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Abstract

Combining despeckling and compression tasks is worthwhile because a decrease in the amount of information to be
encoded will result in a more efficient data downlink. This paper presents a self-supervised solution to performing joint
compression and despeckling of SAR images, with an estimation of the reflectivity based on an original adaptation of
recent machine learning-based advances in the fields of image compression and SAR images despeckling. The proposed
solution was successfully tested on real-world data from TerraSAR-X, showing great potential for achieving state-of-the-
art despeckling under the constraints of end-to-end optimized compression with variational autoencoders.

1 Introduction

The usefulness of spaceborne synthetic aperture radar
(SAR) systems, with their wide range of valuable applica-
tions, is a well-established fact. They can be used anytime
and under any weather conditions to monitor forest cover,
to secure maritime areas, to measure geophysical parame-
ters remotely, etc. This is why data downlink and its inter-
pretability are key issues.

The transmission of satellite data to the ground segment is
subject to multiple constraints, such as the length of the
moment when the satellite is visible from a terrestrial an-
tenna, the bandwidth limit on data flow, and the financial
cost associated with the duration of use of a sophisticated
ground antenna. The aim is to maximize on-board com-
pression to increase the amount of data transmitted and to
reduce the inherent costs in using such infrastructures.

It should be noted that an unavoidable multiplicative noise,
speckle, largely disrupts SAR images. We will here con-
sider speckle as unwanted high-frequency information, so
it seems natural to introduce on-board denoising of SAR
images before compression and transmission. Doing so
will improve compression without resorting to the usual
trade-off of sacrificing image quality, but rather by esti-
mating the underlying SAR reflectivity before downlink.

The work presented in this article proposes a joint imple-
mentation of compression and despeckling, based on the
latest state-of-the-art methods in the fields of despeckling
[1] and image compression [2], which respectively pro-
vided the basis for a training strategy and a neural net-
work architecture. These methods are adapted to propose a
unique solution, which operates in a single step of joint
compression and despeckling, which could be used on-
board to produce a bitstream that could then be decoded on
the ground. The proposed solution has been experimented
on real-world data acquired by TerraSAR-X.

2 Background concepts

2.1 Self-supervised despeckling
The despeckling of a SAR image is no ordinary task, and
classical filtering methods such as SAR-BM3D [3] are now
largely outperformed by recent machine learning-based
approaches with convolutional neural networks (CNNs).
However, they are often limited because there is no noise-
less SAR image to be used as a "ground truth" refer-
ence for supervised machine learning. The remaining op-
tions that are usually implemented are: supervised learning
with a temporal average of co-registered single-look com-
plex (SLC) images, self-supervised learning with two co-
registered images (SAR2SAR) [4], or with masked values
(Speckle2Void) [5]. The main drawbacks of such meth-
ods are the multiple – and often heavy – preprocessing
steps involved, such as change detection between two co-
registered images or spectral equalization.

Because the real and imaginary parts of an SLC may be
considered as two independent identically distributed real-
izations of the same signal, a new approach called MER-
LIN (coMplex sElf-supeRvised despeckLINg) has been
proposed [1]. It has shown significantly better results when
compared to other methods [6], while proving easier to im-
plement, with great flexibility regarding the choice of neu-
ral network architecture, since it is mainly a training and
inference strategy.

Let a received SLC be denoted z = Aeiφ = a + ib, with
(a, b) ∈ R2, where A is the amplitude and φ the phase.
The received signal’s probability density function pz can
be re-written as follows:
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Figure 1 (1) MERLIN training strategy, in which the real part and the imaginary part may be swapped in order to increase
the size of the training dataset. (2) Inference of the intensity with a trained network architecture used twice.

It is clear from equation (1) and from [1] that real and imag-
inary parts have the same distribution N (0, σ/2). When
comparing real and imaginary parts – squared for visual-
ization purposes – of real-world data, the main visible dif-
ference is the noise, which, under the assumption of Good-
man’s fully developed speckle model, is i.i.d. realizations
of speckle. Consequently, in the same way that SAR2SAR
trains a network to despeckle with two co-registered im-
ages, it is possible to do likewise, using Re2 the squared
real and Im2 the squared imaginary parts of an SLC. The
main advantage of this method is that there is no longer the
need to co-register two images or to undertake changes de-
tection [6]. The training strategy and the way to perform
intensity image (amplitude image squared) inference are
shown in Figure 1.

