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Investigating 
the spatiotemporal associations 
between meteorological conditions 
and air pollution in the federal state 
Baden‑Württemberg (Germany)
Leona Hoffmann 1*, Lorenza Gilardi 2, Marie‑Therese Schmitz 3, Thilo Erbertseder 2, 
Michael Bittner 2, Sabine Wüst 2, Matthias Schmid 3 & Jörn Rittweger 1,4

When analyzing health data in relation to environmental stressors, it is crucial to identify which 
variables to include in the statistical model to exclude dependencies among the variables. Four 
meteorological parameters: temperature, ultraviolet radiation, precipitation, and vapor pressure and 
four outdoor air pollution parameters: ozone ( O

3
 ), nitrogen dioxide ( NO

2
 ), particulate matter ( PM

2.5
 , 

PM
10

 ) were studied on a daily basis for Baden‑Württemberg (Germany). This federal state covers urban 
and rural compartments including mountainous and river areas. A temporal and spatial analysis of the 
internal relationships was performed among the variables using (a) cross‑correlations, both on the 
grand ensemble of data as well as within subsets, and (b) the Local Indications of Spatial Association 
(LISA) method. Meteorological and air pollution variables were strongly correlated within and among 
themselves in time and space. We found a strong interaction between nitrogen dioxide and ozone, 
with correlation coefficients varying over time. The coefficients ranged from negative correlations in 
January (−0.84), April (−0.47), and October (−0.54) to a positive correlation in July (0.45). The cross‑
correlation plot showed a noticeable change in the correlation direction for O

3
 and NO

2
 . Spatially, 

NO
2
 , PM

2.5
 , and PM

10
 concentrations were significantly higher in urban than rural regions. For O

3
 , this 

effect was reversed. A LISA analysis confirmed distinct hot and cold spots of environmental stressors. 
This work examined and quantified the spatio‑temporal relationship between air pollution and 
meteorological conditions and recommended which variables to prioritize for future health impact 
analyses. The results found are in line with the underlying physico‑chemical atmospheric processes. It 
also identified postal code areas with dominant environmental stressors for further studies.
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NO2  Nitrogen dioxide
NOx  Nitrogen oxide
O3  Ozone
PCA  Principal component analysis
PM2.5  Particulate matter with a diameter of 2.5 micrometers or smaller
PM10  Particulate matter with a diameter of 10 micrometers or smaller
Prec  Precipitation
sd  Standard deviation
r  Correlation coefficient
Temp  Temperature
UV  ultraviolet radiation
VOC  Volatile organic compound
VP  Vapor pressure
WHO  World Health Organization

The human-made climate change threatens human health not only through extreme meteorological conditions, 
but also through polluted air that often accompanies  it1,2. There are concrete plans for the reduction of air pol-
lutant concentrations with guidelines from the World Health Organization (WHO)3,4 and air quality directive 
of the European Parliament and the  Council5. However, there is still a need to better understand outdoor air 
pollution and their internal relations to prevent potential misinterpretation of the outcomes. In the past, numer-
ous studies were conducted on the effect of air pollution on human  health6–10. All of them confirm that outdoor 
air pollution harms human health. Air pollution causes acute and chronic health effects and affects various 
systems, and  organs8.

Air pollutants are often released in conjunction, such as nitrogen dioxide ( NO2 ), carbon dioxide  (CO2) 
and particulate matter from combustion processes. The dispersion and deposition of air pollutants through 
meteorological factors is subject to variation given by emission sources, chemical transformations and average 
atmospheric lifetime. As a consequence there are spatiotemporal covariations between the various pollutants 
and meteorological variables.

One of the pollutants is particulate matter with a diameter up to 2.5 µm ( PM2.5 ) which is a variable that 
has been frequently studied in the literature and has often shown to have a strong negative effect on health. 
Short-term as well as long-term exposure to PM2.5 has an impact on mortality and  morbidity6. The evidence 
supports the possibility that both PM2.5 and PM10 (particulate matter with a diameter up to 10 µm ) are associ-
ated with increased mortality from all causes, cardiovascular disease, respiratory disease, and lung  cancer11,12. In 
Europe in 2020, exposure to PM2.5 concentrations above the WHO guideline level of 5 µg/m3 resulted in 275,000 
premature  deaths13. Most individuals residing in Germany inhabit polluted  regions14. Air pollution negatively 
impacts virus-transmitting infections such as  influenza15,16 and COVID-1917–19. Irrespective of which specific 
health outcome is considered, understanding the interdependencies between environmental variables and the 
selection of environmental stressors is a key aspect in epidemiological analyses. Previous studies that examined 
the relationship between meteorological and air pollution variables were conducted in Cairo (Egypt)20,  China21, 
Rome (Italy)22 and Stuttgart (Germany)23, for example. Studies on the spatiotemporal variability of tropospheric 
ozone and nitrogen dioxide are available for Athens (Greece)24, major cities in  India25 as well as in form of 
worldwide  reviews26.

In a study on the link between influenza and air  pollution15, a strong correlation was found between some 
of the environmental stressors considered, which included air pollutants and meteorological variables. Other 
 studies27,28 made use of the principal component analysis (PCA) method for dimension  reduction29. However, 
PCA combines pollutants to create principal components. Understanding the individual coefficients can be dif-
ficult because they lack  interpretability30. PCA is unsuitable for our analysis as we want to focus on the specific 
relationships between and among meteorological conditions and air pollution. Therefore, we opted for temporal 
and spatial analysis techniques that allow for a more conclusive interpretation of the environmental stressors 
and investigate the internal dependencies.

The aim of this analysis is to better characterize and identify the spatiotemporal relationships among envi-
ronmental parameters. Our analysis takes into account multiple stressors and their spatial and temporal con-
nections across the entire state of Baden-Württemberg. The scope is to reduce the number of variables needed in 
the epidemiological analysis and therefore simplify them and avoid biased results caused by correlated factors.

In the past, research has focused either on analyzing specific cities or studying one environmental factor 
affecting larger regions. This study is valuable because it considers multiple environmental stressors and covers 
at the same time the cross-sectional region of Baden-Württemberg (BW). Due to the combination of urban and 
rural areas including mountainous and river regions, Baden-Württemberg is particularly well suited for analyz-
ing the spatial-temporal relationships between air quality and meteorological conditions. In addition, this paper 
provides decision support for the selection of environmental variables for future analyses. Understanding how 
different stressors are interconnected can offer valuable insights to aid in future health impact analyses and assist 
other researchers in related fields.

Through our spatial and temporal analysis, we have identified distinct differences and similarities in terms 
of spatiotemporal patterns in environmental stressors. Based on these findings, we suggest prioritizing certain 
variables for further investigation. Additionally, we categorized postal code areas into specific groups based on 
their environmental stressor pattern, providing a spatial delineation.
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Methods
Study area
Baden-Württemberg is Germany’s third most populated state, with an area of approximately 36 thousand  km2 
and a population of approximately 11 million. Geographically, the state is located in southwestern Germany 
and includes urban and rural areas. The state capital Stuttgart is the largest city in BW with about 630 thousand 
inhabitants and is located in the center of the state. Other large cities are Mannheim (310 thousand inhabit-
ants), Karlsruhe (308 thousand inhabitants), and Freiburg (231 thousand inhabitants). Especially in the south, 
southwest, and southeast of the state, there are many rural and mountain regions, including the Black Forest, 
the Lake Constance, the edge of the Alps, and the low mountain range Swabian Alb. Of all 1101 communities of 
BW, 586 have fewer than 5 thousand  inhabitants31.

We obtained a shapefile of the postal code areas in BW from the Esri Germany  database32 in order to handle 
the postal code areas.

The population density provides information about the number of inhabitants per  km2 and was calculated 
from the available data as follows:

Based on a map of population density from the German Federal Institute for Population Research (Bun-
desinstitut für Bevölkerungsforschung)33, we decided to introduce four population density categories. Figure 1 
provides a graphical overview of the distribution of the population density categories for BW at postal code level.

Unsurprisingly, postal code areas near cities such as Stuttgart and Mannheim are assigned to category 4, that 
means densely populated areas. The areas of Black Forest, Swabian Alb, and northeastern of BW predominantly 
have a population density below 151 inhabitants per  km2.

Environmental variables
Eight environmental variables were considered in more detail. These were split into four meteorological param-
eters [temperature (Temp), precipitation (Prec), vapor pressure (VP) and UV radiation (UV)] and four outdoor 
air pollution parameters [ozone (O3) , nitrogen dioxide (NO2) , particulate matter ( PM2.5 , PM10)]. Air pollution 
surface concentrations were retrieved from the European air quality reanalysis dataset provided by the Coper-
nicus Atmosphere Monitoring Service (CAMS)34. The data source of the meteorological parameters was the 
ERA5 reanalysis dataset as provided by the Copernicus Climate Change Service (C3S) of the European Centre 
for Medium-Range Weather Forecasts (ECMWF)35. The datasets had a native spatial resolution of 0.1° × 0.1° and 
a temporal resolution of one hour. The variables were geographically aggregated to postal code areas as described 
 in36. A detailed evaluation of uncertainties of the applied data can be found  in37–39

Table 1 gives an overview of the environmental stressors. Daily mean values between 2010 and 2018 were 
available for each variable in the table, aggregated at the postal code level in BW and resulting in a total of 
3,931,252 data. Next is a brief explanation of the environmental  variables40,41. The variable Temp was measured 
two meters above the ground. Prec, expressed in mm/day, represented the depth of water if it were evenly 

(1)population density =
number of inhabitants

postal code area (km2)

Figure 1.  Postal code areas in BW categorized by population density.
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distributed over the area under consideration. The variable VP was a variable constructed from 2m dewpoint 
temperature, as expressed by the following empirical  formula42:

where e was the vapor pressure in hectopascal (hPa) and Td was the dew point temperature in °C. For UV, the 
unit was converted from J/m2 to W/m2 by dividing the integration time in seconds, resulting in a mean value of 
15.4 W/m2 in the processed data. O3 is a colorless and toxic gas in the atmosphere close to the ground (tropo-
sphere). O3 is one of the main components of photochemical smog and is produced by complex photochemical 
processes during intense sunlight. NO2 is a reactive nitrogen compound that is commonly released from the 
combustion of fuels in the transportation and industrial sectors. PM2.5 and PM10 are not single pollutants but a 
mixture of many components such as sulfates, nitrates, ammonia, sodium chloride, black carbon, mineral dust, 
and water. Depending on the size of the particles, a distinction is made between PM10 and PM2.5 . Particulate 
matter is generated, in particular, by combustion processes in motor vehicles, power plants, small combustion 
plants, domestic heating as well as in metal and steel production.

Statistical methods
Pearson’s correlation coefficient was used to determine the pairwise correlations between environmental stressors. 
The strength of correlation is classified as follows: r > 0.9 almost perfect, 0.7 < r ≤ 0.9 very large, 0.5 < r ≤ 0.7 
large, 0.3 < r ≤ 0.5 moderate, 0.1 < r ≤ 0.3 small and r < 0.1  trivial43. From the pearson correlation coefficient 
emerges the concept of cross- and autocorrelations. In short, a cross-correlation examines the relationship 
between two or more parameters over time or in space, whereas an autocorrelation examines the relationship 
to itself (also possible in time and space). The concept of temporal cross-correlation was used to make more 
precise statements about the temporal internal dependencies of environmental  stressors22. In a cross-correlation 
function (ccf), two time series, x(t) and y(t), are examined for correlations with a time  offset44,45. The formula 
can be represented as follows:

where x̄ and ȳ denote the mean over time of the corresponding series, respectively. The time series x(t) is fixed, 
and y(t ± lag) has a time lag, which is possible in both directions, i.e., x leads y or x lags y. In a resulting correla-
tion plot, horizontal lines represent the individual correlations of the two time series with the respective time lag.

A local indication of spatial association (LISA) model was used for the spatial analysis. The LISA statistic 
measures the degree of autocorrelation between a geographical location and its neighbors, identifying so-called 
hot and cold spots. For instance, hot spots refer to areas with significantly high values that are surrounded by 
postal code regions with high values. This method was developed by Luc  Anselin46 and, among others, applied 
in the context of air  pollution16,47. Several statistics represent the measure of spatial  autocorrelation48,49. Here, 
we used the local Moran statistic, whereby the statistic was applied to each environmental stressor individually. 
The local Moran’s I statistic was given as follows:

(2)e = 6.112 ∗ exp(
17.67 ∗ Td

Td − 243.5
)

(3)ccf =

∑N−1
t=1 [(x(t)− x̄) ∗ (y(t − lag)− ȳ)]

√

∑N−1
t=1 (x(t)− x̄)2

√

∑N−1
t=1 (y(t − lag)− ȳ)2

Table 1.  Overview of environmental stressors. Overview of meteorological data and air pollutants according 
to the statistical parameters mean, standard deviation (sd), median, minimum (min) and maximum (max) 
value. The variables cover all postal code areas in BW and are based on daily measurements from 2010 to 2018.

Variable Parameter Value

Temp (°C)
Mean (sd) 9.7 (7.7)

Median [min, max] 9.8 [−18.9, 30.9]

Prec (mm/day)
Mean (sd) 3.4 (6.0)

Median [min, max] 0.9 [0, 99.3]

VP (hPa)
Mean (sd) 10.0 (4.2)

Median [min, max] 9.3 [1.0, 24.6]

UV (W)
Mean (sd) 15.4 (9.7)

Median [min, max] 14.1 [0.4, 37.0]

O3 ( µg/m3)
Mean (sd) 51.5 (23.0)

Median [min, max] 52.4 [0.3, 149.0]

NO2 ( µg/m3)
Mean (sd) 12.2 (7.3)

Median [min, max] 10.4 [1.07, 66.4]

PM2.5 ( µg/m3)
Mean (sd) 11.0 (6.7)

Median [min, max] 9.5 [0.7, 72.3]

PM10 ( µg/m3)
Mean (sd) 14.9 (8.4)

Median [min, max] 13.2 [0.9, 83.5]
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where xi was the stressor concentration at location i, xj was the concentration of spatial lag j (neighbors), and 
X̄ was the global mean of the environmental stressor. The spatial weight between i and j was described by the 
matrix wi,j , and the total number of observations was n. S2i  was a constant for all locations with:

Moran’s test uses a null hypothesis of randomly dispersed data. All statistical analyses were conducted using 
 R50, and maps and figures 1 to 9 were generated in R version 4.3.0.

Results
A matrix of pairwise Pearson’s correlation coefficients between the different environmental parameters was 
shown in Fig. 2.

The correlations represented associations across the entire observation period, that means over all days from 
2010 to 2018 and total BW. As expected the temperature and vapor pressure (correlation coefficient (r) 0.94) 
and PM2.5 and PM10 ( r = 0.93 ) had a strong positive correlation. In addition, there were other relatively strong 
correlations. The correlation coefficient between UV radiation and O3 was 0.75. This means that the stronger 
the radiation was, the higher the O3 concentration. O3 and NO2 are negatively correlated ( r = −0.68 ). If one air 
pollutant was low, the other was high.

Temporal analysis
Since this part focuses on temporal relationships, the spatial separation into postal code areas was neglected for 
this section and the values were averaged over time. It was investigated whether the pairwise Pearson correlations 
differ across months. We carefully examined correlation plots for all months and decided to include the first 
correlation plot of each quarter (January, April, July, and October) in the manuscript. Within the manuscript, 
we do not display all the months explicitly, as some of them represent transitions between the extreme figures 
shown. The correlation matrices for every month are available in the Supplementary information. The results 
for the four months January, April, July and October were presented in Fig. 3.

In January, there were many negative correlations. In April, the correlation matrix was primarily characterized 
by lower correlations. In July, stronger correlations dominate and in October, again, many weaker correlations 
were visible. The matrices of October and April were overall very similar. They seemed to be intermediate states 
between the more extreme correlations in January and July.

For O3 , the sign of the correlation coefficient with Prec was not constant. The strength of the correlation dif-
fered in January ( r = 0.59 ), April ( r = −0.13 ), July ( r = −0.43 ) and October ( r = 0.21 ). The medium-large nega-
tive correlation between UV and Prec was almost constant over the months. UV and O3 were slightly correlated 

(4)Ii =
(xi − X̄)

S2i

n
∑

j=1,j �=i

wi,j(xj − X̄)

(5)
S2i =

n
∑

j=1,j �=i

(xj − X̄)2

n− 1

Figure 2.  Pearson correlation matrix based on daily measurements from 2010 to 2018 across BW. The more 
intense the color, the stronger the correlation between the two variables, whereas the color blue indicated 
positive correlations and red negative correlations.
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in January ( r = −0.18 ), moderately positively correlated in April ( r = 0.48 ), strongly positively correlated in 
July ( r = 0.67 ), and slightly correlated in October (r = 0.29 ). The variables O3 and NO2 were very strongly 
negatively correlated in January ( r = −0.84 ), moderately negatively correlated in April ( r = −0.47 ), moderately 
positively correlated in July ( r = 0.45 ), and again negatively correlated in October ( r = −0.54 ). The correlation 
between NO2 and PM2.5 , as well as PM10 , was positively correlated over all months. In January, the correlation 
was stronger, with values around 0.75, than in the other months, with values around 0.6. To summarize, Fig.  3 
showed numerous changes of sign over months. Specifically, 14 of the total 28 correlation coefficients showed a 
change in sign between January and July.

The correlation between NO2 and O3 was already prominent in Fig. 3. Therefore, the auto- and cross-corre-
lation relationship between the O3 and NO2 variables was depicted in Fig. 4. Overall, the plots by year look very 
similar, so exemplary, the correlations of the environmental stressors in Fig. 4 were presented for 2018. All graphs 
had a low point at lag nine and a high point at lag 14. There were noticeable differences in the plots. Specifi-
cally, lag 32 in (A) showed a dip that was not present in (B) and (C). In Fig. 4D there was an annual periodicity 
with the highest positive Pearson correlation coefficient reaching around 0.4 when NO2 comes before O3 and 
approximately 0.3 when NO2 follows O3 . In addition, there was a pattern that repeats about every 13 days in (C).

The output of the cross-correlation function between NO2 and O3 in Fig. 5 was essentially the same as the 
day-level correlation in Fig. 4. The figures for NO2 and Temp as well as NO2 and UV looked very similar to NO2 
and O3 . There was also a change in signs and another high point after about half a year in both directions. A small 
structure in Fig. 5 was seen between NO2 and Prec in the correlation values shifted by months. That means a 
wave-like structure similar to NO2 and O3 can be observed. In contrast to NO2 and O3 , the correlation coefficient 
starts in the positive range at lag 0, changes to negative with increasing lags, and returns to positive. However, 
these were relatively weak correlations. A shift made sense content-wise because rain washes the air clean of pol-
lutants. NO2 and PM2.5 started at lag 0 with a relatively strong correlation value above 0.5. For positive lag values, 

Figure 3.  Pearson correlation matrix over months for January (A), April (B), July (C) and October (D).
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if NO2 lags behind PM2.5 , there was a similar structure to the cross-correlation of NO2 and Prec at low level. The 
ccf plot for PM10 and PM2.5 gave a strong correlation at lag 0, followed by no clear structure at the monthly shift.

Spatial analysis
The aim of the the LISA  analysis46,47 was to identify the locations of clusters of LISA hot and cold spots of the 
environmental stressors throughout BW.

According to Fig. 6, regions with very high or low population density are most affected by air pollution 
variables such as PM10 , PM2.5 , NO2 and O3 . The meteorological variables had various patterns. A more detailed 
representation of the spatial associations was given in Fig. 7 with a significance level set to 0.001. Using local 
cluster maps, the spatial associations between postal code areas were summarized into LISA hot and cold spots.

As already showed in the local significance map, most air pollution variables showed a similar structure. The 
following applies to NO2 , PM10 , and PM2.5 : In urban areas (Stuttgart + Mannheim region), many postal code 

Figure 4.  Autocorrelation function for NO2 (A) and O3 (B) of the year 2018. Cross-correlation function (ccf) 
for NO2 and O3 of the year 2018 with 50 days lag (C) and 400 days lag (D). The time series O3 was fixed, and the 
time series NO2 shifted by lags for the ccf function. Plots (C) and (D) showed the correlation between NO2 at 
time t ± lag and O3 at time t.
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areas had neighbors with significantly similar high values. The cold spots geographically contain the Black For-
est and parts of the Swabian Alb. For O3 , the distribution of LISA hot and cold spots was similar but reversed. 
Based on the meteorological variables, different postal code regions stand out, with VP and Temp showing similar 
trends. Accordingly, LISA hot spots were located at the western edge of BW. LISA cold spots were found along 
the Schwäbische Alb. A possible geographical connection could be the differences in altitude of the individual 
areas. For UV, LISA cold spots were located exclusively in the north, and LISA hot spots were exclusively in 
the south of the state. The Local Moran Map for Prec looked similar, i.e., LISA cold spots in the north and LISA 
hot spots in the south. However, no such clear and extreme assignment as for UV was recognizable. This could 
possibly be explained by the altitude, latitude and local air circulations. Furthermore, areas of the Black Forest 
showed LISA hot spot postal code areas. One could assume a connection between Temp and UV. However, this 
map showed no spatial relationship between LISA hot and cold spots for UV and Temp.

