NEW MATERIALS IN RAIL EXAMPLES OF LIGHTWEIGHT DESIGN

Marcel Andres Institute of Lightweight Systems

Marcel Andres, Institute of Lightweight Systems, 06.07.2023

Scope of in-house development opportunities at DLR

Overview of recent research activities

3

Sustainable Materials in lightweight applications

Motivation and objectives

- Improving sustainability in the
 - Production phase: Reduction of the carbon footprint through renewable, regional materials
 - Service life phase: Reduction of CO2 footprint through lightweight construction and functional integration

Challenges

- Finding suitable 100% biological (resin, hardener and fibre) composites for (semi-)structural components
- Obtaining long-term experience under real conditions
- Lack of normative standards hinders the use of new materials

Selection of previous projects with bio-composites

Next steps using flax composites

Developments

- Application potential of flax composites as material substitutes for GFRP successfully demonstrated several times in the past
- Market-side material developments (flax) enable the acquisition of high-quality semi-finished products (fabrics, scrims, UD) on an industrial scale
- New material developments (matrix system) enable the use of a **bio-composite** with a significantly better eco-balance (up to 100% biocomposite possible)
 - More fire resistant thermoset (bio) according to EN 45545-2 or infusible thermoplastic (recyclable) possible
 - Better fatigue properties than GFRP (critical load case) with lower density → Lightweight potential

Concept of the NGT-Taxi with a flax-fibre frontsystem

Flax composites available as woven fabrics / scrims [2]

Sidewall segment of a tram

- Higher inherent stiffness & integration of insulation
- Weight reduction of up to 20%
- Slimmer design \rightarrow More space in the interior

Overview of recent research activities

H2-Storage Systems

Motivation and objectives

- Development of novel manufacturing concepts and design methods for H2 tanks incl. QA to create more reliable tanks
- Evaluation of remaining service life by SHM systems and extended fatigue strength concepts

Challenges

- Passing the certification tests
 - Bursting pressure tests starting next week
- Optimal refueling of the hydrogen tanks under consideration of the thermal load
- Ensuring impermeability after multiple loads

Investigating the leakage phenomenom

Test infrastructure

- DLR is currently building an extensive infrastructure for the investigation of hydrogen applications
 - Is largely driven by aviation
 - Knowledge can/should be transferred to the ground-based mobility sector
- First tests are showing higher permeability with higher pressures (tested from 1-10bar)

For high pressure tanks (350-700bar) this might be critical in future

 Suitable design solutions and material combinations must to be found

Development of test rigs to measure the permeability of pressure tanks under different conditions

Overview of recent research activities

10

Transfer and industrial cooperation

Motivation and objectives

- Collaboration with industry enables us to conduct application-oriented research
- The goal of any structural development is the use in practice

Challenges

11

- Honest insight regarding current challenges in the industry
- Lack of standards hinders use of new materials in rail transport
 - DIN SPEC about QA to be published in Q4/23
 - Participation in CEN/TC 256/SC 2/WG 54 New Materials
 - Participation in many Hydrogen working groups

faWaSis as an example for a succesfull project with many partners

SMT

SAERTEX

VOITH

INVENT

Imprint

Topic:	New Materials in Rail Examples of lightweight design
Date:	2023-07-03
Author:	Marcel Andres
	Head of Business Area Mobility
Institute:	Institute of Lightweight Systems
Image credits:	All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated