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A B S T R A C T

Accurate and up-to-date mapping of the human population is fundamental for a wide range of disciplines,
from effective governance and establishing policies to disaster management and crisis dilution. The traditional
method of gathering population data through census is costly and time-consuming. Recently, with the
availability of large amounts of Earth observation data sets, deep learning methods have been explored for
population estimation; however, they are either limited by census data availability, inter-regional evaluations,
or transparency. In this paper, we present an end-to-end interpretable deep learning framework for large-scale
population estimation at a resolution of 1 km that uses only the publicly available data sets and does not rely on
census data for inference. The architecture is based on a modification of the common ResNet-50 architecture
tailored to analyze both image-like and vector-like data. Our best model outperforms the baseline random
forest model by improving the RMSE by around 9% and also surpasses the community standard product, GHS-
POP, thus yielding promising results. Furthermore, we improve the transparency of the proposed model by
employing an explainable AI technique that identified land use information to be the most relevant feature for
population estimation. We expect the improved interpretation of the model outcome will inspire both academic
and non-academic end users, particularly those investigating urbanization or sub-urbanization trends, to have
confidence in the deep learning methods for population estimation.
1. Introduction

1.1. Motivation

In 2015, the United Nations embraced the 17 Sustainable Devel-
opment Goals (SDGs), which aim to support saving humankind and
to provide a better future for all by 2030 (UN, 2015). Population
distribution data have been identified as a crucial source of data to keep
the SDGs on track (UN, 2022). The estimation and mapping of popula-
tion distribution are also essential to much-informed decision-making
issues such as hunger, poverty, education, climate, disaster control,
civil protection, etc., and influence the policy-making, planning, and
fund allocation of a government (Hay et al., 2005; Hu et al., 2019).
Traditionally, national censuses are conducted to gather information
about the population count, distribution, and demographics. This data
has been extensively used by the government to plan for the future
and the required services in a region. Censuses are time-consuming
and expensive, thus, they typically take place once a decade, while in
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some nations, they are held every few decades due to political strife
and financial challenges (UN, 2022; Wardrop et al., 2018). They play
important roles in many strategic economic developments, business
decisions, and planning. However, the rapid change in our society
due to climate change and urban migration poses many new chal-
lenges such as informal settlement, regional flooding, and infectious
diseases. Their requirements on population distribution are beyond
the scope of existing census data collection procedures (Tatem et al.,
2011). An alternative, less expensive data set with resolution beyond
the typical administrative units is needed. There have been efforts
to develop large-scale gridded population products that according to
the potential location of settlements, redistribute population estimates
from census units to grid cells. These gridded population products in-
clude the Global Human Settlement Population Grid (GHS-POP) (Freire
et al., 2016), Oak Ridge National Laboratory’s LandScan (Bhaduri
et al., 2002), (WorldPop, 2018), and High-Resolution Settlement Layer
(HRSL) (Layer, 2016), among others. Most of these products rely on an
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external settlement layer to redistribute the known census population
counts to grid cells. Also, the difference in their methodology and
supplementary data utilized leads to different results, implying that
their applicability depends on the context and geographic extent of the
application (TReNDS, 2020; Hierink et al., 2022).

1.2. Related work

In recent times, the availability of high-resolution satellite imagery
and a surge in deep learning (DL) methods enable more accurate
and rapid population estimation (Doupe et al., 2016; Hu et al., 2019;
Klemmer et al., 2020; Robinson et al., 2017; Sapena et al., 2022;
Tian et al., 2005). Doupe et al. (2016) employ a Convolutional Neural
Network (CNN) based method to estimate population densities directly
from satellite data. They trained their algorithm on Tanzanian data and
predicted Kenya’s population at 8 km spatial resolution. Robinson et al.
(2017) used Landsat images to estimate the population in United States
(US) counties at 1 km resolution. Hu et al. (2019) used multi-source
satellite images and a DL technique to estimate India’s population
density. Huang et al. (2021) used existing population grids from Land-
Scan (Dobson et al., 2000) and Sentinel-2 MultiSpectral Instrument
(MSI) to train a DL model to map population trends in two cities
in the US using a number of alternative state-of-the-art architectures.
Gervasoni et al. (2018) employed a CNN-based method to disaggregate
weights into 200 × 200 m grid cells based on urban variables retrieved
rom the OSM, such as building area and POI count and uses the
ensus data to estimate the population count of a few French cities.
he majority of the studies described above are evaluated in only a
ew cities and rely on census data. Some of the most recent research has
een able to function without census data. For example, Metzger et al.
2022) used a DL model to perform population distribution and predic-
ion without always relying on census data. Similar to this, Georganos
t al. (2022) suggested a DL-based methodology to estimate the pop-
lation in three sub-Saharan nations. However, these methodologies
ave only been evaluated in a comparable geographical environment
nd morphologies. Some other studies utilized microcensus or census
ata to automate the population estimation using a very high resolution
atellite imagery. Jacobs et al. (2018) trained a CNN to predict fine-
rained population maps using very high resolution satellite images
nd census data. Weber et al. (2018) estimate the population of two
orthern Nigerian states by identifying human settlements with very
igh resolution satellite imagery and mapping the population using a
icro census. Neal et al. (2022) used very high resolution satellite data

o extract building footprints using a representation learning approach
ombined with a regional micro census to estimate the population
f two districts in Mozambique. However, scaling these methods is
hallenging because of the restricted availability of extremely high
esolution satellite data and thus limits their scope of application.
dditionally, all these methods lack transparency because their black
ox models are not unwired to explain the results of their methods.

.3. Contribution of this article

In this paper, we present an interpretable DL framework to pre-
ict the population at a large scale without using census data. The
eep learning architecture is based on a modified ResNet (He et al.,
016), which has been widely used in remote sensing and achiev-
ng promising results in population mapping (Georganos et al., 2022;
uang et al., 2021; Klemmer et al., 2020). Experiments are done using
ur recently published openly available So2Sat-POP data set (Doda
t al., 2022). This data set consists of 98 cities across Europe and
omprises multiple data sources that serve as population indicators.
herefore, we investigate the relevance of different data sources and
valuate our trained model on 18 unseen test cities from this data
et. We also analyze our approach in a different continent to include
he geographical heterogeneity and compare the results with one of
2
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the popular referenced gridded population products in the literature,
GHS-POP (Stathama et al., 2021), and the baseline Random Forest (RF)
model proposed in the data set paper (Doda et al., 2022).

Although deep learning models have shown tremendous success
in various applications, their black-box nature hinders intuitive un-
derstanding of the important factors for their predictions (Adadi and
Berrada, 2018; Tuia et al., 2021). This raises questions about the trans-
parency and trustworthiness of these models and can limit their usage
in sensitive applications like population estimation. Therefore, to shed
light on the workings of our ResNet model for population estimation,
we apply the Integrated Gradients explainable AI approach (Sundarara-
jan et al., 2017) that highlights the salient features for the model
predictions. Uncovering the relevant features for population estimation
not only improves the transparency of the proposed deep learning
model but also points to some specific difficulties when relying only
on remote sensing data for population estimation, such as the inability
to distinguish between the different types of built-up areas.

