(t), u(t)

)
+ µ⊤(t) · ∇xh

(
t, x(t)

)
+ λ̇⊤(t)

∆y : 0 = ∇yH
(
t, x(t), y(t), u(t), λ(t), µ(t)

)
− µ⊤(t)

= ∇yℓ
(
t, y(t), u(t)

)
− µ⊤(t)

∆u : 0 = ∇uH
(
t, x(t), y(t), u(t), λ(t), µ(t)

)
∆λ : 0 = ∇λH

(
t, x(t), y(t), u(t), λ(t), µ(t)

)
− ẋ⊤(t)

∆µ : 0 = ∇µH
(
t, x(t), y(t), u(t), λ(t), µ(t)

)
− y⊤(t)

∆xf : 0 = −λ⊤(tf ) +∇yL
(
tf , y(tf )

)
· ∇xh

(
tf , x(tf )

)
∆tf : 0 = H

(
tf , x(tf ), y(tf ), u(tf ), λ(tf ), µ(tf )

)
− µ⊤(tf ) · y(tf )

+
∂

∂t
L
(
tf , y(tf )

)
+∇yL

(
tf , y(tf )

)
· ∂

∂t
h
(
tf , x(tf )

)
Replacing the Hamiltonian H now leads to the generalization of PMP.

Theorem 2 (Pontryagin’s Minimum Principle for output-feedback).
Suppose an OCP as in (2) with ℓ, L, f , and h continuously differentiable. Then for (x, y, u, λ, µ)
to be an optimal solution the following conditions must hold for all t ≥ 0.

λ̇⊤(t) = −λ⊤(t) · ∇xf
(
t, x(t), u(t)

)
−∇yℓ

(
t, y(t), u(t)

)
· ∇xh

(
t, x(t)

)
(10a)

0 = ∇uℓ
(
t, y(t), u(t)

)
+ λ⊤(t) · ∇uf

(
t, x(t), u(t)

)
(10b)

ẋ(t) = f
(
t, x(t), u(t)

)
(10c)

y(t) = h
(
t, x(t)

)
(10d)

x(0) = x0
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Depending on whether or not the final time and final state are fixed or free additional conditions
apply.

(a) Final time tf and final state xf are fixed: x(tf ) = xf

(b) Final time tf is fixed and final state xf is free:

λ⊤(tf ) = ∇yL
(
tf , y(tf )

)
· ∇xh

(
tf , x(tf )

)
(11)

(c) Final time tf is free and final state xf is fixed: x(tf ) = xf

0 = ℓ
(
tf , y(tf ), u(tf )

)
+ λ⊤(tf ) · f

(
tf , x(tf ), u(tf )

)
+

∂

∂t
L
(
tf , y(tf )

)
+∇yL

(
tf , y(tf )

)
· ∂

∂t
h
(
tf , x(tf )

) (12)

(d) Final time tf and final state xf are free: (11) and (12)

Remark 2 (Parametric version).
In Theorem 2 all functions could also depend on some parameters p ∈ Rnp (np ∈ N) leading
to a parametric version of PMP and a family of solutions (tf,p, xf,p, xp, yp, up, λp, µp). The
parametric version of PMP for an infinite horizon can be found in the appendix of [17].

Corollary 3 (Input in the output function).
As outlined in Remark 1, the output function h can be dependent on the input u if the final time
tf and final output yf are fixed. In this case PMP states as the following:

λ̇⊤(t) = −λ⊤(t) · ∇xf
(
t, x(t), u(t)

)
−∇yℓ

(
t, y(t), u(t)

)
· ∇xh

(
t, x(t), u(t)

)
,

0 = ∇uℓ
(
t, y(t), u(t)

)
+ λ⊤(t) · ∇uf

(
t, x(t), u(t)

)
+∇yℓ

(
t, y(t), u(t)

)
· ∇uh

(
t, x(t), u(t)

)
,

ẋ(t) = f
(
t, x(t), u(t)

)
,

y(t) = h
(
t, x(t), u(t)

)
,

x(0) = x0 and x(tf ) = xf .

The major difference is the additional term in the second condition which is necessary for an
extremum regarding u.

Naturally, the original version of PMP can be obtained as a special case of the output-
feedback version given in Theorem 2.

