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Abstract

This paper addresses antenna optimization problems in the context of spaceborne SAR systems for Earth observation.
Theses kind of antennas require careful and precise design of their radiation characteristics. Special focus is laid on
the optimization of transmit patterns, suitable for wide-swath SAR scenarios. Based on a selection of classical problem
formulations, quantum computational concepts and approaches are investigated, which have the potential to outperform
classical optimization routines, both in terms of speed and solution quality.

1 Introduction

Antenna pattern optimization or antenna synthesis, as it
is called synonymously, is a subject which dates back to
the first ground based radar systems developed and put
into operation during World War II. Today, for modern
radar remote sensing, the optimization of the radar antenna
still plays an important role. Most notably, the space-
borne Earth observation missions NISAR [32], ROSE-L
[14], Sentinel-1 Next Generation [34] and ALOS-4, to be
launched in the near future, employ large antennas with
electronic beam control and sophisticated beamforming
techniques [23, 19].
Where in the past SAR sensors covered swath widths in
the order a few ten kilometers at medium resolution, e.g.,
in stripmap modes, these new generation of SAR satellites
aim for several hundred kilometer swath widths at even
finer resolution. This requires specially designed SAR an-
tennas with complex feed networks and receiver hardware.
As illustrated in Fig. 1, illuminating a wide swath (indi-
cated by the yellow patten and the blue curve) means dis-
tributing the available power in such a way, that the imag-
ing performance in far range isn’t degraded too much. One
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Figure 1 Sidelooking SAR. The radar satellite, sym-
bolized by the array antenna, illuminates a swath on the
earth’s surface with a wide pattern (blue curve, yellow
pattern) and records the radar echoes using a narrow re-
ceive beam (red curve).

way to deal with this is to synthesize a transmit antenna
pattern which compensates the power loss due to the larger
distance in far range by an increased gain pattern in this re-
gion. An example of such patterns versus elevation angle is
shown in Fig. 2, where the swath has been marked by verti-
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Figure 2 Transmit antenna diagrams computed for two
polarizations as a function of the elevation angle (ϑ ). The
dashed lines mark the target pattern. The vertical dashed
lines separate the swath to be illuminated from the region
outside the swath.

cal dashed lines. Other optimization goals are motivated by
the fact that interference from outside (or inside) the imag-
ing swath might corrupt the signal of interest. The interfer-
ences are typically range ambiguities with the most promi-
nent the so called nadir return, which would lie somewhere
between −40◦ and −20◦ in Fig. 2. For this, constraints can
be imposed (slanted dashed lines), which help to keep the
sidelobes at or below a certain level while maintaining the
shape of the mainlobe.
Antenna pattern optimization problems come in a wide va-
riety, depending on the type of antenna or depending on
the mode an antenna is operated, e.g., transmit or receive
mode. Many publications, such as [22] and, in a broader
sense books, as for example [35], look at antenna opti-
mization from a signal processing (or in that case array
processing) perspective, with the goal of improving the
signal-to-noise performance or the interference rejection
capabilities. Other antenna optimization concepts are fo-
cused more towards the robustness of beamforming system