The contributions of this article are listed below:

• We developed an interpretable DL approach that exclusively em-
ploys the publicly available Earth observation data at a large
scale, with some modalities such as local climate zones and
relational statistics among OpenStreetMap (OSM) nodes that have
not been used in prior DL-based population estimation studies.

• The model is customized to handle the raster and vector data
simultaneously, commonly required for population estimation,
and can estimate the population even when no census counts are
available by generalizing across countries.

• The relevant features in a multi-source data set and further in-
sights into the model were analyzed using an explainable AI
method that is being employed for the first time in population
estimation studies. This unboxing of the proposed model improves
its transparency and, at the same time, reveals its limitations.

• The accuracy of our new population maps outperforms GHS-POP,
a popular state-of-the-art large-scale gridded population product
at a spatial resolution of 1 km.

• The proposed method is evaluated using a carefully curated large-
scale data set that covers 98 European cities plus three add-
on non-European cities. This geographically heterogeneous eval-
uation illustrates the method’s transferability, which has been
lacking in the majority of previous population estimation studies.

2. Data

2.1. So2Sat-POP data set

We used the publicly available So2Sat-POP data set (Doda et al.,
2022). It is spread across 98 cities in Europe, with 80 cities consti-
tuting the training set and the remaining 18 constituting the test set.
It is a multi-source data set comprising the digital elevation model,
classifications of local climate zones and land use, data on nighttime
light emissions, four seasons of Sentinel-2 imagery, and data from the
OpenStreetMap initiative. The above-mentioned input data has been
prepared for each city and is then processed using the city’s population
grid. A grid cell in the population grid is 1 × 1 km in size and each
cell represents the population count per square kilometer of the cell.
All other input data is cropped for each grid cell. As a result, a total of
9 patches, one from each data source, have been created and assigned
a population count as of the corresponding population grid cell and a
population class based on which bin the grid cell’s population count
falls into. If a grid cell has a population count of zero, it has been
assigned a Class 0, otherwise, it has been assigned a population Class
k + 1, if the population count of the cell lies in the range [2𝑘, 2𝑘+1)

here k ∈ N. Therefore, this data set might be used to create both
egression and classification models. Fig. 1 depicts a patch-set from

lass 10 and an actual population count of 755 as the ground-truth
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Fig. 1. A patch-set from Class 10 and an actual population count of 755 as the ground-truth labels. Each such patch set consists of 9 patches, one from each input data source.
Fig. 2. Our proposed interpretable DL framework for population estimation.
Fig. 3. Class distance (CD) plots of two top-performing cities (Bremen, Liverpool), two average (Rotterdam, Malaga), and two bottom-performing cities (Wroclaw, Genoa) test
cities.
labels. The data set consists of 276,172 patches in total. The test-set
cities have an area of ∼18 292 km2, whereas the train-set cities have
an extent of ∼119 794 km2, with London being the largest and Bilbao
being the smallest, with areas of 11 306 km2 and 54 km2, respectively.
3

2.2. Supplementary data set

For the comparison analysis, we collected and processed the data
from a popular community standard product for population estimation,
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Table 1
A summary of all the data sets used in our work for training and comparison analysis.

Data set Year Resolutiona Purpose

So2Sat-POP
Sentinel-2 2017 10 m
Digital Elevation Model (TanDEM-X) 2016 90 m So2Sat-POP is a collection of multi-
Local climate zones (So2Sat LCZ v1.0) 2017 100 m data sources. It is used as the input
Nighttime lights (NPP-VIIRS) 2016 500 m data for our training pipeline.
OpenStreetMap (OSM) 2017 –
Population Grids (GEOSTAT- EU) 2011 1 km

SEDAC Census Grids (US) 2010 1 km Reference population grid used for
the comparison study in the US.

GHS-POP 2015 1 km Gridded population product compared
with our estimates in the EU and US.

a To homogenize the input data, all the data sources in the So2Sat-POP data set have been resampled to 10 m (Doda et al., 2022).
Table 2
Comparison of our best models with the random forest model. Across all criteria, our model outperforms the random forest model.
Model Regression Classification

RMSE MAE R2 Accuracy (%) Bal. Acc. (%) F1 score MACD

Random forest 1276.26 463.35 0.827 59.13 37.95 0.383 0.896
Ours 1164.39 394.38 0.863 61.40 45.25 0.449 0.781
Table 3
Evaluation of different Sentinel-2 seasons on the test set.
Sentinel-2 Season Regression Classification

RMSE MAE R2 Accuracy (%) Bal. Acc. (%) F1 score MACD

Autumn 1579.59 548.93 0.747 56.52 35.43 0.355 1.01
Spring 1501.62 545.12 0.785 57.63 37.34 0.378 0.977
Summer 1776.90 562.74 0.680 57.58 36.32 0.369 0.981
Winter 1453.54 613.46 0.781 55.27 36.85 0.377 1.25
the GHS-POP (Freire et al., 2016). It is a global gridded population data
set based on remotely sensed data that has been developed by the EU
Joint Research Center. In this data set, each grid cell depicts the number
of people at 250 m and 1 km resolution, which has been estimated
on the basis of the Global Human Settlement Layer (GHSL) (Calka
and Bielecka, 2020). And the reference population data for the com-
parison is collected from the European Statistical System (ESSnet)
project in collaboration with the European Forum for Geography and
Statistics (Eurostat, 2011), the same source as that in the So2Sat-
POP data set, but unseen in our training, validation, and test data.
In the ESSnet project, the grid statistics of the majority of countries
were produced through aggregation or a hybrid method (EFGS, 2011).
Aggregation (bottom-up approach) is assumed to be the best method
for producing population grids (Gallego, 2010). Therefore, it best fits
reference population data. For all the grid cells in the test cities where
the reference population data was available, we extracted the GHS-POP
population counts at a resolution of 1 km and to obtain the GHS-POP
population classes, we binned the population counts into population
classes as defined in the data set paper (Doda et al., 2022).

Additionally, we created a small data set on three randomly selected
cities in the United States (US): New York City, San Jose, and Denver, to
evaluate the transferability of our model. The extent of the cities has
been determined by the algorithm used in our data set paper (Doda
et al., 2022). This algorithm expands the city’s extent in order to
accommodate the city’s fast urbanization. For each city, we collected
the data from all the six input modalities utilized in the So2Sat-POP
data set, processed and cropped to create 1 × 1 km patches. We used the
Socioeconomic Data and Application Center’s (SEDAC) 2010 US Census
grids at the resolution of 1 km (http://sedac.ciesin.columbia.edu/) as
the reference population data (CIESIN, 2010) for these cities. Table 1
summarizes the various data sets employed in our work, from training
purposes to comparison studies in a few EU and US cities.
4

2.3. Data preprocessing

The So2Sat-POP data set combines data from multiple sources. The
data from every input modality has a varying scale. So, we employ dif-
ferent preprocessing techniques and standardize the training data set.
For the Sentinel-2 data (only RGB channels) and the VIIRS nighttime
light emission data, channels are clipped to the 99.9th percentile, which
is calculated channel-wise and is based on all training data samples. The
Sentinel-2 images are subsequently normalized in accordance with the
suggested preprocessing methods for images when training a ResNet or
ResNet-like architecture by Li et al. (2021) to have a channel-wise mean
of zero and a channel-wise standard deviation of one. The clipping of
the VIIRS data is followed by a min–max normalization to a [0, 1]
range to reduce bias caused by the variations in surface materials and
seasonal effects.