Corollary 4 (Pontryagin’s Minimum Principle).
Given an OCP as in (2) with ℓ, L, and f continuously differentiable. Then if y = h(t, x) = x
the optimality conditions stated in Theorem 2 simplify to

λ̇⊤(t) = −λ⊤(t) · ∇xf
(
t, x(t), u(t)

)
−∇xℓ

(
t, x(t), u(t)

)
,

0 = ∇uℓ
(
t, x(t), u(t)

)
+ λ⊤(t) · ∇uf

(
t, x(t), u(t)

)
,

ẋ(t) = f
(
t, x(t), u(t)

)
,

x(0) = x0

and one of the following depending on whether or not the final time and state are free.
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(a) Final time tf and final state xf are fixed: x(tf ) = xf

(b) Final time tf is fixed and final state xf is free:

λ⊤(tf ) = ∇xL
(
tf , x(tf )

)
(13)

(c) Final time tf is free and final state xf is fixed: x(tf ) = xf and

0 = ℓ
(
tf , x(tf ), u(tf )

)
+ λ⊤(tf ) · f

(
tf , x(tf ), u(tf )

)
+

∂

∂t
L
(
tf , x(tf )

)
(14)

(d) Final time tf and final state xf are free: (13) and (14)

Remark 3 (Chain rule).
Comparing the classical version of PMP stated in Corollary 4 with the generalized results from
Theorem 2 one would obtain the same by simply applying the chain rule for y(t) = h

(
t, x(t)

)
.

Unfortunately, this argument is in general not bulletproof, since without further considerations,
i.e. restrictions regarding the input, this would lead to wrong results if the output function
additionally depends on the input, i.e. y(t) = h

(
t, x(t), u(t)

)
. The chain rule would lead to

Corollary 3 with extra conditions in case of free final time and free final state/output similar
to the Equations 11 and 12. Since this is in contrast to Remark 1, applying the chain rule still
requires insight in how the PMP conditions are originally derived.

3 Equality and inequality constraints
The goal in this section is to extend the OCP (2) by the following constraints and again derive
necessary conditions for a minimum.

∀t ∈ R≥0 : g1
(
t, y(t), u(t)

)
≤ 0 (15a)

g2
(
t, y(t), u(t)

)
= 0 (15b)

G1

(
tf , y(tf )

)
≤ 0 (15c)

G2

(
tf , y(tf )

)
= 0 (15d)

As all functions in (2), gi : R≥0 × Rny × Rnu → Rngi , Gi : R≥0 × Rny → RnGi (i ∈ {1, 2})
need to be at least continuously differentiable. The numbers of constraints of each type are
denoted with ngi and nGi

(i ∈ {1, 2}). Such rather general inequality and equality con-
straints have been already considered in [9, 14] and others. Therefore, their incorporation is
not new. Nevertheless, other authors mostly consider constraints containing only the states or
input or final state, see [5, 11, 13]. To incorporate the constraints (15) Lagrange multipliers
and variations αi,∆αi ∈ C1

(
R≥0;Rngi

)
with α1(·) ≥ 0 and α1(·) + ∆α1(·) ≥ 0 as well as

βi,∆βi ∈ C1
(
R≥0;RnGi

)
(i ∈ {1, 2}) with β1 ≥ 0 and β1 + ∆β1 ≥ 0 are introduced. The

strategy and calculation is now very similar to what has been shown in detail in Section 2.
Therefore, only the additional terms in the variation ∆J (5) will be discussed next. First of all
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the variation of α⊤
i · gi in the time interval [0, tf ] is considered.

tf∫
0

(αi +∆αi)
⊤ · gi

(
τ, (y +∆y), (u+∆u)

)
− α⊤

i · gi(τ, y, u) dτ

Lemma 1 (b)
=

tf∫
0

g⊤i (τ, y, u) ·∆αi + α⊤
i · ∇ygi(τ, y, u) ·∆y + α⊤

i · ∇ugi(τ, y, u) ·∆u dτ

From this formula one implies gi(·) must equal zero if the choice of ∆αi(·) is free. In case
of g1 it is more restrictive than (15a). Therefore, only Lagrange multipliers with the property
α1(t) = 0 if the constraint g1 is strictly fulfilled should be allowed. For sufficiently small
variations ∆y(t) and ∆u(t) it follows g1

(
t, (y + ∆y)(t), (u + ∆u)(t)

