STANDARDIZED TECHNO-ECONOMIC ANALYSIS OF PTX-FUELS

SNG- and HSNG-production in Germany

DECHEMA Jahrestreffen der Fachsektion Energie, Chemie und Klima Frankfurt am Main, 12.03.2024

N. Heimann^a, F. Moser Rossel^a, R.-U. Dietrich^a

^a Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Stuttgart

Heimann et al., Standardized TEA of SNG, DECHEMA, 12.03.2024

Outline

Motivation

- Methodology
- SNG
- HSNG
- Comparison
- Conclusion and outlook

Motivation

Quelle: UBA

22.03.2022

- EU Climate Neutral Goal by 2050 (Germany already by 2045)^{[1][2]}
- Renewable transport lacks behind
- Hart to abate: chemical energy carriers
- But which?
 Butanol
 MeFo
 FT-products
 OME
 DMC
 Methanol
 Hythane
 Hydrogen

Entwicklung und Zielerreichung der Treibhausgasemissionen in Deutschland im Sektor Verkehr des Klimaschutzgesetzes (KSG)

* Berechnete Werte des "Projektionsbericht 2021"(rote Linie, basierend auf Daten mit Stand August 2020) weichen für die Jahre 2020 und 2021 von den später veröffentlichten offiziellen IST-Werten (grüne Linie) ab.

[1] <u>European Climate Law (europa.eu)</u>
 [2] Jedamzik et al. (2020) Energiewende in Deutschland: Definition, Kosten & Ziele | co2online

Motivation

Energy transition in the transport sector (EiV) - BEniVer: Scientific supervision

- EiV: funding 99 Mio. € | 16 projects | 100+ partner
- Renewable electricity based fuels

Cluster	r Fuels in focus		
C3-Mobility	synth. Gasoline, DME, OME_{3-5} , Methanol, Butanol, Octanol	$\diamond \diamond$	
CombiFuel	Hythan (Hydrogen + Methane)	\diamondsuit	
E2Fuels	Methanol, OME ₃₋₅ , Methan, Hythan		
FlexDME	Dimethylether (DME)	\diamond	
ISystem4EFuel	synth. Diesel, OME_{3-5}		
KEROSyN100	synth. Jet fuel	~	
LeanStoicH2	Hythan (Hydrogen+ Methane)		
MEEMO	Methanol	\diamond	
MENA-Fuels	(Import strategies from MENA region)		
MethQuest	Methan, Methanol, Hydrogen		
NAMOSYN*	OME, Methylformiat (MeFo), Dimethylcarbonat (DMC)	\diamond	
PlasmaFuel	synth. Diesel	\diamondsuit	
PowerFuel	synth. Jet fuel	\$	
SHARC	(Smart energy management in harbors)		
SolareKraftstoffe	synth. Gasoline	\diamond	
SynLink	synth. Diesel, synth. Jet fuel, Methanol		

• Comparable assessment: BEniVer – Scientific supervision of "Energy transition in the transport sector (EiV)"

REniVer

Begleitforschung Energiewende im Verkehr

Motivation: SNG

Potential of SNG and HSNG:

- Application proven
- Little CO₂ needed per molecule
- Existing infrastructure

Gas-grid >4 bar Image: DVGW

Image: Volvo Trucks

Source: Wolfgang Jargstorff / Fotolia.com

Image: Avenir LNG

Image: Daimler

[1] <u>European Climate Law (europa.eu)</u> [2] Jademaik et al. (2020) En anzieuren da in Dautenh

[2] Jedamzik et al. (2020) Energiewende in Deutschland: Definition, Kosten & Ziele | co2online

Motivation: HSNG

Combifuel project of Graforce GmbH, Berlin

- Addition of H_2 to SNG \rightarrow less CO_2 needed
- Up to 30 % H₂ tested

Begleitforschung Energiewende im Verkehr

Motivation: HSNG

Combifuel project of Graforce GmbH, Berlin

- Addition of H_2 to SNG \rightarrow less CO₂ needed
- Up to 30 % H₂ tested
- Emission reduction: CO₂, CO, HC, increase: NO_x

100

DLR

Assessment Workflow

Economic / ecological viability of e-fuels production

Albrecht et al. (2017). A Standardized Methodology for the Techno-Economic Evaluation of Alternative Fuels
 Maier et al. (2021) Techno-economically-driven identification of ideal plant configurations for a new biomass-to-liquid process
 Weyand et al. (2023) Process design analysis of a hybrid Power-and-Biomass-to-Liquid process

)

Methodology: technical analysis Key performance indicator (KPI)

Rahmat et al. (2023) Techno-economic and exergy analysis of e-MeOH production <u>https://doi.org/10.1016/j.apenergy.2023.121738</u>
 Rönsch, S., et al., Review on methanation – From fundamentals to current projects. Fuel, 2015. 166: p. 276-296.

