Harnessing Deep Learning for TomoSAR stack enhancement
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Abstract

Synthetic aperture radar (SAR) tomography (TomoSAR) utilizes co-registered SAR images from different tracks (known
as a “TomoSAR stack”) to create a resolution in the height direction. Spectral analysis retrieves the vertical backscattered
Power Spectrum Pattern, enabling 3D imaging (Tomography). Tomograms show ambiguities inversely related to baseline
separation, with larger and denser stacks offering better ambiguity rejection. To address the constraints posed by a limited
number of acquisitions, we utilize a deep neural network. This network is employed to synthesize Single Look Complex
SAR images by introducing an "artificial" baseline that was not part of the original TomoSAR stack.

1 Introduction

The objective of Synthetic aperture radar (SAR) tomog-
raphy (TomoSAR) is to retrieve the interior distribution
(referred to as Power Spectrum Pattern (PSP)) of semi-
transparent objects using a set of spare SAR measurements.
This set is called “TomoSAR stack™ and is constituted by
L SAR co-registered images acquired with different Base-
lines (BLs) in reference to a primary track. Each BL offers
a perspective of the illuminated zone from a different Line-
Of-Sight (LOS) allowing the synthesis of a resolution in
Perpendicular to LOS (PLOS) direction. The reconstruc-
tion of PSP is classically obtained via spectrum estimation
methods that involve an inversion of measurements [1, 2].
The recovered PSP presents a resolution in PLOS direction
oppositely varying to the tomographic aperture (largest BL
in the stack, later on called Dpyog in Figure 1) [1, Eq.
8]. In addition, ambiguities caused by the subsampling,
appear in a position inversely proportional to the separa-
tion between BLs (labeled as d in Figure 1) [1, Eq. 9].
Hence, with an increase in the size, reducing the distance
between tracks, of the TomoSAR stack, the quality of the
resulted tomograms improves in terms of ambiguities re-
jection. In real-world situations, the dimensions of the To-
moSAR stack are limited by the revisit time, due to poten-
tial temporal decorrelation issues [3]. Another constraint
on the number of tracks in the stack belongs to the practi-
cality of executing singular missions to collect them. Figure 1 DL-based SLC synthesis process. A subset of
We propose the use of a Deep Learning (DL) architec- known BLs are used to train a NN to generate one from
ture to synthesize Single Look Complex (SLC) SAR im-  an unknown BL position.

ages from an “artificial” baseline, i.e. a sensor path with
a LOS not acquired in a specific TomoSAR stack. Deep
learning is a subgroup of machine learning (ML) that em-
ploys Neural Networks (NN) with multiple layers to auto-
matically learn and extract complex patterns from data. It
allows handling intricate tasks like image recognition, nat-
ural language processing, and decision-making [6]. The
TomoSAR focusing problem has already been addressed in
terms of DL, see [4, 5]. These works use additional infor-

Enhanced stack

mation, simulated data, and LiDAR respectively, as a way
to have ground truth data to train the network to map from
the TomoSAR stack to vertical profiles. This has the disad-
vantage of being attached to the quality and limitations of
the additional information. In our case we use DL to im-
prove the TomoSAR stack itself, so the classical methods
to reconstruct the PSP can perform better.
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Figure 2 Proposed DL architecture based on classical U-net [7]. The network employs a contracting path for context
capture and an expansive path for detailed feature incorporation, facilitated by skip connections.

As a proof of concept, the next experiment is proposed. A
TomoSAR mission dataset is cropped in the azimuth direc-
tion in two subsets; one that is used for training and the
other for testing. The training subset accounts for the L
BLs while the test one contains only L — 1. The reason is
to imitate a scenario where the training area was acquired
with the whole tracks and the testing zone was flown with
fewer passes. Following that, a DL model is fitted with the
data in the training subset to generate the missing SLCs in
the test crop. This process is shown in Figure 1. Exper-
iments were performed using the F-SAR dataset obtained
in the 17SARTOM experiment over the test site of Traun-
stein, Germany in 2016.