2.2 End-to-end optimized compression
Traditional data compression techniques are generally
based on three successive steps that produce a bitstream,
followed by the three associated inverse operations which
estimate the original data. The transform, quantization
and entropy coding operations form the encoder, while
their counterparts constitute the decoder, as shown in Fig-
ure 2. The transform allows data to be represented in a
space more suited to compression. For instance, JPEG2000
uses discrete wavelet transform to perform compression in
the scales domain. The idea behind end-to-end optimized
compression with neural networks is to take advantage of
the efficient latent representations that autoencoders can
achieve. The latter performs dimensionality reduction but
not compression. Consequently, variational autoencoders
trained to produce bitstreams – hence the characterization

of "end-to-end" – have been developed. The variational
nature of these autoencoders provides priors on the la-
tent space, enabling its entropy encoding. State-of-the-art
methods for image compression are based on such neural
networks and have been further improved [2] by introduc-
ing a scale hyperprior. The loss function used to train such
networks combines a distortion term D(x, x̂), which mea-
sures the differences between original and estimated data,
and a rate term R(c), which evaluates the efficiency of
the compression. Both terms are minimized at once, one
with respect to the other by introducing a Lagrangian mul-
tiplier λ.

Figure 2 Usual framework for transform coding.



Figure 3 The framework proposed for training the neural network to perform joint despeckling and compression on a
squared real or imaginary part of an SLC. The hyperprior variational autoencoder provides the scales σ̂ used by the main
entropy encoder and decoder. The activation functions are written in cyan, see [7] for technicalities on GDN and IGDN.
Downscaling by a factor of two along height and width is denoted ↓2, while ↑2 corresponds to upscaling. The first two
numbers describing the convolutions are for the 2D kernel dimensions and the last one is the number of filters.

3 Methodology

3.1 Joint approach
We propose a joint approach for SAR image compression
and despeckling. Joint approaches for compression and de-
noising with deep learning have been developed, but only
for optical images, [8] using simulated noise. Since noise-
less SAR images do not exist, the same method cannot be
applied here. The simulation of SAR data and of speckle
does not generally allow models trained in this way to be
used effectively on real data because of the domain gap [9].

More specifically, the despeckling method presented in
subsection 2.1 provides a training strategy but does not
limit the choice of neural network architecture, allowing
an autoencoder to be chosen. In addition, end-to-end op-
timized compression can be performed using the concepts
presented in subsection 2.2. It should be noted that unlike
the U-Net network used in [1], an autoencoder does not
have skip connections, which largely contribute to restor-
ing details while decoding the latent space. This makes
it more difficult to obtain near-quality results with autoen-
coders. However, since the compression task subjects us
to certain constraints, we have chosen a variational autoen-
coder architecture, with residual blocks, as shown in Fig-
ure 4, to further preserve detail. It is equipped with quan-
tization and entropy coding/decoding of the latent space,
with a side hyperprior variational autoencoder, which of-
fers better compression rates (even when considering the
addition of the side bitstream used to transmit the scales
for the priors) and provides the network with a high degree
of adaptability regarding the input data.

Figure 4 Residual blocks inner architecture.

3.2 Data processing
For the proposed work, we used X-band stripmap
mode SLC data with HH polarization acquired by the
TerraSAR-X satellite (ESA archive). Three images were
used to create the training, validation, and test sets. As
neural networks only accept static data shapes, each image
was divided into 256×256 patches. Around 30,000 patches
were used. However, the number of elements in the dataset
can be doubled. Indeed, it is possible with a single complex
data patch to create two input/reference pairs for training
the neural network: (Re2, Im2) and (Im2,Re2).

For the data to be used within the framework shown in
Figure 3, it needs to undergo several pre-processing steps:
spectrum centering and symmetrization to avoid correla-
tions between real and imaginary parts, logarithmic do-
main transformation and normalization to limit the dy-
namic range and increase training efficiency. Finally, it is
divided into patches.



3.3 Deep learning-related aspects
The loss used to train the model with the architecture and
the training strategy shown in Figure 3 is an original com-
bination of the losses found in [1] and [2] :

L
(
x̂,xref

)
= R (ŷ) +R (ẑ) + λD

(
x̂,xref

)
(2)

Where R is an entropy-based estimation of the bit-rate in
bit per pixel (BPP), and D is the distortion term found in
[1]. However, the actual distortion measurement can be
any similarity metric (MSE, SSIM, etc.). The Lagrangian
multiplier λ is a user-defined value before the training of
the network, defining an arbitrary rate-distortion trade-off.