)
strictly smaller than

zero and, therefore, also (α1 + ∆α1)(t) = 0 and consequently ∆α1(t) = 0. Thus, the term
g⊤i (τ, y, u) · ∆αi (i ∈ {1, 2}) vanishes while the other two summands will change (10a) and
(10b).
Lemma 1 (d) can be used to simplify the next term containing the variation in the additional
time interval [tf , tf +∆tf ].

tf+∆tf∫
tf

(αi +∆αi)
⊤ · gi

(
τ, (y +∆y), (u+∆u)

)
dτ = α⊤

i (tf ) · gi
(
tf , y(tf ), u(tf )

)
·∆tf

Since α⊤
1 · g1 and g2 have to vanish, these terms do not need to be considered further. The

last terms that need to be taken care of are the variations of the terminal constraints (15c) and
(15d). The calculation steps are the same as were needed for the terminal cost L in the previous
section.

(βi +∆βi)
⊤ ·Gi

(
tf +∆tf , (y +∆y)(tf +∆tf )

)
− β⊤

i ·Gi

(
tf , y(tf )

)
Lemma 1 (b),(c)

=
(7),(8),(9)

G⊤
i

(
tf , y(tf )

)
·∆βi + β⊤

i · ∇yGi

(
tf , y(tf )

)
· ∂

∂t
h
(
tf , x(tf )

)
·∆tf

+ β⊤
i · ∂

∂t
Gi

(
tf , y(tf )

)
·∆tf + β⊤

i · ∇yGi

(
tf , y(tf )

)
· ∇xh

(
tf , x(tf )

)
·∆xf

As above, it makes more sense to require β⊤
1 · G1 ≡ 0. Thus, with the same arguments

G⊤
i

(
tf , y(tf )

)
·∆βi vanishes, while the other three summands must be added to (12) and (11).

To state the final theorem of this section the constraints g1 and g2 as well as G1 and G2 need
one more property. A more general version of this property is stated in [9].

Definition 1 (Uniformly positively linear independence).
Functions Ai, Bj ∈ C1

(
R≥0;R

)
(i ∈ {1, . . . , na}, j ∈ {1, . . . , nb}, na, nb ∈ N) are called uni-

formly in t positively linear independent if there exists δ > 0 such that for any
ai, bj ∈ C1

(
R≥0;R

)
with ai(·) ≥ 0 and

∀t ≥ 0 :
na∑
i=1

ai(t) +

nb∑
j=1

|bj(t)| = 1

DLR-IB-FL-BS-2024-55
Version: 1

2024-03-21
Seite 13



Institut für
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the following holds: ∣∣∣∣∣
na∑
i=1

ai(t) · Ai(t) +

nb∑
j=1

bj(t) ·Bj(t)

∣∣∣∣∣ ≥ δ.

Having this PMP for output-feedback including input and output as well as terminal equality
and inequality constraints is formulated as follows.

Theorem 5 (Output-feedback with equality and inequality constraints).
Suppose an OCP as in (2) together with the constraints (15), where all functions are at least
continuously differentiable and t 7→ g1

(
t, y(t), u(t)

)
and t 7→ g2

(
t, y(t), u(t)

)
as well as

t 7→ Gi

(
t, y(t)

)
and t 7→ Gi

(
t, y(t)

)
(i ∈ {1, 2}) are uniformly in t positively linear indepen-

dent. Then for (x, y, u, λ, µ, α1, α2, β1, β2) to be an optimal solution the following conditions
must hold for all t ≥ 0.

λ̇⊤(t) = −λ⊤(t) · ∇xf
(
t, x(t), u(t)

)
−∇yℓ

(
t, y(t), u(t)

)
· ∇xh

(
t, x(t)

)
−

2∑
i=1

α⊤
i (t) · ∇ygi

(
t, y(t), u(t)

)
· ∇xh

(
t, x(t)

) (16a)

0 = ∇uℓ
(
t, y(t), u(t)

)
+ λ⊤(t) · ∇uf

(
t, x(t), u(t)

)
+

2∑
i=1

α⊤
i (t) · ∇ugi

(
t, y(t), u(t)

) (16b)

ẋ(t) = f
(
t, x(t), u(t)

)
(16c)

y(t) = h
(
t, x(t)

)
(16d)

0 = α⊤
1 (t) · g1

(
t, y(t), u(t)

)
(16e)

0 ≥ g1
(
t, y(t), u(t)

)
(16f)

α1(t) ≥ 0, β1 ≥ 0 (16g)

0 = g2
(
t, y(t), u(t)

)
(16h)

x(0) = x0 (16i)

Depending on whether or not the final time and final state are fixed or free additional conditions
apply.

