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Abstract

Next-generation SAR systems will be capable of high-resolution wide-swath acquisitions, which will inevitably result
in a significant increase of the onboard data volume to be acquired by the system. This, in turn, will lead to severe
constraints in terms of onboard memory requirements and downlink capacity. In this context, the onboard quantization of
SAR raw data represents an aspect of crucial importance, since it acts as a trade-off between achievable product quality
and resulting on-board data volume. In this paper, we investigate the use of artificial intelligence (AI), and in particular of
deep learning (DL), for flexible on-board SAR raw data quantization, with the aim of deriving an optimized and adaptive
data rate allocation given a desired performance metric and requirements in the resulting focused SAR/InSAR products
without relying on a priori information on the acquired scene. The derived bitrate maps (BRMs) can then be used for
adapting a BAQ quantizer to the local characteristics of the input data and to the desired output performance. Different
performance parameters can be used, such as the Signal-to-Quantization Noise Ratio (SQNR), the InSAR coherence loss
or the resulting interferometric phase error, extending the capabilities of the architecture and, ideally, providing multiple
bitrate estimations for a single input scene, depending on the specific application requirement. In view of a potential
on-board implementation, a possible hardware architecture for the proposed compression scheme is presented as well.

1 Introduction

Future generation SAR systems will bring a huge improve-
ment in performance by means of large bandwidths and
digital beam forming (DBF) techniques in combination
with multiple acquisition channels. This will overcome
the limitations imposed by conventional SAR imaging for
the acquisition of wide swaths at fine resolution. The re-
markable improvements that can be achieved in terms of
performance result in the generation of large volumes of
data. This aspect sets stringent requirements for the on-
board memory and downlink capacity of the SAR system.
For instance, present global SAR mapping missions, such
as Sentinel-1, or future ones, such as NISAR and espe-
cially ROSE-L and Sentinel-1 Next Generation (NG), will
acquire data over selected areas with a temporal sampling
down to one week, hence resulting in large data volumes to
be stored onboard and downlinked to the ground.
In this scenario, an efficient quantization of SAR raw data
is of critical importance, as it defines the amount of on-
board memory and it directly affects the quality of the gen-
erated SAR products. These two aspects must be carefully
considered due to the limited acquisition capacity and on-
board resources of the system and, at the same time, to
allow for the achievement of the specified product require-
ments and quality. At present, one of the most widely
used methods for SAR raw data digitization is the Block-
Adaptive Quantization (BAQ) [1]. In the last years, start-
ing from the principle of BAQ, novel algorithms have been
proposed, allowing for an improved performance and re-
source optimization. In particular, these are acquisition-

dependent compression schemes, as for the case of the
Flexible Dynamic BAQ (FDBAQ) [2], that may even be
combined with the implementation of non-integer data
rates [3]. However, the FDBAQ carries out the bitrate
optimization based on the SAR raw data statistics only,
i.e. it does not take into account the actual performance
degradation in the SAR products. In the context of the
Performance-Optimized BAQ (PO-BAQ), the basic con-
cept of the BAQ is extended according to the approach pro-
posed in [4], which represents the first attempt for an opti-
mization of the resource allocation depending on the final
performance requirement defined for the resulting higher-
level SAR/InSAR product. As quantization errors are sig-
nificantly influenced by the local distribution of the SAR
intensity, such an optimization is achieved by exploiting
the a priori knowledge of the SAR backscatter statistics of
the imaged scene. Given the severe constraints imposed by
the downlink capacity, a performance-optimized bitrate al-
location contributes to tune the resulting data rate based on
the target higher-level application performance. PO-BAQ
requires the use of a-priori knowledge of the underlying
SAR scene, which has to be uplinked on board, in the form
of, e.g., look-up-tables (LUTs)[4] or backscatter maps. For
this reason, this technique requires additional complexity
and is not fully adaptive with respect to the acquired raw
data, since the quantization settings are derived from prior
considerations and do not account for the local conditions
at the time of the survey.
In general, the quantization performance depends on the
local characteristics of the illuminated scene on ground,
which are linked to the local topography, radar backscat-
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Figure 1 Flow chart of the proposed method: the raw data
matrix is fed into the trained DL model which predicts the
required two-dimensional bitrate map (BRM), needed to
achieve the desired performance. An adaptive quantizer
(i.e., BAQ) performs the raw data encoding with the esti-
mated BRM.