Land use data values represent areas covered by the respective land
use classes, i.e. commercial, industrial, residential, and other, within
a raster pixel. To determine the proportion of a pixel that is covered
by each land use class, the area is divided by the area of a pixel,
resulting in a four-band raster with corresponding land-use proportions
percentages for each land-use class. Thus, for each pixel, theoretically,
the area proportions (%) across all the bands sum up to 1. We observed,
however, that sometimes these values exceed this sum because of the
buildings being on top of each other; for example, an underground
station and a building on top of it. We normalized such invalid values
so that their sum yields 1. The handcrafted features extracted from the
OSM dump, such as street density, presence of public transport, number
of highways, railways, etc., are in different ranges. We employ min–
max normalization to bring all values on the same scale (Pedregosa
et al., 2011). The local climate zone classes range from 1 to 17, where
classes from 1 to 10 represent the built classes and classes ranging
between 11 and 17 represent the natural classes (Stewart and Oke,
2012). To separate the built classes from the natural classes, we mapped
all the natural classes (11–17) to 0, and the rest of the classes are
mapped between the range of 0.1 and 1, starting from sparsely to
densely built-up areas.

http://sedac.ciesin.columbia.edu/


International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103731S. Doda et al.
Table 4
Evaluation of the significance of various data modalities on the test set by omitting each modality once, except Sentinel-2 (spring). When the
specific data modality is removed, blue represents the most affected, while red represents the least affected metrics.
Excluded modality Regression Classification

RMSE MAE R2 Accuracy (%) Bal. Acc. (%) F1 score MACD

None 1164.39 394.38 0.863 61.40 45.25 0.449 0.781
OSM 1216.65 422.18 0.849 61.68 44.25 0.442 0.791
DEM 1181.46 404.87 0.858 61.71 43.68 0.444 0.778
LU 1270.54 437.71 0.836 58.44 37.68 0.374 0.887
LCZ 1224.74 428.46 0.847 60.63 40.55 0.413 0.833
VIIRS 1168.89 386.64 0.861 61.69 42.87 0.436 0.779
t
𝑓
F

Table 5
Quantitative comparison of our best Regression model with GHS-POP on two
top-performing (Bremen, Liverpool), two average (Rotterdam, Wroclaw), and two
bottom-performing (Malaga, Genoa) test cities.

Cities Regression

Ours GHS-POP

RMSE MAE R2 RMSE MAE R2

Bremen 537.67 272.89 0.933 1530.27 892.60 0.461
Liverpool 616.86 308.88 0.887 1039.60 607.16 0.679
Rotterdam 884.05 427.06 0.890 1871.76 1097.83 0.509
Wroclaw 1184.88 518.58 0.856 2199.25 1096.29 0.515
Malaga 3758.04 1710.72 0.777 6492.98 3901.72 0.334
Genoa 3724.55 2652.69 0.686 2732.62 1906.80 0.831

3. Method

3.1. Interpretable deep learning framework for population estimation

Our proposed framework for population estimation consists of a
deep learning model and an explainable AI module based on the
Integrated Gradients (IG) method that reveals the relevant features
for the predictions of the trained model. Fig. 2 depicts our proposed
framework.

The population estimation module is based on the ResNet-50 (He
et al., 2016). This architecture excels not only at population esti-
mation tasks (Doupe et al., 2016; Hu et al., 2019; Metzger et al.,
2022; Robinson et al., 2017), but also at other multi-modal remote
sensing tasks (Ebel et al., 2021; Qiu et al., 2019). Also, this archi-
tecture has proven itself to be a good trade-off between the model
capacity and performance (Tan and Le, 2019). For the task at hand,
a custom architecture with two branches is created to handle both
image-like and vector-like features and concatenated before the first
fully connected layer. The upper branch is modified to handle inputs
of size 10 × 100 × 100 (channels × width × height), whereas the
lower branch is modified to handle the tabular data. Numerous recent
studies have presented deep models for tabular data (Arik and Pfister,
2021; Gorishniy et al., 2021; Huang et al., 2021; Somepalli et al.,
2021), and considering the success of ResNet in computer vision and
NLP tasks (Sun and Iyyer, 2021), we adapted a linear ResNet-50-like
architecture in the lower branch (Gorishniy et al., 2021), where the
convolutional layers of the ResNet-50 architecture are replaced with
fully connected layers. The two branches are merged following the
decision-level fusion protocol of Hoffmann et al. (2019a). For the upper
branch, land use and local climate zone classifications, the digital
elevation model, nighttime light emissions, and Sentinel-2 imagery are
the inputs, and for the lower branch, the OSM feature vector is fed as
an input.

The explainable AI module relies on the Integrated Gradients (IG)
saliency method (Sundararajan et al., 2017) to examine the outcomes
of our black-box model for population estimation. While there are
numerous explainability methods that can highlight the relevant input
features for a DL model (Ras et al., 2022), in our framework we use the
IG method due to the following reasons: Unlike other popular methods
5

such as Grad-CAM (Selvaraju et al., 2017) that are specific for image
inputs and convolutional layers, the IG method can attribute feature
importance for multi-modal inputs, which also occur in our dataset that
consists of both image and tabular data inputs. Moreover, in contrast
to other approaches like saliency maps based on the vanilla gradient
approach (Simonyan et al., 2013) which can also attribute features of
multi-modal inputs, IG satisfies two fundamental axioms, namely sen-
sitivity and implementation invariance. The sensitivity axiom ensures
that in case the model outputs different scores for an input example
and a baseline input that differs along one feature, then the IG method
will assign a non-zero relevance score to this feature. On the other
hand, the implementation invariance guarantees that identical feature
attributions are assigned for two functionally equivalent models. To
satisfy the sensitivity axiom, the IG method relies on a baseline input
𝑥′ that signifies the absence of features. Next, it defines the feature
importance for an input example 𝑥 as the integral of the gradients for
the model predictions on examples that lie along the path from 𝑥′ to
𝑥. In practice, the integral is approximated with a summation, and the
importance 𝐼𝑑 (𝑥) for a feature 𝑑 of the input example 𝑥 is computed
with the following equation (Sundararajan et al., 2017):

𝐼𝑑 (𝑥) =

(

𝑥𝑑 − 𝑥′𝑑
)

𝑚

𝑚
∑

𝑘=1

𝜕𝑓
(

𝑥′ + 𝑘
𝑚

(

𝑥 − 𝑥′
)

)

𝜕𝑥𝑑
(1)

In our framework for population estimation, 𝑥 is the multi-modal input
example consisting of satellite imagery and OSM tabular features, 𝑥′ is
he baseline input consisting of a black image and zero OSM vector, and

is the prediction of our ResNet-50 model for population estimation.
urther, 𝑚 is the number of steps in the path from 𝑥′ to 𝑥.