To train the neural network as shown in Figure 3, the fol-
lowing hyperparameters were used: 50 epochs, Adam opti-
mizer with a learning rate of 10−4 with exponential decay,
batch size of 2, a validation rate of 15% and a test rate of
35% (so half of the data presented is used for training pur-
poses). Note that in the proposed training method, the aim
is not to achieve zero distortion between input and output,
as this would imply that the model would be able to pre-
cisely predict the noise of the reference image, which is
not possible (apart from overfitting cases) because, accord-
ing to what was presented in subsection 2.1, these are two
different realizations of the same noise.

Figure 5 Proposed inference framework.

Once the training is done, the inference of the intensity Î
could be done as shown in Figure 1. However, it would
lead to the creation of two bitstreams conveying very sim-
ilar information. Therefore we propose a new inference
method, adapted to our joint approach, as illustrated in
Figure 5. In order to create only one bitstream, but still
offer a full power-based prediction, the real and imaginary
parts squared are averaged in the latent space before the
quantization. Mathematically, denoting the encoder by fe
and the decoder by fd, it can be written as follows :

Î = 2× fd

(
Q
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(
Re2

)
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(
Im2

)
2
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(3)

4 Results

4.1 Metrics
The compression and despeckling tasks were evaluated
separately to assess the proposed method’s effectiveness.
Firstly, the compression was quantified through the bits
per pixel measurement (BPP), i.e. the average number of
bits needed to encode a pixel, computed for an image that
the network had never seen during training or validation.
Note that the value obtained will not be comparable with
the results obtained in [2], as the SLC data is not compa-
rable with the usual data in image compression. Regarding
speckle reduction, the equivalent number of looks (ENL)
is computed over homogeneous areas and represents how
much speckle reduction has been achieved. For the said
area, it is defined with µr as the mean value and σr as its
standard deviation:

ENL =
µ2
r

σ2
r

(4)

Usual denoising-related metrics such as peak signal-to-
noise ratio (PSNR), mean square error (MSE) or multi-
scale structural similarity (MSSIM) are not suitable since
there is no noiseless reference SAR image.

4.2 Experiments
The training method described in section 3 was suc-
cessfully applied, and the resulting network was used
to perform the joint compression and despeckling of a
test image. To compare the result obtained in terms of
despeckling, two despeckling-only methods [1][3] were
implemented and applied to the same image, as shown
in Figure 6. The ENLs measured on the test image are
respectively : (a) 0.96, (b) 4.17, (c) 130.55, (d) 266.67.
Finally, the test image was encoded with only 0.366 BPP,
showing very few compression artifacts. As a result,
some smoothing can be seen over homogeneous areas
and a good preservation of details over point targets can
be observed, particularly over the buildings in the upper
right corner of Fig. 6. Preliminary analysis shows good
preservation of the radiometric information found in the
compressed image when compared to the noisy SLC,
showing similar performance to state-of-the-art methods.



(a) Noisy

(b) SAR-BM3D (no compression)

(c) MERLIN (baseline, no compression)

(d) Our result for a compressed image (λ = 0.004)

Figure 6 Comparison of results from different methods.

(1) SAR-BM3D’s ratio image

(2) MERLIN’s ratio image

(3) Our result’s ratio image (λ = 0.004)

Figure 7 Ratio images for the three methods applied.

After computing the ratio images found in Fig. 7, we
see practically no presence of structures in the ratio im-
age of our approach in (3), in contrast to the ratio image
of the SAR-BM3D in (1) where the buildings in the upper
right corner and the road are clearly visible, pointing to an
under- or overestimation of the resulting reflectivity. The
MERLIN ratio image (2) also shows the slight presence of
visible structures.



5 Conclusion

This paper presented an original joint compression and de-
speckling approach enabled by a framework combining
two deep learning-based state-of-the-art methods that in-
dependently perform such tasks, thanks to its neural net-
work architecture or its training strategy. Combining these
methods led to the development of a framework allowing
the despeckling of SAR images with near state-of-the-art
results, while compressing it efficiently into a bitstream.
Therefore, the proposed method may effectively be used
onboard for the purpose of maximizing the data sent or of
decreasing the time – and the associated cost – for such
transmissions. In the future, the development of other joint
approaches that can be performed onboard may be con-
sidered with regard to the downlink limited capability of
current systems.
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