ter characteristics (its absolute levels and degree of hetero-
geneity) and illumination geometry.
In this scenario, Artificial Intelligence (AI) is one of the
most promising approaches in the remote sensing commu-
nity, enabling scalable exploration of big data and bring-
ing new insights on information retrieval solutions [5]. In
this contribution we investigate the potential of an AI-
based performance-optimized quantization to define a flex-
ible approach for onboard SAR raw data quantization in fu-
ture SAR missions, where the bitrate is derived depending
on a desired target performance in the focused data domain
without a priori information on the imaged scene. The de-
scription of the proposed method, named AI-BAQ, as well
as of the DL architecture and of the used dataset is pre-
sented in Section 2. In Section 3 results are shown includ-
ing the validation on the final SAR product, and a frame-
work for a possible onboard hardware implementation is
discussed in Section 4. Finally, conclusions and outlook
are provided in Section 5.

2 Deep Learning for SAR Raw Data
Quantization

Nowadays, Artificial Intelligence (AI) and, in particular,
Deep Learning (DL) represent a very flexible and power-
ful tool to approach and solve different problems, which go
well beyond the remote sensing image processing and in-
terpretation. In our case, we have approached the onboard
bitrate estimation for SAR raw data as a deep supervised
regression task. In particular, the number of quantization
bits to be allocated for a given portion of the raw data is
estimated by a DL architecture within a continuous range
of possible values, typically between 2 and 6 bits/sample.
The principle of our method is depicted in Figure 1. First,
the input raw data is fed to the DL architecture which es-
timates a two-dimensional bitrate map (BRM). A standard
BAQ is then considered to compress the raw data by ap-
plying the estimated (variable) BRM, relying on azimuth-
switched quantization to implement non-integer rates [3].

2.1 DL Architecture Description
The DL architecture that we have defined for performing
the considered regression task is presented in Figure 2. It
is composed of a sequence of three convolutional layers
(with 64, 128 and 256 3×3 kernels, respectively) with rec-
tified linear unit (ReLU) activation function, interleaved by
max pooling layers which halves the dimensions of the in-
put features at each layer. Afterwards the feature maps are
“flattened” and given as input to a fully-connected dense
layer with 128 units, followed by a final linear regression
layer which returns an M vector of bitrate values (where
M represents the number of optimization parameters con-
sidered during the training process). This means that, at
inference, one single BAQ rate will be estimated and ap-
plied to blocks of 128×128 pixels within the input raw
data. As loss function we utilized the mean squared error
(MSE) between the network output and the reference bi-
trate map, estimated from the corresponding focused SAR
data, as presented in Section 2.2. The architecture’s hyper-
parameters (number of layers, number of kernels, size of
the dense layer and size of the input patches) have been se-
lected through empirical hyperparameter tuning, as a trade-
off between achievable performance and onboard compu-
tational complexity, in a direct synergy with the hardware
feasibility assessment presented later in Section 4. As an
example, a raw data patch of size 128×128 samples (in
range and azimuth dimensions, respectively) implies the
storage in the onboard memory of 128 azimuth lines, which
is still a manageable size with currently hardware compo-
nents for spaceborne SAR. On the other hand, 128 range
samples represent the standard range block size for the ap-
plication of the BAQ quantizer in current spaceborne SAR
missions. Additionally, the number and size of the convo-
lutional kernels and of the dense layers directly impact the
required onboard processing load.