3.2. Experimental setup

We have two architectural setups; in the first setup, the vector
branch is omitted and the final layers are scaled to match the output
shape of the image branch. This setup is used when the vector data is
not utilized in the experiments and we called it a reduced setup. In the
other setup, we utilized both the image and vector branch for training
on all the data and called it a complete setup. For both setups, the
training set is split into training (80%) and a validation set (20%), and
the So2Sat-POP test set is used only to evaluate the trained model at the
end. The normal Xavier initialization (Glorot and Bengio, 2010) is used
to initialize weights and biases, and training is performed with a batch
size of 32 and an ADAM optimizer (Kingma and Ba, 2014) with an
initial learning rate of 1 x 10−4. All the experiments ran for a maximum
of 50 epochs, and whenever the training loss did not improve for five
subsequent epochs, the learning rate decayed by a factor of 0.1. Batch
normalization (Glorot and Bengio, 2010), dropout (Srivastava et al.,
2014), and weight decay in combination, following Loshchilov and
Hutter (2017) are used as the regularization techniques. We employed
various data augmentation techniques. Random Flipping and Random
Rotations have commonly used data augmentation techniques in deep
learning for population estimation literature (Doupe et al., 2016; Hu
et al., 2019). Additionally, we used random brightness and gamma
adjustment, which considerably improved the robustness and the per-
formance of the models (Sirazitdinov et al., 2019; Sun et al., 2021). All

data augmentation techniques are applied with a probability of 50%.



International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103731S. Doda et al.
Table 6
Quantitative comparison of our best Classification model with GHS-POP on two top-performing (Bremen, Liverpool), two average (Rotterdam,
Malaga), and two bottom-performing (Wroclaw, Genoa) test cities.
Cities Classification

Ours GHS-POP

Accuracy (%) Bal. Acc. (%) MACD Accuracy (%) Bal. Acc. (%) MACD

Bremen 54.15 46.67 0.096 23.42 17.28 1.89
Liverpool 53.03 41.78 0.179 19.13 13.56 2.38
Rotterdam 51.19 48.88 0.071 15.52 11.74 2.39
Malaga 42.26 41.19 0.989 25.77 20.66 1.63
Wroclaw 36.06 42.03 −0.08 19.91 15.46 2.23
Genoa 22.00 15.05 0.340 56.00 31.90 0.92
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For the classification, the model output size is set to be 17 as defined
by the data set, while for regression, the model output is a single value,
a population count. Also, the loss function is set to Mean Squared Error
(MSE) for regression and Focal Loss (Lin et al., 2017) for classification.
The entire procedure has been implemented with Python 3.8 using the
PyTorch 1.10 framework (Paszke et al., 2019). All models are trained
on a single NVIDIA RTX 3090 GPU with 24 GB RAM.

3.3. Evaluation metrics

For regression, we employed the commonly used performance met-
rics, the root-mean-square error (RMSE) and the mean absolute error
(MAE), as defined by Eqs. (2) and (3), respectively. To measure the
proportion of variance of the population counts that is captured by
the model, 𝑅2 is calculated using Eq. (4), where 𝑦𝑖 donates the ground
truth, 𝑦𝑖 denote the prediction and 𝑦𝑖 is the mean of ground truth . For
classification, we used balanced accuracy to evaluate the classification
performance. We also calculated the accuracy, macro-averaged F1-
score, and class distance (CD) as other intuitive classification evaluation
metrics. The CD measures the class distance between the predicted
and the reference class label. The metric considers the fact that a
misclassification to a ‘‘nearby’’ class has a lower error than to a ‘‘far
away’’ class due to the underlying regression task. The CD is calculated
using Eq. (5).

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (2)

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
| 𝑦𝑖 − 𝑦𝑖| (3)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
(4)

𝐶𝐷 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑐𝑙𝑎𝑠𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑐𝑙𝑎𝑠𝑠𝑖 (5)

4. Results and discussion

4.1. General model performance

Using the complete setup, we trained our models on both image
and vector data. We compare our best regression and classification
model with the RF model, proposed as a baseline on our data set (Doda
et al., 2022). Table 2 shows that we improved the results across all
metrics. The balanced accuracy has been improved by approximately
7.5%, and MAE and RMSE by 15% and 8%, respectively. To visually
compare the classification model’s performance, we plotted a normal-
ized confusion matrix for the two top-performing, two average, and
two bottom-performing test cities, shown in Fig. 4. The confusion
6

matrices show that while our model performs poorly on the classes t
of lower population densities, it is confident in predicting the high-
density classes (urban regions). The first four classes reflect areas with
extremely low population counts, and it is difficult to tell these classes
apart by their attributes. On the other hand, for most cities, the RF
model overestimates in low-population classes and underestimates in
high-population classes. Fig. 3 shows the CD plots for our model to
help us understand the misclassification distance in our predictions.
The CD plots indicate the percentage of patches that has a particular
CD value in a given city. For instance, in Malaga, approximately ∼75%
of the patches have a class distance of zero, and only for ∼8% of the
atches the predicted class is three classes distant from its actual class.
or regression, we plotted the scatter plots of the predicted population
ount versus the reference population count for each of these cities.
ig. 5 shows that in our DL model predictions, the scattering is closer
o the perfect fitting line for lower population values, while it is more
ispersed from the ground truth values for higher population counts.
n the other hand, the RF model again tends to over-predict across

ow population values and under-predict in higher population ranges.

.2. Importance of input data modalities

Since the So2Sat-POP data set consists of four seasons of Sentinel-2;
utumn, spring, summer, and winter, we first analyzed which season
s most important. Our reduced setup, without the vector branch, is
tilized for this experiment. Individual Sentinel-2 seasonal images were
ed into the model without any additional data. Table 3 shows that
ompared to using any other season, Sentinel-2’s spring season was
ound to yield better performance on the MAE than autumn (by 0.7%),
ummer (by 3%), and winter (by 11%) and ∼6% on an average on 𝑅2.
lso, the classification achieved better-balanced accuracy and F1 scores

n the spring season. The mean absolute class distance (MACD), which
s basically the class distances averaged across all samples is also lowest
n the spring.