concepts [21, 25].
In this work we focus on the optimization of the transmit
characteristic of active phased array antennas as introduced
above. The literature on antenna synthesis covers of course
a wide spectrum, for instance with global techniques [9],
formulating concepts for convex problems including in-
equality constraints [24] or weighted least squares [10] ap-
proaches. Of special interest for transmit pattern optimiza-
tion is so called phase-only pattern synthesis [16, 7], which
has been investigated since more than three decades. These
techniques allow transmitting with unit power per trans-
mit channel and by this ensure maximum radiated power
towards the scene of interest. Those kind of optimization
problems are non-linear and hard to solve on classical com-
puters.
Quantum computation as a new paradigm offers a rad-
ically different way to look at such optimization prob-
lems. Certain mathematical operations and algorithms are
specifically suitable to be executed on a quantum computer,
since the quantum pendant to a classical algorithm may
run quadratically or even up to exponentially faster. An
example for this would be the quantum Fourier transform
(QFT), which offers an exponential speedup compared to
the classical discrete Fourier transform [13]. However, for
optimization problems not only the execution time plays
an important role but even more so the quality of a so-
lution. Many iterative gradient-based optimization pro-
cedures suffer from the well know problem of tending to
get ’stuck’ in local minima. Here, quantum computers
can potentially deliver significantly better results. One of
the first papers proposing a quantum version for solving
semidefinite programs [5] offers a square-root speed-up
over classical methods. A more application oriented paper
[27] presents a quantum version of particle swarm opti-
mization for linear array antenna synthesis and other prob-
lems in electromagnetics. Another application of quantum
computing to antenna design is presented in [12], where
a quantum genetic algorithm is considered. Both papers
claim better convergence behaviour of the quantum algo-
rithms compared to the classical counterparts. A further
paper [30] exploits the quantum Fourier transform in array
thinning. Finally, concepts of adiabatic quantum computa-
tion applied to array processing have been investigated in
[20, 33]. In this paper different novel concepts and ideas
are presented, which aim at an efficient solution of difficult
pattern synthesis problems, both in terms of solution qual-
ity as well as run time. These new quantum optimization
approaches will help improving the imaging quality and
performance of future SAR sensors.

2 Classical Problem Formulations

Pattern synthesis aims at shaping the radiation characteris-
tic of an antenna. Usually, this radiation characteristic is
described by its power or gain pattern [2]. A good approx-
imation for the gain pattern G(ϑ) of an array antenna in

transmit mode can be expressed in the form

G(ϑ)∼ 1
Prad

∣∣∣∣∣∑i
wiai(ϑ)

∣∣∣∣∣
2

, wi,ai ∈ C , (1)

where wi are complex coefficients which represent the gain
and phase setting of a transmit channel and ai denote the
copolar electric far fields of the individual antenna ele-
ments. In this model, the gain is expressed as a function
of the spherical angle ϑ , which corresponds to the eleva-
tion angles in Figs. 1 and 2. Typically, SAR antennas in
transmit mode are operated such that the high power am-
plifiers are in saturation. This implies maximized radiated
power

Prad ∼ ∑
i
|wi|2 . (2)

For the excitation coefficients

wi = eiφi (3)

this means that they all have unit-magnitude, with φi the in-
dividual phases of the antenna transmit channels. Then, the
radiated power of an active phased-array antenna is simply
proportional to the number of antenna elements nc

Prad ∼ nc . (4)

Based on this antenna model, different problem formula-
tions shall be considered, all aiming at pattern optimization
results similar to the ones presented in Fig. 2. Described
as so called feasibility problem [4]

G(ϑl)≥ G̃(ϑl) ∀ l , (5)

G(ϑm)≤ G̃(ϑm) ∀ m , (6)

this formulation consists of two sets of inequality con-
straints, where the desired pattern G shall lie above a given
target pattern G̃ for angles ϑl inside the mainlobe domain
and below a certain level in the sidelobe regions ϑm. This
formulation offers the advantage of a larger solution space
without a single global optimum. On the other hand this
optimization problem, together with requirement (3), is
highly non-linear and therefore hard to solve on classical
computers.
Another way to optimize transmit patterns is by means of
a least squares formulation:

minimize ∑
lm

(
G− G̃

)2
(ϑlm) , (7)

subject to |wi|= 1 ∀ i . (8)

Here, the quadratic deviation from the target pattern is min-
imized, both in the mainlobe and the sidelobe region. In
this formulation the unit-magnitude requirement for the
coefficients wi is enforced by additional non-linear con-
straints |wi|= 1. Such an optimization problem is therefore
interesting for quantum computational approaches.
A third formulation, which may be promising for circuit
based quantum computation is the following:

E(ϑl) = ∑
i

wiai(ϑl) ∀ l , (9)

E(ϑm) = ∑
i

wiai(ϑm) ∀ m . (10)



This ansatz could be phrased field inversion approach,
where one deals with a set of linear equations with the to-
tal transmitted field E(ϑ) on the left side. It can be shown
that this formulation has a strong resemblance to linear
constrained minimum variance beamforming [35], where
E would be proportional to

√
G̃. This means of course that

the coefficients wi won’t have unit magnitude in general.
Nevertheless, close to unit coefficients may be achieved by
a proper selection of the target field E and therefore render
this approach attractive for transmit pattern optimization,
too.

3 Quantum Optimization

On the basis of the above mathematical problem formu-
lation, different quantum computational concepts shall be
investigated in the following.

3.1 Phase-Only Pattern Synthesis by
Grover-Search

Classically, problems according to equations (5) and (6)
would be solved by iterative methods or simply by search-
ing the entire problem space. This is of course not possible
for most practical applications, however, Grover’s quan-
tum search algorithm [17, 28] allows searching a problem
space quadratically faster than any classical search algo-
rithm. This algorithm adopts a so called oracle, who’s pur-
pose is to evaluate equations (5) and (6) in terms of being
part of the solutions space or belonging not to the solution
space. In oder to derive a quantum circuit it is convenient
to reformulate these inequalities in terms of clauses

f (ϑ j) := G(ϑ j)◦ G̃(ϑ j) , ◦ ∈ {≥,≤} . (11)

For a Grover search the oracle has to perform the following
action

|q⟩ 7→ |q⊕
[

f (ϑ1)∧ f (ϑ2)∧·· ·∧ f (ϑnd)
]
⟩ . (12)

Figure 3 presents a quantum circuit, where each clause
f (ϑ j) corresponds to a different angle ϑ j and is evaluated

|q⟩

|nd⟩ •

∑ ∑

†

|0⟩
•

|q j⟩

f (ϑ1) f †(ϑ1) f (ϑ2) f †(ϑ2)
...

...|φ⟩
|0⟩

Figure 3 Oracle circuit evaluating the clauses f (ϑ j) in
a sequential manner. In this example, if both clauses are
fulfilled the controlled XOR-gate will perform a swap on
the query-qubit |q⟩. The dagger operator at the end of the
circuit symbolizes the reverse operation of all sub-circuits
before the controlled XOR-gate.

in a serial connection. A first register counts the fulfilled
clauses and the result is compared to a second register con-
taining the number of angles nd.

The quantum circuit for the individual clauses requires the
efficient implementation of complex arithmetic. Here, we
follow a design strategy which aims at a minimal qubit us-
age. This typically comes at the cost of deeper circuits as
compared to parallel implementations. Note, for the pur-
pose of a clearer notation the index for the angles j shall
be dropped in the following. Rewriting the clauses (11)
substituting equations (1), (3) and (4) and using ai = āieiφ̄i ,
āi, φ̄i ∈R yields

f =

∣∣∣∣∣∑i
āiei(φi+φ̄i)

∣∣∣∣∣
2

◦ncG̃ . (13)

This formulation suggests an algorithm design where, first,
the real-valued phases for each antenna channel are added.
One way to do this is by means of a quantum Fourier
transform based modulo-2 adder [31], as shown in Fig. 5,
which takes a superposition of a binary representation of
the phases φi

φi =
2π

2nb

nb−1

∑
k=0

2kxik (14)

as input. The fixed pattern phases φ̄i are hard-coded into
the circuit as illustrated in Fig. 5.
Another important building block is the computation of the
weighted complex exponential which performs the follow-
ing action on the state

|φi + φ̄i⟩ 7→ |āi exp[i(φi + φ̄i)]⟩ (15)

