
SEA ICE CLASSIFICATION USING COMBINED SENTINEL-1 AND SENTINEL-3 DATA 

Stefan Wiehle1, Dmitrii Murashkin1, Anja Frost1, Christine König2, Thomas König2 

1: German Aerospace Center (DLR), Maritime Safety and Security Lab Bremen, Germany 

2: König und Partner Fernerkundung GbR, Dießen am Ammersee, Germany 

 
 

ABSTRACT 

 

We present a new approach for sea ice mapping based on 

Synthetic Aperture Radar (SAR) data from Sentinel-1 and an 

existing sea ice classification using optical-thermal data 

based on Sentinel-3. SAR and optical-thermal sensors 

provide different information about the sea ice situation: 

while SAR backscatter depends mainly on the topography of 

the sea ice surface and properties of the ice volume, optical 

sensors provide further information about the structure and 

moisture of ice and snow. In order profit from both sensors, a 

convolutional neural network (CNN) is trained with 

collocated images from both satellite missions. Compared to 

a pure SAR classification, the results of the combined 

approach show an improved classification reliability, 

especially in areas with open water. 

 

Index Terms— Sea ice classification, SAR, SLSTR, 

data fusion, remote sensing 

 

1. INTRODUCTION 

 

Sea ice is an essential component of the Arctic environment. 

Its coverage and thickness play an important role in weather 

forecasting and the global climate system [1]. In addition, sea 

ice has significant impacts on human activities in the polar 

regions, such as shipping and offshore constructions. 

Therefore, mapping and classifying sea ice is an important 

task to ensure the safety and efficiency of human activities 

without harming the sensitive Arctic region, and to support 

studies on climate and environmental research. 

As the polar regions are dark during winter time and, in 

particular, often covered by clouds, active microwave sensors 

such as Synthetic Aperture Radar (SAR) are a useful remote 

sensing tools for observing the polar sea ice and its evolution 

[1]. The data acquisition is generally unaffected by 

atmosphere, solar illumination, or clouds.  

However, to analyze long-term changes in the sea ice and 

therefore handle large amounts of data efficiently, automatic 

algorithms for classifying the sea ice are required. 

An abundance of approaches for SAR-based sea ice 

classification have been developed (e.g., [2]), summarized 

very comprehensively in [3]. Nevertheless, obtaining 

accurate classifications year-round is still a challenge. 

Different ice classes can show similar radar backscatter 

responses, which limits the performance of sea ice 

classification. Seasonally, the radar backscatter signal can be 

affected by precipitation: wet snow obscures information 

about underlying ice types [4] which results in 

misclassifications. 

In order to overcome misclassifications, we utilize 

collocated classifications based on optical-thermal data from 

the Sea and Land Surface Temperature Radiometer (SLSTR) 

of Sentinel-3 satellite mission. SLSTR measures the reflected 

sunlight in different bands which also include thermal 

information. Figure 1 illustrates the general workflow of the 

two classification strategies we analyze in this paper. The 

Sentinel-3 based classification is sketched in Chapter 2. The 

pure SAR-based classification is then described in Chapter 3. 

Chapter 4 goes into the fused approach. Our test results 

shown in Chapter 5 compare the pure SAR-based 

classification with the fused classification. This test deals 

with 100 Sentinel-1 scenes and the same number of 

collocated Sentinel-3 classifications taken over the Arctic 

ocean.  

 

 

Figure 1: General data flow of the Sentinel-1 

classification and the combined Sentinel-1/Sentinel-3 

classification. 

 

2. OPTICAL-THERMAL CLASSIFICATION 

 

The Sentinel-3 SLSTR ice classification is an improved 

version of the ice differentiation algorithm presented in [5]. 

Improvements have been made in cloud detection and the 

development of an operational processing chain that enables 

faster and therefore more up-to-date information to be 

provided to maritime users.  

The results of the algorithm are verified by comparing 

them with high-resolution optical remote sensing data, 

webcam recordings, the official sea-ice maps of ice services 

as well as the predictions of Canadian ice models. In addition 

to a wide field of view of approx. 1420 km, this pixel-based 

ice/snow classification has the ability to differentiate 17 

classes with a resolution of 500 m in both Arctic and 

Antarctic. An example is shown in Figure 2. 
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Figure 2: Sentinel-3 SLSTR Sea ice Classification from 

K&P, Bering Strait 2022-04-10 

 

Figure 3: Legend for Sentinel-3 SLSTR sea ice 

classification of K&P 

The output is an RGB color representation with smooth color 

transitions. Some of the main colors identified reflect classes 

ranging from open water to approximately 50 cm thick ice. 