Since the So2Sat-POP data set consists of data from six different
ources, we also examine the importance of each modality. For both
egression and classification, models are trained using different com-
inations of the data modalities following the leave-one-out principle
n cross-validation except for the Sentinel-2 spring season. Using this
rinciple, all data modalities are included in the initial experiment and
hen for the subsequent trials, each modality is removed once to test
f its removal affects the outcomes. Each trained model is evaluated
n the 18 unseen test cities. The predictions are on 1 × 1 km patch-
ets and compared with the reference population count and population
lass for each patch-set. Results for this set of experiments are shown
n Table 4, with blue-colored metrics representing the most affected
hen the specific data modality is removed and red-colored metrics

epresenting the least impacted scores. We found that land use is the
ost crucial input among the other data sets, followed by LCZ, since

hey have the most influence on the outcomes of both classification
nd regression. For classification, the exclusion of land use decreased

he balanced accuracy by 7.5%, and for regression, increased the mean
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Fig. 4. Normalized confusion matrix of two top-performing cities (Bremen, Liverpool in green), two average (Rotterdam, Malaga in blue), and two bottom-performing cities
(Wroclaw, Genoa in red) test cities for our DL and RF model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
absolute error by 11%. However, DEM in classification and VIIRS in
regression are found to be the least important because their exclusion
has little or no effect on the results. The exclusion of VIIRS increased the
RMSE only by 0.3% and even marginally improved the MAE. Similarly,
in the classification, excluding DEM slightly improved the accuracy and
MACD while decreasing the F1 score by 1% and balanced accuracy by
approximately 3%. We furthermore observed that when none of the
data modalities were excluded, we achieved the best results on most
7

metrics, so we concluded that all data modalities are important for both
regression and classification models.

4.3. Comparison with GHS-POP

To further assess the accuracy of our method, we compare our
results with GHS-POP on each of the two top-performing, average-
performing, and bottom-performing test cities that have been extracted
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Fig. 5. Scatter plots of our DL model predictions and RF model at the grid level for two top-performing cities (Bremen, Liverpool in green), two average (Rotterdam, Wroclaw in
blue), and two bottom-performing cities (Malaga, Genoa in red) test cities. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
and prepared as the supplementary data set. Tables 5 and 6 represent
the quantitative comparison between our predictions and GHS-POP es-
timates and we have observed that on almost all the evaluation metrics,
our approach surpasses the performance of GHS-POP. For example,
among the two top-performing and two average-performing cities, the
improvement in RMSE ranges from 50% to 70%, and among our two
8

worst-performance cities, Malaga still outperforms the GHS-POP with
42% improvement in RMSE while in Genoa we underperformed by
36%. For classification, our model improved the balanced accuracy in
these cities up to 35% except for Genoa. A visual comparison is shown
in Figs. 6 and 7. Both regression and classification visualizations show
that GHS-POP is not particularly good at capturing densely populated
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Fig. 6. Comparison of two top-performing cities (Bremen, Liverpool), two average (Rotterdam, Wroclaw), and two bottom-performing cities (Malaga, Genoa) with GHS-POP for
regression.
Fig. 7. Comparison of two top-performing cities (Bremen, Liverpool), two average (Rotterdam, Malaga), and two bottom-performing cities (Wroclaw, Genoa) with GHS-POP for
classification.
urban areas. It underestimates the population count for densely pop-
ulated central regions of the city and overall is unable to distinguish
between dense and sparsely populated regions of the city.

4.4. Evaluation on inter-regional cities

Since our model is trained only on European cities, therefore we
also evaluated our model outside the European Union to test the trans-
ferability and generalizability. Using the supplementary data set that
9

we prepared for the three US cities and our best models, we predicted
a population count and a population class at a resolution of 1 km. The
Tables 7 and 8 show our results in comparison with GHS-POP in the US.
Results indicate that our model, which was developed using data from
European cities only, does not outperform the GHS-POP. However, our
results are in line with GHS-POP and thus our model might be applied
to other geographic regions. We believe that by finetuning our model
with a few local micro-censuses, it would be possible to improve the
performance of our model in a new region too.
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Fig. 8. Feature attribution maps for several examples from the test set. We only include Sentinel-2, LCZ, LU, and OSM patches as they allow for visual interpretation of
the semantically significant features. Detailed documentation about the osm geometric and topological network features can be found at OSMnx (Boeing, 2017) user reference
(https://osmnx.readthedocs.io/en/stable/osmnx.html).
Table 7
Quantitative comparison of our best Classification model (trained with European cities only) with GHS-POP on three random US test cities.
Cities Classification

Ours GHS-POP

Accuracy (%) Bal. Acc. (%) MACD Accuracy Balanced Accuracy MACD

New York 18.70 21.10 2.04 12.23 8.19 3.53
San Jose 38.20 15.46 0.84 41.29 25.73 2.04
Denver 23.48 7.14 2.92 34.02 30.48 1.46
4.5. Understanding relevant features for population estimation

Our previous experimental results show that our model can reli-
ably estimate the population and hence has the potential to support
data-driven decision-making in regard to Sustainable Development
10
Goals. Yet, to ensure its acceptance and usage by the relevant stake-
holders, it is necessary to improve its transparency by unveiling its
inner workings beyond the predictive performance. As stated in Sec-
tion 3, we use the IG method to reveal the relevant features for
population estimation.

https://osmnx.readthedocs.io/en/stable/osmnx.html
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Table 8
Quantitative comparison of our best Regression model (trained with European cities
only) with GHS-POP on three random US test cities.

Cities Regression

Ours GHS-POP

RMSE MAE R2 RMSE MAE R2

New York 1615.96 674.10 0.60 2042.18 718.14 0.38
San Jose 1550.16 611.40 0.16 761.54 338.71 0.35
Denver 420.69 264.32 0.21 447.03 174.62 0.17

While assessing the importance of the different input modalities in
he Section 4.2, we discovered that land use data followed by LCZ data
ad the greatest impact on the quality of the results. That means data
hat helps to identify the different types of built-up regions and differ-
ntiates them with natural classes is crucial for the model. Therefore,
e try to visualize this in the feature attribution maps computed by ap-
lying the IG method on four examples from our test data set, displayed
n Fig. 8. For each example, we visualize the corresponding Sentinel-2
mage, the LCZ, LU, and OSM features that allow an understanding of
he semantics of the relevant features. In the first and second instances,
he predicted population counts are 4747 and 3, respectively, the same
s the reference population count. The feature attribution maps for
hese examples show that the model focuses on the built-up areas and
istinguishes them from the natural environments, such as water or soil
or population estimation. This visually confirms the importance of land
se and LCZ data, as the derived estimates are based on the settlement
reas seen in the Sentinel-2, LCZ, and LU modalities. Further, street-
elated statistics such as length, count, and proportions rank among
he most relevant OSM features. In the third instance, the reference
opulation count is 11, while the predicted count is 216. In this case,
hough the information is missing from the land use data, a built-up
egion is clearly visible in the associated Sentinel-2 and LCZ patches.
espite the predicted population count does not match the reference
opulation count, the corresponding feature attribution map indicates
hat the model has correctly identified the settlements in the areas,
nd there may be some disparities in the reference data. We suspect
hat the time lag between the collection of reference population data
nd other corresponding input data contributed to data noise, resulting
n evaluation bias. The patch in the fourth example represents the
orts of Genoa having a reference population count of 126, while
ur model estimates the population count to be 1400. The IG method
eveals that the model focuses on the upper left part of the image,
hich is suggested as a residential area by the Sentinel-2, LCZ, and
U modalities. However, the model identified additional features in the
op left as relevant. Furthermore, the model found relevant features
long the right side of the image, which supports the over-prediction by
he model. We investigated the region and discovered that it is a dock
ontainer terminal. As a result, it is full of large containers that could
e easily misinterpreted as house roofs in satellite imagery. Therefore,
t is mistakenly interpreted as a residential built-up by the model and
t overpredicts the population in this patch. This example demonstrates
ome of the drawbacks of using satellite imagery to estimate population
ensity because in certain cases, the physical characteristics of built-up
reas in satellite images are not distinguishable even to humans. Thus,
mprovements in fine-grained information that would allow the model
o differentiate between residential built-up areas and other types of
uilt-up areas, such as heavily packed industrial areas, are required.
herefore, more detailed information about building functions would
e quite beneficial in such a scenario (Hoffmann et al., 2019b).