Methodology: Economical Analysis

Peters et.al. [1]

$$NPC\left[\frac{\epsilon}{L}\right] = \frac{ACC + \sum OPEX_{ind} + \sum OPEX_{dir} + t_{labor}c_{labor}}{\frac{\dot{m}_{fuel}}{\rho_{fuel}} \cdot \frac{\omega_{fuel}}{\omega_{reference}}}$$
$$ACC\left[\frac{\epsilon}{a}\right] = FCI \cdot \left(\frac{IR \cdot (1+IR)^y}{(1+IR)^{y}-1} + \frac{IR \cdot y}{9}\right)$$

$$\begin{aligned} \mathbf{FCI} &= \sum_{i=1}^{m} \mathbf{EC}_{i} \cdot \left(1 + \sum_{j=1}^{10} F_{ind,i,j}\right) \cdot \left(1 + \sum_{j=11}^{12} F_{ind,i,j}\right) \ i,j \in \mathbb{N} \\ \mathbf{EC}_{i} &= \mathbf{f}_{i} \left(\mathbf{S}_{i,1}; \ \mathbf{S}_{i,2}; \dots \ \mathbf{S}_{i,k}\right) \cdot \left(\frac{\mathbf{CEPCI}}{\mathbf{CEPCI}_{ref}}\right) \cdot F_{pre,i} \cdot F_{mat,i} \\ &\quad \cdot \left(1 - L_{i}^{\log_{2}(n)}\right), \qquad n, i, k \in \mathbb{N} \end{aligned}$$

$$\boldsymbol{f_i}(\boldsymbol{S_{i,1}}; \ \boldsymbol{S_{i,2}}; \dots \ \boldsymbol{S_{i,k}}) = f_i(S_i) = EC_{ref,i} \cdot \left(\frac{S_i}{S_{ref,i}}\right)^{d_i}$$

BEniVer

Begleitforschung Energiewende im Verkehr

[3]
2018
Germany
€ ₂₀₁₈
300 MW _{el}
8,000 h/a
56 € ₂₀₁₈ /MWh
4,742 € ₂₀₁₈ /t
50 bar; 50 °C
69 € ₂₀₁₈ /t
3 bar; 25 °C
5 %
41 € ₂₀₁₈
20 a

[1] M. Peters, K. Timmerhaus, R. West, 2004.
[2] F. G. Albrecht, D. H. König, N. Baucks, R.-U. Dietrich, 2017
[3] Heimann, N. et al (2023), submitted.

Large scale e-Methane production (SNG w. 98 vol.% CH₄)

Advanced TREMP[™]-process

- Composition adjustment Transport: DIN EN 16723-2:2017-10 Gas grid: DVGW G260
 - Polishing reactor & water removal

[1] Topsøe, H., From coal to clean energy. 2011

[2] Harms, H., B. Höhlein, and A. Skov, 1980, Methanisierung kohlenmonoxidreicher Gase beim Energie-Transport. Heimann, [3] N. et al., 2023, Standardized TEA of sCNG and HCNG, to be submitted

Large scale e-Methane production (SNG w. 98 vol.% CH₄)

Advanced TREMP[™]-process

Composition adjustment
Transport: DIN EN 16723-2:2017-10
Gas grid: DVGW G260

Polishing reactor & water removal

	R1	R2	R3	R4	R5	
t [°C]	700	545	400	428	427	
GHSV	8900	8800	4200 ^[2]	4200 ^[2]	4200 ^[2]	

[1] Topsøe, H., From coal to clean energy. 2011

[2] Harms, H., B. Höhlein, and A. Skov, 1980, Methanisierung kohlenmonoxidreicher Gase beim Energie-Transport. Heimann, [3] N. et al., 2023, Standardized TEA of sCNG and HCNG, to be submitted