For this, a unitary

Ui = ∑
{φi+φ̄i}

|āi exp[i(φi + φ̄i)]⟩⟨φi + φ̄i| (16)

realizing a lookup table (or dictionary) has been con-
structed (for an example see Fig. 4), where the summa-
tion goes over all possible values φi + φ̄i. Finally, the
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Figure 4 Weighted complex exponential function (here
āi = 1) realized as unitary operator. In this example the
output state containing the function values of exp(iφ),
indicated by the red and orange dots, uses ten qubits, five
for the real- and imaginary part each.

sub-circuit contains adder networks for the real- and imag-
inary part and a parameterized comparator. To give a proof
of concept, a small artificial problem with a single clause,
two channels and two bits per channel phase-quantization
has been optimized:

|ei(φ1+φ̄1)+ ei(φ2+φ̄2)|2 ≥ ncG̃ , (17)



|x0⟩ •
P(π
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P(−π
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|(x+ x̄)0⟩
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P(π
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Figure 5 Upper circuit: 2-bit QFT modulo-two adder. The first circuit part performs a QFT. Addition is done in the
Fourier basis, realized by conditional rotations. The last step is an inverse QFT giving the result in the first two qubits.
Lower circuit: In a practical implementation this addition would be implemented via a parametrized circuit, effectively
removing the second register for φ̄ . In this example the angle in binary representation |x̄1x̄0⟩ = |01⟩ is encoded in the
circuit. Note, for notational simplicity the counting index for the antenna channels i has been omitted.

where φ̄1 = 90◦, φ̄2 = 180◦ and ncG̃ = 3. Given the total
number of states N = 22·2 with M = 4 solutions, the number
of Grover-iterations

r = NINT

(
π

4arcsin
√

M/N
− 1

2

)
(18)

is exactly one. NINT is the nearest integer function. Fig-
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Figure 6 Grover output state probabilities for a simple
example with a single clause, two antenna elements and
2-bit quantization for each transmit channel phase.

ure 6 shows the probability distribution of the output state
and a summary of the results can be found in Table 1. This

state binary state dec. φ1 φ2 G
0 0 1 1 3 0◦ 270◦ 2
0 1 0 0 4 90◦ 0◦ 2
1 0 0 1 9 180◦ 90◦ 2
1 1 1 0 14 270◦ 180◦ 2

Table 1 Output state configurations in binary and decimal
encoding, which have been identified as solutions by the
Grover-search algorithm. The last column shows the cor-
responding gain, e.g. the numerical value of left hand side
of equation (17).

particular example required a total of thirteen qubits, four
qubits for the two phases with two-bit quantization each
and nine workspace qubits.

3.2 Optimization via Quantum Annealing
Optimizing problem (7) and (8) is again a hard problem,
especially due to the non-linear constraints. Here, a quan-
tum annealing approach [15, 26] shall be investigated. This

requires to translate the constrained optimization problem
in an unconstrained one, which can be achieved by includ-
ing penalty terms for the constraints, e.g.

eµ ∼ ∑
l,m

(
G− G̃

)2
(ϑlm)+∑

i
γi
(
|wi|2 −1

)2
. (19)

In this context the γi are real-valued scaling factors and the
wi are the complex weights to be optimized. By decom-
posing the coefficients wi = wR

i + iwI
i into their real and

imaginary parts a fixed precision approximation using K
binary digits xR/I

i,k

wR/I
i =

2
2nb −1

nb−1

∑
k=0

2kxR/I
ik −1 (20)

can be used. In this way the constraints |wi|2 = 1, and
similarly the objective function in the first term in equa-
tion (19), become polynomials of degree four of the binary
variables. In order to solve this optimization on a quantum
annealer, slack variables (for products of two variables)
are required in order to cast the polynomial in quadratic
form [8]. This reduction of the degree and the subsequent
optimization and evaluation is handled by our python pack-
age quark [1]. It also provides functionality to automati-
cally introduce the penalty terms and therefore handle the
constraints more conveniently. The convergence with K for
a small demonstration problem with a single coefficient is
illustrated in Fig. 7.
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Figure 7 Convergence behaviour for a small demonstra-
tion example 1− 0.894427wR − 0.447214wI under the
constraint |w|2 = 1 with the number of qubits K used for
the binary encoding of real and imaginary parts of the
variable w. The exact minimum is 0.