2  TomoSAR signal model

In the framework of the direction of arrival estimation the-
ory [3], the linear equation of observation

y=As+n €))]
is used to describe the TomoSAR inverse problem. This
considers an acquisition geometry with L tracks, they
all offering distinct LOS. Each pass yields a single co-
registered SAR image, which is then coherently combined
via SAR interferometric methods. When considering that
co-registration is not dependent on height, these L passes
are handled as a linear array. In equation (1), y collects the
L processed signals for each pass at certain azimuth range
position. Vector s contains the M values of the reflectiv-
ity at each elevation position {zm} _, in the PLOS direc-
tion. The interferometric phase information corresponding
to the backscattering sources found along the height posi-
tions {zm}%:1 holds on matrix A. This matrix is referred
to as the “steering matrix” and its columns store the steer-
ing vectors {a (,zm)}T]\r/L[:1 whose definition is as in [3].

The PSP (whose reconstruction is the main objective of
TomoSAR) in the PLOS direction is represented in dis-
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crete form by vector b = {bm}ﬂl\f:1 =

the second-order statistics of the complex reflectivity vec-
tor s. One of the most classical methods to solve the inverse
problem stated in (1), is via the Fourier-based Matched
Spatial Filter (MSF) [3],

=ATYA. )

bymsk

This makes use of a sampled covariance matrix [3] de-
picted as:
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here J states the number of independent looks of the signal
acquisitions. In practical cases, TomoSAR is considered as
an ergodic process. This means that the multi-looking is
obtained via averaging adjacent values. MSF is very inter-
esting in the context of our research because the position

of the ambiguities can be computed assuming equidistant
BLs [1, Eq. 9] via
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where r; represents the slant-range distance to the primary,
A the sensor wavelength and as previously stated d the dis-
tance between passes.

3  Deep learning model

DL methods use a cascade of nonlinear processing units
to obtain features of a dataset under the idea of learning
by example. This knowledge is later used to map an in-
put into a desired output. A modified version of the U-net
encoder-decoder network architecture [7] is employed. As
can be seen in Figure 2, it consists of five encoder blocks
and five decoder blocks. The contractive path (encoders)
doubles the number of features and half them spatially at
each step. While in the expansive path (decoders) at step-
ping, the dimensional size doubles and half the number of



filters. Each of the encoder blocks follows the next con-
figuration. Two 3x3 convolution layers with padding 1,
each of them activated by a Rectified Linear Unit (ReLU)
function. After this, a 2x2 Maximum Pooling layer with
stride 2 is applied. On the other side, every step in the ex-
pansive path is constituted by the next sequence. A 2x2
transposed convolutional layer with stride 2 followed by
the concatenation of the up-sampled feature map with the
feature map from the contracting path. That is to combine
both low-level and high-level information. Subsequently,
two 3x3 convolution layers with padding 1 and activated
by a ReLU function are implemented. After the five blocks
of the expansive path, a 1x1 convolution layer activated by
a linear function is employed to return to the input size and
state our regression model.

Our model takes as an input eight of the SLCs available
in the stack. Each of the complex input images is repre-
sented with 2 channels: real part, and imaginary part. Both
channels are normalized with the amplitude, this redundant
information is incorporated to aid the NN to assimilate the
magnitude of the complex vector that aims to approximate.
Considering 96x96 input patches then our input can be de-
fined as X96><96><16.

The remaining SLC in the stack is used as a target for the
training, meaning that this is the BL that the network will
learn to estimate. Since one BL is being approximated
and the output data of the network is portrayed by two
channels: amplitude and phase. Then, the output of the
network can be presented as f(X) = W92 where
f + X — W represents the action of the NN mapping
the input in to the output.
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Figure 3 Test and train subset. The yellow line in the test
subset is the slice where the tomographic experiments are
performed.

The loss function used for the training is
Loss = Lossgp + Lossqpp. 5)
Where the loss of the phase is given by,

1
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Figure 4 Original SLC (reflectivity), test subset.
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Figure 5 Artificial SLC (reflectivity), test subset.
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Figure 6 Scatter plot amplitude. In the horizontal axis
the amplitude of the original SLC and in the vertical axis
the artificial one.