Other colors could be assigned to snow surface properties, but 

without being able to determine specific ice thicknesses 

underneath. Figure 3 shows the complete legend. The 

reduction to the main colors is dispensed with at this stage, 

because this would result in important information being lost 

unnecessarily. In addition, the results provided are better 

suited as input data for a neural network. 

If cloud cover is present in the SLSTR data, the 

representation is replaced by suitable shades of gray. In this 

process, two shades are reserved, namely (0,0,0) for land and 

(110,110,110) for background. 

 

3. SAR CLASSIFICATION 

 

The classification for SAR uses Sentinel-1 Extended Wide 

Swath (EW) data, since EW is the preferred mode acquired 

over arctic waters and, hence, most suitable for frequently 

updated sea ice information. The classification used herein is 

presented and explained in detail in [6].  

After image preprocessing to reduce thermal noise, a 

Convolutional Neural Network (CNN) in a UNET++ 

architecture is applied for classification. This is outlined in 

Figure 4. Its input data are both channels of the Sentinel-1 

EW mode (HH and HV) in tiles of 256x256 pixels. The 

encoder (red arrows) has a depth of six layers, whereas the 

decoder part (green arrows) has four layers. The column on 

the left shows the tile size at each depth level. Numbers in 

boxes show the input and the output tensor shapes. 

The output is in four times lower resolution, significantly 

reducing the processing time. For the 40 m pixel spacing of 

Sentinel-1 EW GRDM (ground range detected, medium 

resolution) data, this results in 160 m resolution for the 

classification product.  

The classifier distinguishes between six classes: 

• Smooth open water and leads 

• Rough open water and leads 

• New ice (up to ~30 cm) 

• First-year ice (up to ~1,5 m) 

• Multi-year ice (>1,5 m) 

• Rough ice (crushed ice, frost flower, ice ridges) 

Since SAR only detects the surface of the sea ice, the 

stage of development (new, first-year, multi-year, rough) and 

associated thickness can only be derived from the surface 

roughness. 

 

4. FUSED CLASSIFICATION 

 

The fused classification uses collocated input from both 

satellite missions, Sentinel-1 and Sentinel-3, with the goal to 

combine both different types of information to a 

sophisticated, more accurate sea ice classification product. 

During our study, multiple options were considered to 

determine the setup and output of the fused classification, e.g.  



 

Figure 4: CNN model for the SAR sea ice classification 

based on UNET++ architecture. 

classifying individually (as described in Sections 2 and 3), 

then combining both returned classes for each pixel. For the 

fusion presented here, we decided to use the Sentinel-1 data 

and the Sentinel-3 classification as input. Since the Sentinel-3 

classification still contains information as it is not limited to 

only a handful of classes and is extensively validated, this is 

considered an advantage compared to using L1 Sentinel-3 

data. 

The fused classification uses a CNN in UNET++ 

architecture similar to the SAR classification. The input for 

the fusion consists of 5 channels: Sentinel-1 HH/HV and 

Sentinel-3 classification R/G/B. 150 manually labelled 

scenes were used in training. 

For processing, SAR and optical-thermal datasets have to be 

collocated, meaning their coverage and resolution must be 

matched, so that they can be used as stacked channels within 

one image. Therefore, first the Sentinel-1 scenes are warped 

to the same Coordinate Reference System (CRS) as the 

Sentinel-3 classification. Next, the spatial overlap is 

calculated and both scenes are cut to this extend. Then the 

Sentinel-3 data is upsampled from 500 m pixel spacing to the 

Sentinel-1 pixel spacing of 40 m. Once both images are 

aligned, a validity mask is created and used in post processing 

to filter out land, clouds, and no-data areas at scene 

boundaries. Hence, the number of actually valid classified 

pixels can be much less than the common scene extent, 

depending on land presence, geometric conditions and cloud 

coverage. For consistency, we do not to add the SAR 

classification in cloud-covered areas in the fusion product, 

but provide data only where both sources have data available.  