. Conclusion

We proposed an adaptable and interpretable deep learning frame-
ork to estimate the population at a consistent resolution of 1 km
11

sing only publicly available data sources. We aim to calculate the
population as accurately and transparently as possible so that it can be
utilized in real-world applications such as urban planning, developing
infrastructure or risk analysis, etc. Our method is trained using the
So2Sat-POP data set and tested on 18 unseen European cities, which
shows promising results. In most European cities, we observe a better
performance than what the standard GHS-POP product offers. Due
to the lack of non-European training data, our predictions did not
clearly outperform the GHS-POP estimates everywhere in the US and
are also likely to happen in other non-European cities. Nevertheless,
our approach still performs in a comparable manner. Whereas the
GHS-POP and the other commonly employed population estimation
methods disaggregate the known population count from census or
administrative units to grid cells based on the external settlement layer,
our method does not solve the problem of population disaggregation,
but rather infer the population estimates from the publicly available
remote sensing data. Of course, census data is required for the training
of the deep learning model.

To promote the trustworthiness of our model’s decisions, we used
a popular explainable AI method to assess the most relevant features
considered by our model for population estimation. We expect that
the interpretation of our model decisions can serve as a reference
for comparing the functioning of the deep learning methods in pop-
ulation estimation beyond the predictive performance. To the best of
our knowledge, this is the first application of the integrated gradient
explainable AI method to the problem of population estimation. The
explainability analysis shows that our model is capable of locating the
discriminative regions that correspond to built-up areas, which accords
with the intuition that land use data is a key predictor of population.
However, we have also seen that in certain cases, the model cannot
distinguish between different built-up areas. We plan to incorporate
these findings in our future work by integrating information about
building functions into our model to obtain more accurate and reliable
predictions.

Our model has only been trained in European cities. As a result, we
expect that our model’s predictions have a higher bias in densely or
sparsely populated regions such as India, China, and Mongolia, regions
with very different climate, architectural, or cultural peculiarities com-
pared to Europe, such as modern US cities without a historic city center,
and in desert regions with foreign building materials. We plan to extend
our training data to include such missing regions and apply transfer
learning methods to fine-tune our pre-trained model using some micro-
census data. Nevertheless, even in the absence of census data, our
framework could be utilized to generate more accurate, up-to-date, and
interpretable population estimation maps at a large scale.

CRediT authorship contribution statement

Sugandha Doda: Conceptualization, Data curation, Formal analy-
sis, Investigation, Methodology, Software, Validation, Writing – orig-
inal draft, Writing – review & editing. Matthias Kahl: Conceptualiza-
tion, Data curation, Supervision, Validation, Writing – review & editing.
Kim Ouan: Data curation, Methodology, Software, Writing – original
draft. Ivica Obadic: Methodology, Software, Writing – original draft.
Yuanyuan Wang: Conceptualization, Project administration, Valida-
tion, Writing – review & editing. Hannes Taubenböck: Supervision,
Writing – review & editing. Xiao Xiang Zhu: Conceptualization, Fund-
ing acquisition, Project administration, Supervision, Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103731S. Doda et al.

L

L

L

M

N

P

P

Q

R

R

S

S

S

S

S

Data availability

Data will be made available on request.

Acknowledgments

The work is jointly supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and in-
novation programme (grant agreement No. [ERC-2016-StG-714087],
Acronym: So2Sat), by the Helmholtz Association, Germany through
the Framework of the Munich School for Data Science (MUDS), by
the German Federal Ministry of Education and Research (BMBF) in
the framework of the international future AI lab ‘‘AI4EO – Artificial
Intelligence for Earth Observation: Reasoning, Uncertainties, Ethics and
Beyond’’ (grant number: 01DD20001), by German Federal Ministry for
Economic Affairs and Climate Action in the framework of the ‘‘National
Center of Excellence ML4Earth’’ (grant number: 50EE2201C) and by the
Munich Center for Machine Learning.

Code availability

Python is used for all the analyses and implementations. The code is
available as a GitHub project at (https://github.com/zhu-xlab/So2Sat-
POP-DL.git).

References

Adadi, A., Berrada, M., 2018. Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160.

Arik, S.Ö., Pfister, T., 2021. Tabnet: Attentive interpretable tabular learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence. pp. 6679–6687.

Bhaduri, B., Bright, E., Coleman, P., Dobson, J., 2002. LandScan. Geoinformatics 5 (2),
34–37.

Boeing, G., 2017. OSMnx: New methods for acquiring, constructing, analyzing, and
visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139.

Calka, B., Bielecka, E., 2020. GHS-POP accuracy assessment: Poland and Portugal case
study. Remote Sens. 12 (7), 1105.

CIESIN, 2010. Center for international earth science information network - CIESIN -
columbia university. 2017. U.S. census grids (summary file 1), 2010. palisades,
new york: NASA socioeconomic data and applications center (SEDAC). URL: https:
//doi.org/10.7927/H40Z716C. accessed on: 2022-11-03.

Dobson, J.E., Bright, E.A., Coleman, P.R., Durfee, R.C., Worley, B.A., 2000. LandScan:
a global population database for estimating populations at risk. Photogramm. Eng.
Remote Sens. 66 (7), 849–857.

Doda, S., Wang, Y., Kahl, M., Hoffmann, E.J., Ouan, K., Taubenböck, H., Zhu, X.X.,
2022. So2Sat POP - a curated benchmark data set for population estimation from
space on a continental scale. Sci. Data 9 (1), http://dx.doi.org/10.1038/s41597-
022-01780-x.

Doupe, P., Bruzelius, E., Faghmous, J., Ruchman, S.G., 2016. Equitable development
through deep learning: The case of sub-national population density estimation. In:
Proceedings of the 7th Annual Symposium on Computing for Development. pp.
1–10.