3.3 A Quantum Field Inversion Approach
Transmit pattern optimization by simulating equations (9)
and (10) on a quantum computer presents an interesting
problem for circuit based quantum computation. One can
use the HHL algorithm [18] to solve the system of equa-
tions with a quantum speedup. However, in our case a more
specialized approach could potentially be more beneficial.
The interference of electromagnetic fields is completely
analogous to the interference of quantum states. Therefore,
calculating the transmit pattern and optimizing it appears
to be a natural tasks for a quantum computer. To benefit
from the ’natural interference’, amplitude encoding has to
be used, so the total field E is represented by the state

|E⟩= ∑
i j

wiai(ϑ j) | j⟩ , (21)

where j counts all angles from the mainlobe domain in-
dexed by l and the sidelobe regions (m). We explored sev-
eral different approaches on how to exploit this description,
two of which we will sketch in the following.
The first one is to perform the inversion of equations (9)
and (10) by inverting a circuit that prepares the state in
equation (21). We start from unitaries Ui that prepare
the state |Ei⟩ = ∑ j ai(ϑ j) | j⟩, i.e. that fulfill Ui |0⟩ = |Ei⟩.
They can be constructed with state preparation methods
like [29], while again more specialized approaches might
be possible. From the Ui we construct a controlled op-
eration U = ∑i |i⟩⟨i| ⊗Ui. Applying this operation to the
state |w⟩ |0⟩ with |w⟩ = ∑i wi |i⟩ and post-selection on |+⟩
on the control register prepares |E⟩ as desired. Inverting
this operation is equivalent to inverting the order of the ba-
sic operations and complex conjugation. Note that post-
selection and state preparation change their role. Because
the post-selection affects the runtime of this approach, it
can be beneficial to employ amplitude amplification [6] or
rephrase it as a deterministic calculation.
The second approach is to use the quantum computer only
for simulating the electric field and comparing it to the
target pattern for weights given as input. Following the
scheme of variational quantum algorithms [11], an outer
optimization loop is then carried out on a conventional
computer to obtain optimal weights. In order to compare
the power and not the field to the target pattern we employ
an additional trick. Note that the state |E⟩ |E⟩∗ contains
|E(θ j)|2 in the j j-component, i.e. ⟨ j j| |E⟩ |E⟩∗ = |E(θ j)|2.
The selection to only the j j-components can be combined
with the SWAP-test [3] that is used to calculate the overlap.
We verified both approaches but additional investigations
are required to prove or disprove an advantage compared
over classical methods.

4 Conclusion

Three promising quantum optimization strategies tailored
to specific problem formulations have been presented.
Grover-search-based optimization has been successfully
demonstrated at the example of a small problem. The
applicability of such an optimization technique for rele-
vant antenna problems on real quantum computers will of

course depend on the availability of numerous error cor-
rected qubits. Quantum annealing based approaches for
beamforming problems on receive as well as sparse an-
tenna configurations have been demonstrated for instance
in [20]. Here, a demonstration example shows that non-
linear optimization problems can in principle be solved on
quantum annealers. The performance of such annealing
concepts in terms of qubits usage depends on the variable
quantization and the number of slack variables introduced.
Finally, an antenna pattern optimization Ansatz by field in-
version has been investigated and two optimization strate-
gies for gate-based quantum computers have been pre-
sented. Today, these quantum algorithms are only applica-
ble to toy problems, but with the expected advancement of
future quantum computer generations, these quantum op-
timization concepts will have the potential to find antenna
optimization solutions better and faster.
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