The temporal colocation between a SAR sensor acquiring 

at dusk/dawn and an optical sensor acquiring around noon is 

a challenge, since their acquisitions are usually several hours 

apart. For selecting scenes for the training data set, the 

maximum time difference was set to 12 hours. Since this 

resulted mostly in acquisition from the same day (either 

Sentinel-1 dawn and Sentinel-3 noon, or Sentinel-3 noon and 

Sentinel-1 dusk), the same limit could be set in operational 

use. 

 

Figure 5: Overview of the 100 Sentinel-1 scenes used 

along with collocated Sentinel-3 classifications. 

 

5. RESULTS 

 

The SAR and fusion classifications were tested on a 

collection of 100 Sentinel-1 acquisitions and collocated 

Sentinel-3 classifications spread all over the Arctic, shown in 

Figure 5. Two examples of the classifications (SAR, optical, 

fused) are shown in Figure 6 and Figure 7  

In many cases, both classifications showed consistent 

results, mostly determining first-year ice as expected for 

many parts of the dataset. Occasionally, the fusion results 

tend to show older/thicker ice than SAR, but without SAR’s 

frequent inclusion of small rough ice areas. This trend is 

visible in both Figs. 6 and 7. A possible explanation might be 

that the optical classification can only distinguish ice 

thicknesses up to ~50 cm and is sensitive also to snow cover, 

so first-year and multi-year ice are indistinguishable by the 

optical classification. Nevertheless, some of the features were 

apparently learned by the fusion CNN and result in an 

increased ice thickness estimate compared to the SAR-only 

classification. In other areas, on the other hand, such as the 

right part of Figure 7, the multi-year ice is reduced to first-

year ice.  

Figure 7 demonstrates an advantage for fusion when it 

comes to open water areas: The SAR classification shows 

several open water areas in the coastal inlets, where the sea 

ice appears dark in the SAR scene. In the fusion 

classification, these open water areas disappear, in agreement 

to the optical classification. 



 

Figure 6: Example for a fused classification product 

from 2020-06-05 in the Fram Strait. (a) Sentinel-1 SAR 

scene, (b) SAR-only classification, (c) Sentinel-3 

classification, (d) fused classification. 

 

6. SUMMARY AND OUTLOOK 

 

In this contribution, we present a sensor data fusion approach 

to improve the task of sea ice type classification. Two 

spaceborne sensors are used: SAR from Sentinel-1 and 

SLSTR from Sentinel-3. SAR and SLSTR data yield very 

different information about the sea ice situation. SAR 

backscatter depends mainly on sea ice surface roughness and 

topography, and the radar signals easily penetrate clouds. 

Optical sensors measure the reflected sunlight in different 

bands which, for SLSTR, also include thermal information. 

Both sensor sources are combined to form a fused 

classification, whereby the respective information is utilized. 

For this fusion, we use a CNN with a UNET++ architecture. 

Our results show that in their current status, most areas 

align well between the classifications and open water is better 

distinguished in the fusion classification. In some areas, the 

fusion classification is likely overestimating the true sea ice 

thickness. Further training could improve this behavior. 

However, judging the correct classification is a challenge in 

the remote Arctic areas due to the lack of true ground truth 

data.  

Other approaches for fusion on a product level might be 

considered in future work, e.g., Kalman filter or Bayesian 

networks.  

 

Figure 7: Example for a fused classification product 

from 2020-04-07 at the east coast of Greenland. (a) 

Sentinel-1 SAR scene, (b) SAR-only classification, (c) 

Sentinel-3 classification, (d) fused classification. 

The time difference between the SAR and optical acquisitions 

may cause inconsistencies in the observed sea ice situation 

caused by sea ice drift. In retrospect, a sea ice drift 

compensation such as presented in [7,8] can be included to 

enable the fusion of several sequential SAR acquisitions and 

stabilize the classification. For near real-time applications, an 

approach to compensate for this is to morph the respective 

scenes or classifications using sea ice drift forecast model 

data [9].  

The classifications presented here are integrated in an 

operational processing chain and an end-user application 

specifically developed for the use aboard of polar operating 

ships (icysea.app developed by Drift & Noise Polar Systems). 

This contributes to the safety of scientific and commercial 

shipping in ice-infested waters. 
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