2.2 Dataset Generation and Training Phase
For the generation of a descriptive and consistent dataset
to train, validate and test the proposed architecture, we
have exploited TanDEM-X data acquired in bypass con-
figuration, i.e., raw data are quantized with a uniform 8-
bit Analog-to-Digital Converter (ADC). The acquisitions
are covering a variety of land cover types including desert,
ice, forest, urban areas and variable topography. For the
generation of reference bitrate maps to be used during the
supervised training, we have re-quantized the acquisitions
on ground using different BAQ rates (i.e., 2, 3, 4 and 6
bits/sample), and then performed the complete SAR pro-
cessing, allowing for the derivation of SAR and InSAR
products for each quantization rate. In order to achieve
more granularity in the reference data, even if only inte-
ger (BAQ) bitrate values are available, we have performed
an interpolation on the obtained performance, such that we
were able to define a fractional bitrate which satisfies the
requirement, as it is presented in [4]. Afterwards, a binary
mask is derived for each re-quantized raw data, by setting
a threshold on the specific target performance parameter.
An overall reference bitrate map is then derived by select-
ing the minimum number of bits which ensures a certain
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Figure 2 Block scheme of the proposed DL architecture. The initial feature extraction blocks consist in a sequence of
two-dimensional convolutions with ReLU activation funaction and max pooling terminated by a flattening operation. The
fully connected dense layer of 128 elements with ReLU activation is linked to the output regression element consisting
of an M-elements dense layer with linear activation function, where M represents the number of target SAR optimization
parameters.

Figure 3 Approach used to derive the reference BRMs for
training the DL architecture based on thresholding on a
given performance requirement. In this case, the SQNR
is selected as performance parameter, but the same method
can be applied to other metrics as well (e.g., phase error,
coherence loss).

performance within the focused SAR data. Since the quan-
tization errors in SAR images are integrated within a large
area on ground, given by the chirp length in range and by
the synthetic aperture in azimuth, the derived BRM shows
a smooth spatial variability (in the order of several hun-
dreds of meters) [4]. An example is depicted in Figure 3
for the exemplary case of the signal-to-quantization noise
ratio (SQNR) as target performance metric, which is de-
fined as

SQNR =
σ2
s

σ2
q

, with q = s− sq. (1)

In the above equation s and sq represent the reference (non-
quantized) signal and the quantized one, respectively.
During the training phase, the input to our DL architecture
consists of 128×128 samples patches of uncompressed raw
data amplitude. In order to link this information to the cor-
responding reference bitrate value, the derived reference

Figure 4 Training curve of the proposed DL architecture
over 40 epochs. The considered loss function is the MSE.

BRM is averaged within a window of the same size of
the corresponding raw data patch (128×128 samples), cen-
tered around the patch center sample. In this way, a sin-
gle reference bitrate value is associated to the entire input
raw data patch. The achieved granularity (1 bitrate value
per patch) does not cause a loss of information, thanks to
the previously mentioned smooth spatial variability of the
original reference BRM.
In this contribution we optimize for specific values of
SQNR, but it is worth noting that the SQNR is one pos-
sible optimization parameter, the same process could also
be perform for deriving the required bitrate maps based on
other performance metrics.
Overall, we have trained the network using a dataset of al-
most 11 million data patches, derived from 17 TanDEM-X
SAR images, whose 80% (randomly selected) have been
considered as training samples, while the remaining 20%
have been used as validation samples.
Figure 4 shows the learning curve and verifies the conver-
gence of the training process. As already mentioned, after
training, the architecture has been evaluated on a set of 4
TanDEM-X test acquisitions, which were not part of the
training/validation dataset.



Figure 5 Log-Backscatter of the Mexico City (Mexico)
area selected for testing the proposed method.

3 Results

As inference example, we consider a TanDEM-X acqui-
sition over the urban area of Mexico City, whose Log-
backscatter is depicted in Figure 5. This represents a
highly heterogeneous scene characterized by the pres-
ence of urban structures, lakes and high-relief topography.
Figure 6 depicts the reference BRM (Figure 6(a)), the es-
timated BRM (Figure 6(b)) and the histogram of the dif-
ference between the reference BRM and the estimated one
(Figure 6(c)).
One can note that the difference between the estimate
and the reference bitrate map is unbiased and well con-
fined between ±1 bit/sample, being able to follow the local
backscatter characteristics of the scene.
In order to properly assess the effectiveness of the pro-
posed method, we need to evaluate the performance on
the final quantized SAR product. To do so, we have
applied the estimated BRM for variable quantization of
the uncompressed raw data, and carried out the complete
SAR processing. The results of this analysis, including
the performance assessment on the SQNR, are depicted in
Figure 7. It is worth noting that the estimation is consis-
tent also in presence of the high degree of heterogeneity
of the scene, which represents a worst-case scenario. The
resulting SQNR calculated after SAR processing meets the
input requirement of 10 dB and 15 dB, respectively. In
Table 1 we report the SQNR calculated for all the four con-
sidered test areas: Greenland, Uyuni (Bolivia), Las Vegas
(USA) and Mexico City (Mexico) and four different per-
formance targets (SQNR=10, 15, 20 and 25 dB, respec-
tively). The State-of-the-Art BAQ is also reported for 2,
3 and 4 bit/sample in Table 1 for comparison. These re-
sults highlight the capability of the architecture to meet the
desired performance requirement with respect to the con-
sidered optimization parameter.

(a) (b)

(c)

Figure 6 Inference results over the urban area of Mexico
City for the target case of SQNR=15dB. (a) Reference bi-
trate map, (b) estimated (test) bitrate map and (c) distribu-
tion (histogram) of the estimation error. It is possible to
see that the estimation error has zero mean (unbiased) and
relatively narrow distribution with a standard deviation of
only about 0.3 bits/sample.

4 Hardware Feasibility Assessment

In this section a possible hardware architecture for the pro-
posed CNN-based data compression method is presented
and discussed. For high-performance FPGA implementa-
tions, the SAR raw data should be available in Fixed Point
number representation at the CNN input. A possible archi-
tecture to perform 2D/3D convolution with all feature in-
puts (channels) of the previous layer is shown in Figure 8.
In particular, the necessary steps to perform a convolution
are listed in the following:

• Loading the image from external double-data-rate
(DDR) SDRAM to the input buffer,

• Loading the weights from DDR to the input buffer,

• Perform the calculations,

• Storing the results from the output buffer to DDR.

In order to increase the performance, multiple blocks with
different kernel weights need to work in interleaved mode
(Interleaved Memory Reads / Writes and calculations).



Table 1 SAR Performance (in terms of mean and standard deviation of SQNR) on the final SAR products on the four
test acquisitions. The proposed method (AI-BAQ) with four different performance targets (and its resulting average

bitrate) and the State-of-the-Art BAQ at 2, 3 and 4 bps are reported below.

Method Target Greenland Uyuni Las Vegas Mexico City
SQNR=10dB 10.7±0.1@2.2bps 10.2±0.5@2.2bps 9.7±1.3@2.5bps 9.6±0.9@2.7bps
SQNR=15dB 15.6±0.2@3.2bps 15.3±0.6@3.1bps 14.7±1.3@3.5bps 14.5±0.9@3.7bps
SQNR=20dB 18.7±0.6@4.2bps 20.5±0.5@4.4bps 20.0±1.3@5.0bps 19.7±1.0@5.1bpsAI-BAQ

SQNR=25dB 22.6±1.1@5.1bps 25.0±0.6@5.4bps 23.8±1.3@5.8bps 24.0±1.1@5.8bps
BAQ@2bps - 9.3±0.2 9.5±0.2 7.7±1.3 6.6±1.4
BAQ@3bps - 15.1±0.2 15.0±0.4 12.9±1.5 11.6±1.8
BAQ@4bps - 18.7±0.4 19.8±0.7 17.8±1.6 16.5±1.8

Xilinx Versal DPUs are well suited for CNN AI applica-
tions and can be considered for a hardware implementation
of the proposed CNN-based data compression method. In
the tool chain several AI functions (e.g., 2D/3D convolu-
tion, Rectified Linear Unit, Max Pooling, Flattening, Fully
Connected Layer) and their architectural interconnections
are supported.
The number of Multiply and Accumulate operations
(MAC OPs) in a convolution layer can be calculated as fol-
lows:

MAC OPsConv = Kh ·Kw · FIN · FOUT ·Rh ·Rw, (2)

where Kh and Kw are the kernel height and width, FIN

and FOUT are the input and output features and Rh and
Rw are the resulting height and width, respectively. The
resulting MAC OPs for all the convolutional layers are of
about 613.5M for the considered architecture. The num-
ber of MAC OPs for a Fully Connected Dense layer are
calculated as:

MAC OPsDense = FIN · FOUT, (3)

resulting in 8.4M operations for the considered architecture
and leading to a total number of MAC OPs of 621.9 M.
In future SAR missions the expected data rates will be of
about 3000 Mbits/s. By assuming 8 bit/sample and a patch
size (frame) of 128x128 pixels, this leads to a resulting
131072 bits per frames. From here, it is possible to de-
rive the real-time performance requirement in frames per
second (fpsr) as follows:

fpsr =
3000M bit

s

131072 bit
frame

= 22888. (4)

For performance estimation the CNN benchmark of Xil-
inx was used with the VGG16 CNN (Vitis-AI Model Zoo
Name: tf_vgg16_imagenet_224_224_30.96G) for compar-
ison. As Hardware platform, we selected the VCK190 con-
sidering 1xDPUCVDX8G 192 AIEs (C32B6CU1L2S2)
@1250MHz with fixed point calculations. The VGG16
CNN uses the same kernel size (3x3) and downsampling
(stride) size (2x2) and shares a very similar basic structure
with the proposed architecture.
In Table 2 we report the details by considering two more
convolutional layers. The selected VGG16 model has
30.96G OPs, while the proposed CNN has 0.62G OPs. In

VCK190 1* DPUCVDX8G 192 AIEs
(C32B6CU1L2S2) @ 1250MHz

Parameter VGG16 Proposed Arch.
E2E fps Single Thread 505.43 fps 25271 fps
E2E fps Multi Thread 621.19 fps 31060 fps

Table 2 Performance comparison VGG16 and CNN pro-
posed by DLR.

order to compare the frames per second, the fpsr value is
multiplied by the factor 30.96/0.62 ≈ 50 for a first quali-
tative analysis of the performance.
By considering the above assumptions, the obtained fpsr
of 22888 represents a feasible hardware requirement in a
next-generation SAR missions.

5 Conclusions and Outlook

In this paper we investigate a novel approach to perform
a performance-optimized bitrate allocation for SAR and
InSAR systems by means of a Deep Learning-based re-
gression architecture. The main advantage of the proposed
method relies in the fact that no a priori information is re-
quired by the system for its implementation, hence allow-
ing for different bitrate allocation depending on the consid-
ered performance parameter and target requirement.
We have presented relevant aspects and details of the net-
work as well as the definition of the training, validation,
and testing datasets and strategies, together with an assess-
ment of the estimation performance on an independent test
acquisition. The results are promising and show that an ac-
curate bitrate estimation can be achieved by the proposed
architecture, which is then consistently confirmed when
the performance parameters are evaluated on the final SAR
product. The comparison with the State-of-the-Art BAQ
highlights the flexibility of the method to meet the desired
performance on different scenes. Finally, we introduced
and evaluated a possible hardware architecture for a next
on-board implementation. As outlook to this work, a fur-
ther optimization of the architecture is foreseen in order
to further improve the performance, as well as the number
of optimization parameters which can be handled by the ar-
chitecture. The exploitation of a larger dataset would allow
for the training of a more robust model and for a global-
scale assessment of the data rate for future SAR missions.
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Figure 7 Quantization performance results in terms of SQNR (dB) after SAR processing over the urban area of Mexico
City. The State-of-the-Art BAQ at 3 bps is depicted in (a) and its distribution in (d). The performance metrics obtained
with the proposed AI-BAQ method with a target case of SQNR=10 dB and SQNR=15 dB are depicted in (b) and (c), with
the corresponding distributions in (e) and (f), respectively. After SAR processing the resulting SQNR map confirms the
expected target performance with rather small deviation (about 1 dB).

Figure 8 Block-diagram for convolution implementation.
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