Ebel, P., Meraner, A., Schmitt, M., Zhu, X.X., 2021. Multisensor data fusion for cloud
removal in global and all-season sentinel-2 imagery. IEEE Trans. Geosci. Remote
Sens. 59 (7), 5866–5878. http://dx.doi.org/10.1109/TGRS.2020.3024744.

EFGS, 2011. ESSnet project GEOSTAT 1B - final report. URL: https://www.efgs.info/wp-
content/uploads/geostat/1b/GEOSTAT1B-final-technical-report.pdf. accessed on:
2022-12-25.

Eurostat, 2011. Gisco geostat 1 km2 population grid. URL: https://ec.europa.eu/
eurostat/web/gisco/geodata/reference-data/population-distribution-demography/
geostat. accessed on: 2022-10-05.

Freire, S., MacManus, K., Pesaresi, M., Doxsey-Whitfield, E., Mills, J., 2016. Devel-
opment of new open and free multi-temporal global population grids at 250 m
resolution. Population 250.

Gallego, F.J., 2010. A population density grid of the European union. Popul. Environ.
31 (6), 460–473.

Georganos, S., Hafner, S., Kuffer, M., Linard, C., Ban, Y., 2022. A census from heaven:
Unraveling the potential of deep learning and earth observation for intra-urban
population mapping in data scarce environments. Int. J. Appl. Earth Obs. Geoinf.
114, 103013.

Gervasoni, L., Fenet, S., Perrier, R., Sturm, P., 2018. Convolutional neural networks for
disaggregated population mapping using open data. In: 2018 IEEE 5th International
Conference on Data Science and Advanced Analytics. DSAA, IEEE, pp. 594–603.
12
Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings,
pp. 249–256.

Gorishniy, Y., Rubachev, I., Khrulkov, V., Babenko, A., 2021. Revisiting deep learning
models for tabular data. Adv. Neural Inf. Process. Syst. 34.

Hay, S.I., Noor, A.M., Nelson, A., Tatem, A.J., 2005. The accuracy of human population
maps for public health application. Trop. Med. Int. Health 10 (10), 1073–1086.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.
In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.. pp. 770–778.

Hierink, F., Boo, G., Macharia, P.M., Ouma, P.O., Timoner, P., Levy, M., Tschirhart, K.,
Leyk, S., Oliphant, N., Tatem, A.J., et al., 2022. Differences between gridded
population data impact measures of geographic access to healthcare in sub-saharan
africa. Commun. Med. 2 (1), 117.

Hoffmann, E.J., Wang, Y., Werner, M., Kang, J., Zhu, X.X., 2019a. Model fusion for
building type classification from aerial and street view images. Remote Sens. 11
(11), 1259.

Hoffmann, E.J., Werner, M., Zhu, X.X., 2019b. Building instance classification using
social media images. In: 2019 Jt. Urban Remote Sens. Event.. JURSE, IEEE, pp.
1–4.

Hu, W., Patel, J.H., Robert, Z.-A., Novosad, P., Asher, S., Tang, Z., Burke, M., Lobell, D.,
Ermon, S., 2019. Mapping missing population in rural India: A deep learning
approach with satellite imagery. In: Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society. pp. 353–359.

Huang, X., Zhu, D., Zhang, F., Liu, T., Li, X., Zou, L., 2021. Sensing population
distribution from satellite imagery via deep learning: Model selection, neighboring
effects, and systematic biases. IEEE J. Sel. Top. Appl. Earth Obs. 14, 5137–5151.

Jacobs, N., Kraft, A., Rafique, M.U., Sharma, R.D., 2018. A weakly supervised approach
for estimating spatial density functions from high-resolution satellite imagery. In:
Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems. pp. 33–42.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Klemmer, K., Yeboah, G., de Albuquerque, J.P., Jarvis, S.A., 2020. Population map-
ping in informal settlements with high-resolution satellite imagery and equitable
ground-truth. arXiv preprint arXiv:2009.08410.

Layer, H.R.S., 2016. Facebook connectivity lab and center for international earth science
information network-CIESIN-columbia university. Source imagery for hrsl© 2016
DigitalGlobe. Accessed on: 2022-06-21.

i, F.-F., Krishna, R., Xu, D., 2021. CS231n: Convolutional Neural Networks for Visual
Recognition - Lecture 7: Training Neural Networks, Part 1. Stanford University.

in, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object
detection. In: Proc. IEEE. Int. Conf. Comput. Vis.. pp. 2980–2988.

oshchilov, I., Hutter, F., 2017. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

etzger, N., Vargas-Muñoz, J.E., Daudt, R.C., Kellenberger, B., Whelan, T.T.-T., Ofli, F.,
Imran, M., Schindler, K., Tuia, D., 2022. Fine-grained population mapping from
coarse census counts and open geodata. Sci. Rep. 12 (1), 20085.

eal, I., Seth, S., Watmough, G., Diallo, M.S., 2022. Census-independent population
estimation using representation learning. Sci. Rep. 12 (1), 5185.

aszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative style,
high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32.

edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830.

iu, C., Mou, L., Schmitt, M., Zhu, X.X., 2019. Local climate zone-based urban land
cover classification from multi-seasonal sentinel-2 images with a recurrent residual
network. ISPRS J. Photogramm. Remote Sens. 154, 151–162.

as, G., Xie, N., Van Gerven, M., Doran, D., 2022. Explainable deep learning: A field
guide for the uninitiated. J. Artificial Intelligence Res. 73, 329–396.

obinson, C., Hohman, F., Dilkina, B., 2017. A deep learning approach for population
estimation from satellite imagery. In: Proceedings of the 1st ACM SIGSPATIAL
Workshop on Geospatial Humanities. pp. 47–54.

apena, M., Kühnl, M., Wurm, M., Patino, J.E., Duque, J.C., Taubenböck, H., 2022. Em-
piric recommendations for population disaggregation under different data scenarios.
Plos one 17 (9), e0274504.

elvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
Proc. IEEE Int. Conf. Comput. Vis.. pp. 618–626.

imonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks:
Visualising image classification models and saliency maps. CoRR, arXiv:1312.6034.

irazitdinov, I., Kholiavchenko, M., Kuleev, R., Ibragimov, B., 2019. Data augmentation
for chest pathologies classification. In: 2019 IEEE 16th Int. Symp. Biomed. Imaging
(ISBI 2019). IEEE, pp. 1216–1219.

omepalli, G., Goldblum, M., Schwarzschild, A., Bruss, C.B., Goldstein, T., 2021. Saint:
Improved neural networks for tabular data via row attention and contrastive
pre-training. arXiv preprint arXiv:2106.01342.