This is the mean square error of the phase channel with
its approximation by the NN, but with some modifications.
The function Subang(a, b) represents the subtraction of an-
gles a and b considering its circular disposition, giving us
the realistic distance of the two phases. The number of
samples is expressed with n. Also, the loss is scaled with
the variance (VAR) in order to be in the same numeric
range as the L05Sq,,. The loss of the amplitude is defined
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Figure 7 Tomographic results. (Top) MSF using 8 original BLs. (Bottom) MSF using only 8 original BLs + 3 artificial
BLs. On the left, the horizontal BLs positions are displayed: in red the ones synthesized and in black the original ones

as,
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with the scaling factor of the variance being used for the
same reason as before.

4  Experimental results

As previously stated, we envision a scenario where mul-
tiple TomoSAR stacks are required to cover a region of
interest. The goal is to acquire a large stack from only a
part of the scene. This data can be subsequently leveraged
to train the network to synthesize a subset of the stack. For
the remaining parts of the scene, only a smaller stack has
to be acquired, as it can be extended by SLCs synthesized
by the network. As a proof of concept, we limit ourselves
to a single tomographic stack that is divided into train and
test regions by a split in azimuth. Experiments are per-
formed using a crop of the F-SAR dataset obtained from
the 17SARTOM mission over the test site of Traunstein,
Germany in 2016. This campaign has the next specifica-
tions: An L-Band sensor (0.226m wavelength), multipo-
larimetric (only VV was used for our case), nominal height
of 3720m, range resolution of 1.3m, and azimuth resolu-
tion of 0.6m.

The training and testing subsets of 7300x3650 pixels can
be seen in Figure 3. The following experiments consider
the horizontal BLs (in reference to the master track at Om)
at 14.8m, 22.3m, 30.2m, 45.7m, 52.8m, 60.5m, 68.8m and
75.9m. The one at 75.9m was selected as a target to be
synthesized in the next example.

The model was fitted with the training subset using 75%
of the data to train and 25% for validation. Mini-batches
of size 32 were employed with an Adam optimizer using a
learning rate of 1 * 10~ for 140 epochs.

For the next results, we will refer to the test subset. In Fig-
ure 4, it is shown the original SLC (reflectivity). While

Figure 5 displays the SLC generated by the NN. As it can
be seen, the NN successfully recognizes most of the pat-
terns that constitute the area.

In an effort to assess the results, Figure 6 displays the scat-
ter plot of the original amplitude (dB) and the artificial am-
plitude (dB). In an ideal case, these two values should be
the same, therefore the closer they are to the red diago-
nal the better the results are. For our case, it is observable
that most of the density of the plot is lying on the red line,
which means a good quality of the synthetic SLC, in terms
of amplitude.

Finally, MSF was performed in the surface marked with
a yellow line in the test subset, as can be seen in Fig-
ure 3.To highlight the impact of the artificial BLs in the
tomogram’s computation, three SLCs were estimated using
the DL-based method proposed (in reference to the master
at 0.0m): 6.5m, 22.3m, and 38.1m. In Figure 7 (top) we
can see Tomogram reconstructed using eight BLs and in
Figure 7 (bottom) the one using eleven BLs. It is observ-
able a reduction in the ambiguity at approximately 25m.

5 Conclusions

In the framework of classical methods to solve the To-
moSAR inverse problem, the quality of the tomograms, in
terms of ambiguity rejection, is directly related to the size
and density of the tomographic stack. Therefore, this work
offers an option to enhance a spare TomoSAR stack taking
advantage of DL.

The correct synthesis of an artificial BL was evaluated
qualitatively. The correct recreation of the amplitude can
be seen in the scatter plot, Figure 6. Finally, the tomo-
grams displayed shows the correct enhancement of the re-
sults, in terms of ambiguity suppression.

In summary, the proposed method to improve a TomoSAR
stack has proved to be usable specially in scenarios like
surfaces or human-made structures. In future work, a
deeper analysis and emphasis in the phase estimation needs



to be done in order to asses the performance in other kind
of scenes.
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