Process description (SNG w. 98 vol.% CH₄) Catalysis

BEniVer

Bealeitforschung Energiewende im Verkehr

Reaction kinetic: Rönsch et.al. ^[3-5] Combination of WGS and CO-Mathanation

AspenPlus[®] model: RPlug $T_{max,R1}^{[3]} = 700 \,^{\circ}C$ $T_{in,R1} = 250 \,^{\circ}C$ $p^{[2]} = 20-30 \,^{\circ}Dar$ $L_{reactor} = 2 \,^{\circ}m$ $D_{reactor} = f(GHSV)$ $GHSV^{[2]} = 4200-8900$ Pressure drop: Ergun's equation Catalyst^[2] MCR-2X (22 % Ni) Bulk density^[2] = 1000 kg m⁻³ Bed voidage^[2] = 0.3 Lifespan^[5] = 1 year Color coding process parameters: Blue \rightarrow taken from literature Green \rightarrow own assumption/calculation

[1] Topsøe, H., From coal to clean energy. 2011

[2] in range of: Harms, H., B. Höhlein, and A. Skov, 1980, Methanisierung kohlenmonoxidreicher Gase beim Energie-Transport.
 [3] Rönsch et al., 2016, Review on methanation – From fundamentals to current projects.

[4] Klose, J., 1984, Kinetics of the methanation of carbon monoxide on an alumina-supported nickel catalyst. Journal of Catalysis
 [5] Zhang, J., et al., 2013, Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas
 [6] Meylan et al., 2016, Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation

Noack et al., 2015
 Jansen et al., 2018, p. 36
 BEniVer assumptions

ter

Large scale HSNG production HSNG w. 30 vol.% H₂

Adapted TREMP™ process

Assumptions in the simulation:

- No impurities
- No side reactions

- High temperature in R1
 - Steam cycle
 - Composition adjustment 30 vol.% H₂ content → HSNG-30
 - Number of reactors reduced
 - Partial H₂ bypass
 - Smaller reactors for same output
 - less H₂O production

Large scale e-Hythane production (HSNG-30)

KPI / efficiencies

Heimann et al., Standardized TEA of SNG, DECHEMA, 12.03.2024

[1] Noack et al., 2015[2] Jansen et al., 2018, p. 36[3] BEniVer assumptions

DLR

Results: Fixed Capital Investment

	Steam Cycle	
	Separation train	FCI reduction for Hythan30
_	Compressors	compared to SNG → 23 %
	Heat exchangers	Significant reduction in
	Reactor	compressors and reactors
		Steam cycle, heat-exchangers remain significant FCI

Results: Net Production Costs electrolyzer excluded

- NPC reduction for Hythan30 compared to SNG: → 4 %
- Less H₂ needed
- >8 fold natural gas price

Heimann et al., Standardized TEA of SNG, DECHEMA, 12.03.2024

23

[1] BAFA - Erdgasstatistik

Results: Comparison of e-fuels

Begleitforschung Energiewende im Verkehr

Comparing generic fuels / designer fuels

	SNG	HSNG-30	МеОН	FT	OME ₃₋₅	DMC	MeFo
η_{PtF} [%]	57	58	53	40	42	47	52
NPC [€ ₂₀₁₈ /MWh _{LHV}]	173	166	204	321	360	329	298
Application parameter examples	 Heavy truck Drivetrain retrofit 	 Combifuel Heavy truck Drivetrain retrofit 	 Used in China Low vapor pressure Further conversion in Europe? 	 Certified sustainable jet fuel 	 Better combusti on Blending ratio? 	 Better combustion Blending ratio? 	 Better combustion Blending ratio?
HSNG-30: highest efficiency cheapest e-fuel of EiV Ecological assessment still pending							
Heimann et al., Standardized TEA of SNG, DECHEMA, 12.03.2024			Applie	cation assessm	nent started	ł	

Conclusion

- Renewable non-electrical transport : SNG and HSNG preferable
- 300 MW production plant to small for German demand
- German grid electricity not 100 % renewable

+ SNG:

- High efficiency
- Existing technology
- Existing infrastructure
- + Hythan
 - Higher efficiency
 - Better performance in combustion

Outlook

- Cheap renewable electricity needed
- Political will needed

Outlook: Identical HSNG spec. for both heat and transport applications
 Transparent, standardized DLR assessment methodology available

THANK YOU FOR YOUR ATTENTION!

Contact:

Nathanael Heimann, M.Sc. Research fellow Techno-economic Analysis DLR Institute of Engineering Thermodynamics Nathanael.Heimann@dlr.de

Dr.-Ing. Ralph-Uwe Dietrich Group leader Techno-Economic Analysis DLR Institute of Engineering Thermodynamics <u>Ralph-Uwe.Dietrich@dlr.de</u>

Heimann et al., Standardized TEA of SNG, DECHEMA, 12.03.2024