https://github.com/zhu-xlab/So2Sat-POP-DL.git
https://github.com/zhu-xlab/So2Sat-POP-DL.git
https://github.com/zhu-xlab/So2Sat-POP-DL.git
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb1
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb1
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb1
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb2
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb2
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb2
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb3
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb3
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb3
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb4
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb4
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb4
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb5
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb5
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb5
https://doi.org/10.7927/H40Z716C
https://doi.org/10.7927/H40Z716C
https://doi.org/10.7927/H40Z716C
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb7
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb7
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb7
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb7
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb7
http://dx.doi.org/10.1038/s41597-022-01780-x
http://dx.doi.org/10.1038/s41597-022-01780-x
http://dx.doi.org/10.1038/s41597-022-01780-x
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb9
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb9
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb9
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb9
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb9
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb9
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb9
http://dx.doi.org/10.1109/TGRS.2020.3024744
https://www.efgs.info/wp-content/uploads/geostat/1b/GEOSTAT1B-final-technical-report.pdf
https://www.efgs.info/wp-content/uploads/geostat/1b/GEOSTAT1B-final-technical-report.pdf
https://www.efgs.info/wp-content/uploads/geostat/1b/GEOSTAT1B-final-technical-report.pdf
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb13
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb13
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb13
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb13
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb13
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb14
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb14
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb14
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb15
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb15
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb15
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb15
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb15
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb15
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb15
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb16
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb16
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb16
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb16
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb16
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb17
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb17
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb17
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb17
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb17
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb17
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb17
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb18
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb18
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb18
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb19
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb19
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb19
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb20
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb20
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb20
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb21
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb21
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb21
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb21
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb21
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb21
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb21
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb22
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb22
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb22
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb22
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb22
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb23
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb24
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb24
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb24
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb24
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb24
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb24
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb24
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb25
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb25
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb25
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb25
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb25
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb26
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb26
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb26
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb26
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb26
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb26
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb26
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2009.08410
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb29
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb29
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb29
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb29
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb29
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb30
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb30
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb30
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb31
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb31
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb31
http://arxiv.org/abs/1711.05101
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb33
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb33
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb33
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb33
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb33
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb34
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb34
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb34
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb35
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb35
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb35
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb35
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb35
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb36
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb36
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb36
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb36
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb36
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb36
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb36
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb37
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb37
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb37
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb37
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb37
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb38
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb38
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb38
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb39
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb39
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb39
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb39
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb39
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb40
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb40
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb40
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb40
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb40
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb41
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb41
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb41
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb41
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb41
http://arxiv.org/abs/1312.6034
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb43
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb43
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb43
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb43
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb43
http://arxiv.org/abs/2106.01342


International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103731S. Doda et al.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15 (1), 1929–1958.

Stathama, T., Foxa, S., Wolfa, L.J., 2021. Identifying urban areas: A new approach
and comparison of national urban metrics with gridded population data. Comput.
Environ. Urban Syst..

Stewart, I.D., Oke, T.R., 2012. Local climate zones for urban temperature studies. Bull.
Am. Meteorol. Soc. 93 (12), 1879–1900.

Sun, X., Fang, H., Yang, Y., Zhu, D., Wang, L., Liu, J., Xu, Y., 2021. Robust retinal vessel
segmentation from a data augmentation perspective. In: International Workshop on
Ophthalmic Medical Image Analysis. Springer, pp. 189–198.

Sun, S., Iyyer, M., 2021. Revisiting simple neural probabilistic language models. arXiv
preprint arXiv:2104.03474.

Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic attribution for deep networks. In:
International Conference on Machine Learning. PMLR, pp. 3319–3328.

Tan, M., Le, Q., 2019. Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning. PMLR, pp. 6105–6114.

Tatem, A.J., Campiz, N., Gething, P.W., Snow, R.W., Linard, C., 2011. The effects of
spatial population dataset choice on estimates of population at risk of disease.
Popul. Health Metr. 9 (1), 1–14.

Tian, Y., Yue, T., Zhu, L., Clinton, N., 2005. Modeling population density using land
cover data. Ecol. Model. 189 (1–2), 72–88.
13
TReNDS, 2020. Leaving no one off the map: A guide for gridded population data for
sustainable development.

Tuia, D., Roscher, R., Wegner, J.D., Jacobs, N., Zhu, X., Camps-Valls, G., 2021. Toward
a collective agenda on AI for earth science data analysis. IEEE Geosci. Remote Sens.
Mag. 9 (2), 88–104. http://dx.doi.org/10.1109/MGRS.2020.3043504.

UN, 2015. Sustainable development goals. URL: http://www.undp.org/content/undp/
en/home/sustainable-development-goals.html. accessed on: 2022-03-09.

UN, 2022. United nations population fund. Census. URL: https://www.unfpa.org/
census. accessed on: 2023-10-11.

Wardrop, N., Jochem, W., Bird, T., Chamberlain, H., Clarke, D., Kerr, D., Bengtsson, L.,
Juran, S., Seaman, V., Tatem, A., 2018. Spatially disaggregated population estimates
in the absence of national population and housing census data. Proc. Natl. Acad.
Sci. 115 (14), 3529–3537.

Weber, E.M., Seaman, V.Y., Stewart, R.N., Bird, T.J., Tatem, A.J., McKee, J.J.,
Bhaduri, B.L., Moehl, J.J., Reith, A.E., 2018. Census-independent population
mapping in northern Nigeria. Remote Sens. Environ. 204, 786–798.

WorldPop, 2018. School of Geography And Environmental Science, University of
Southampton; Department of Geography and Geosciences, University of Louisville;
Departement de Geographie, Universite de Namur) and Center for International
Earth Science Information Network (CIESIN), Columbia University. Global High
Resolution Population Denominators Project-Funded by the Bill and Melinda Gates
Foundation (OPP1134076).

http://refhub.elsevier.com/S1569-8432(24)00085-2/sb45
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb45
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb45
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb45
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb45
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb46
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb46
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb46
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb46
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb46
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb47
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb47
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb47
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb48
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb48
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb48
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb48
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb48
http://arxiv.org/abs/2104.03474
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb50
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb50
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb50
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb51
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb51
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb51
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb52
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb52
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb52
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb52
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb52
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb53
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb53
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb53
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb54
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb54
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb54
http://dx.doi.org/10.1109/MGRS.2020.3043504
http://www.undp.org/content/undp/en/home/sustainable-development-goals.html
http://www.undp.org/content/undp/en/home/sustainable-development-goals.html
http://www.undp.org/content/undp/en/home/sustainable-development-goals.html
https://www.unfpa.org/census
https://www.unfpa.org/census
https://www.unfpa.org/census
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb58
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb58
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb58
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb58
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb58
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb58
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb58
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb59
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb59
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb59
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb59
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb59
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60
http://refhub.elsevier.com/S1569-8432(24)00085-2/sb60

	Interpretable deep learning for consistent large-scale urban population estimation using Earth observation data
	Introduction
	Motivation
	Related Work
	Contribution of this article

	Data
	So2Sat-POP Data set
	Supplementary Data set
	Data preprocessing

	Method
	Interpretable Deep Learning Framework for Population Estimation
	Experimental setup
	Evaluation Metrics

	Results and discussion
	General model performance
	Importance of input data modalities
	Comparison with GHS-POP
	Evaluation on inter-regional cities
	Understanding Relevant Features for Population Estimation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Code availability
	References