(a) Final time tf and final state xf are fixed: x(tf ) = xf

(b) Final time tf is fixed and final state xf is free:

λ⊤(tf ) = ∇yL
(
tf , y(tf )

)
· ∇xh

(
tf , x(tf )

)
+

2∑
i=1

β⊤
i · ∇yGi

(
tf , y(tf )

)
· ∇xh

(
tf , x(tf )

) (17)
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(c) Final time tf is free and final state xf is fixed: x(tf ) = xf

0 = ℓ
(
tf , y(tf ), u(tf )

)
+ λ⊤(tf ) · f

(
tf , x(tf ), u(tf )

)
+

∂

∂t
L
(
tf , y(tf )

)
+∇yL

(
tf , y(tf )

)
· ∂

∂t
h
(
tf , x(tf )

)
+

2∑
i=1

(
β⊤
i ·∇yGi

(
tf , y(tf )

)
· ∂

∂t
h
(
tf , x(tf )

)
+ β⊤

i · ∂

∂t
Gi

(
tf , y(tf )

)) (18)

(d) Final time tf and final state xf are free: (17) and (18)

Remark 4. If one of the functions ℓ, f , g1, or g2 is not differentiable with respect to the input u
Equation (16b) can be replaced by the more general formulation

u = argmin
ũ(·)

{
ℓ
(
t, y(t), ũ(t)

)
+ λ⊤(t) · f

(
t, x(t), ũ(t)

)
s.t. (15a) and (15b).

An adaptation of Corollary 3 to include constraints as well as a parametric version are
obvious and, therefore, omitted.
To illustrate how to use the obtained conditions (16) an example representing the optimization of
the speed profile v(·) and slope γ(·) to minimize the fuel consumption and time during a rocket
launch is utilized. The states are the altitude h(·) and total mass m(·), while it is assumed that
only the consumed fuel y(·) = m(0) − m(·) is measured. The final time and mass are free,
while the final altitude should be 9144m. Given some constraints for the speed (≥ 128.6m s−1)
and slope (in [0 deg, 15 deg]) as well as initial values the optimization problem states as the
following.

min
v(·),γ(·)

α · tf + (1− α) · y(tf )

ḣ = v · sin(γ)

ṁ = −Cs1 ·
(
1 +

v

Cs2

)
· CT1 ·

(
1− h

CT2

+ CT3 · h2

)
y = m0 −m

128.6− v ≤ 0, −γ ≤ 0, γ − 0.262 ≤ 0

h0 = 3480, m0 = 69 000, hf = 9144, mf free

Here the coefficient α ∈ [0, 1] can be used to weight the two different objectives of minimizing,
i.e. the time and the total fuel consumption. The values of the coefficients Cs1, Cs2, CT1, CT2,
and CT3 can be found in [18], where this example was taken from. The running cost ℓ(·) is
zero, while three constraints regarding the input variables must be fulfilled. Furthermore, one
final state is fixed while the other one is free. Additionally to the equalities and inequalities in
the optimization problem, (16) leads to
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(
λ̇1 λ̇2

) (16a)
= −

(
λ1 λ2

)
·

(
0 0

−Cs1 ·
(
1 + v

Cs2

)
·CT1 ·

(
− 1

CT2
+ 2CT3 ·h

)
0

)
,

0
(16b)
=
(
λ1 λ2

)
·

(
sin(γ) v · cos(γ)

−Cs1

Cs2
· CT1 ·

(
1− h

CT2
+ CT3 ·h2

)
0

)
+
(
−α1 −α2 + α3

)
,

0
(16e)
= α1 · (128.6− v), 0

(16e)
= α2 · γ, 0

(16e)
= α3 · (γ − 0.262),

0
(16g)
≤ α1, α2, α3,

λ2(tf )
(17)
= α− 1,

−α
(18)
=
(
λ1(tf ) λ2(tf )

)
·

(
v(tf ) · sin

(
γ(tf )

)
−Cs1 ·

(
1 +

v(tf )

Cs2

)
·CT1 ·

(
1− h(tf )

CT2
+ CT3 ·h2(tf )

))
,

which can only be solved numerically.

4 Relation to the Hamilton-Jacobi-Bellman equation
In this section the results of Theorem 2 will be utilized to derive the HJBE [2, 3] for output-
feedback systems. The other direction, i.e. how the HJBE can be used to obtain PMP for
state-feedback systems, is outlined in [15].
The main idea is to start from Equation (10a) and substitute λ⊤(t) with

∇yV
(
t, h(t, x(t))

)
· ∇xh

(
t, x(t)

)
= ∇xV

(
t, h(t, x(t))

)
,

where V ∈ C1
(
R≥0 × Rny ;R

)
is the so-called value function of the OCP in (2).

V
(
t, y(t)

)
:= min

u(·)

tf∫
t

ℓ
(
τ, y(τ), u(τ)

)
dτ + L

(
tf , y(tf )

)
(19)

Given (10c) and (10d) condition (10a) transforms into a gradient.

0 =
d

dt

(
∇xV

(
t, h(t, x(t))

))
+∇xV

(
t, h(t, x(t))

)
· ∇xf

(
t, x(t), u(t)

)
+∇yℓ

(
t, h(t, x(t)), u(t)

)
· ∇xh

(
t, x(t)

)
= ∇x

[
∂

∂t
V
(
t, h(t, x(t))

)
+∇yV

(
t, h(t, x(t))

)
· ∂

∂t
h
(
t, x(t)

)]

+∇x

[
∇yV

(
t, h(t, x(t))

)
· ∇xh

(
t, x(t)

)
· f
(
t, x(t), u(t)

)]
+∇xℓ

(
t, h(t, x(t)), u(t)

)
The substitution of the derivative ẋ(t) with the function f

(
t, x(t), u(t)

)
leads to another depen-

dency on the states. Therefore, the order of derivatives with respect to x and t can not be ex-
changed so easily. This problem can be overcome by incorporating the term
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∇xV
(
t, h(t, x(t))

)
· ∇xf

(
t, x(t), u(t)

)
into the gradient. Integration with respect to x together

with the terminal condition (12) yields

0 =
∂

∂t
V
(
t, y(t)

)
+∇yV

(
t, y(t)

)
· ∂

∂t
h
(
t, x(t)

)
+∇yV

(
t, y(t)

)
· ∇xh

(
t, x(t)

)
· f
(
t, x(t), u(t)

)
+ ℓ
(
t, y(t), u(t)

)
,

(20)

which is the HJBE for the output-feedback and time-dependent case. The second terminal con-
dition (11) is already included in the definition of the value function (19) since
V
(
tf , y(tf )

)
= L

(
tf , y(tf )

)
. Finally, the derivative of (20) with respect to u leads to

0 = ∇yV
(
t, y(t)

)
· ∇xh

(
t, x(t)

)
· ∇uf

(
t, x(t), u(t)

)
+∇uℓ

(
t, y(t), u(t)

)
(21)

the first order optimality condition which is identical with (10b).

Corollary 6 (Hamilton-Jacobi-Bellman equation for output-feedback).
Consider an OCP (2) with ℓ, L, f , and h continuously differentiable. Then the Hamilton-Jacobi-
Bellman equation is given by (20) and a first order optimality criteria by (21).

Remark 5. A derivation of the HJBE for time-independent output-feedback systems based on
Bellman’s Principle of Optimality can be found in the appendix of [17].

5 Conclusions
In this work, Pontryagin’s Minimum Principle has been generalized to output-feedback sys-
tems. Depending on whether or not the final time and the final output respectively state are
fixed or free optimality conditions have been found. Conditions under which the output func-
tion may include the systems input were investigated. Furthermore, time-depended equality
and inequality constraints for the input and output variables as well as terminal equality and in-
equality constraints were taken into account and the optimality criteria were adjusted. To show
a possible application, an example regarding the time and fuel optimal climb phase during a
rocket launch has been given. In the end, an output-feedback version of the HJBE has been
derived using the generalized PMP.
Future research potentially focuses on a discrete-time output-feedback version of Pontryagin’s
Minimum Principle and sufficient conditions for the optimality.
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