Pairwise correlations between stressors and cross-correlation plots were examined by the population density. 
Table 2 showed a summary of environmental stressors split by population density categories.

NO2 showed the most remarkable change in concentration across the population density compared to the 
other environmental stressors with a mean value ranging from 9.6 µg/m3 in rural to 16.5 µg/m3 in urban areas. 
The more urban the area was, the higher the NO2 concentration. For PM2.5 and PM10 , a similar but less intense 
increase was observed. O3 had a reverse effect ranging from 54.4 µg/m3 to 47.2 µg/m3 . The environmental 
stressors UV, VP, Temp, and Prec were mainly constant over space.

Figure 8 showed the Pearson correlation matrix for all data separated by population density category. If we 
specifically compare the most rural and urban areas (categories 1 and 4), we noticed that NO2 had different corre-
lation values depending on the category. NO2 correlated more negatively with Temp (r = −0.67) , VP (r = −0.6) , 
and UV (r = −0.5) in category 1 of population density than in category 4 with correlation coefficients of −0.55 
(Temp), −0.48 (VP) and −0.45 (UV). The correlation between NO2 and O3 , as well as Prec, remained stable mainly 
across the shifting categories of population density. Between NO2 and PM2.5 as well as PM10 , the positive cor-
relation increased with rising population density from 0.51 and 0.53 (category 1) to 0.61 and 0.63 (category 4). 
All other correlations showed only minor variations across population density categories.

Figure 5.  Different cross-correlation functions for the year 2018 (lag = month).
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The hot and cold spot resulted from the LISA analysis can be used to present a new level of spatial units in 
addition to the predefined categorical spatial units for population density in Table 2. When comparing the LISA 
hot and cold spots, it could be seen that they do not always corresponded to categories 1 through 4 of population 
densities. The parameters Prec, UV, VP, and Temp, in particular, differed from the distribution of population 
density in BW. Additionally, the LISA hot spots do not entirely matched the high population density in Table 2 
for the NO2 , PM2.5 , PM10 , and O3 parameters. Table 3 provided an overview of descriptive statistics for the new 
spatial units as obtained from the LISA analysis.

We introduced a new level of insight that was defined by the spatial variability of the stressors rather than 
relying on a predefined quantity such as population density. The strong discrepancy between the mean values 
was remarkable when looking at the hot and cold spots. These varied from 18.5 to 7.6 for NO2 , 59.7 to 45.1 for 
O3 , and 12.0 to 9.5 for PM2.5.

Figure 9 displayed the Pearson correlation matrices for the hot and cold spots of the LISA spatial units, similar 
to the population density categories.

The correlation directions in both matrices were identical. However, the correlation coefficients for NO2 with 
Temp, VP, and UV were higher for the cold spots. In addition, the PM2.5 and PM10 correlation values with all 
other stressors were overall slightly higher in the hot spots than in the cold spots.

We also generated cross-correlation plots for NO2 and O3 in 2018, categorized by both population density and 
hot and cold spots. However, the cross-correlations do not showed strong changes in the associations between 
environmental stressors.

Discussion
Meteorological and air pollution variables were strongly correlated between and among themselves, with specific 
seasonal and spatial features. For example, NO2 and O3 were strongly interdependent, and the Pearson correla-
tion varied with time. In January, there was a negative correlation of −0.84, whereas in July, the correlation coef-
ficient was 0.45. Figure 10 illustrated that NO2 and O3 correlated not only with each other but also with other 
environmental stressors. It is particularly intriguing to note the contrasting values of the two months, as their 
correlation directions often differed.

The cross-correlation showed a noticeable change in the correlation direction for O3 and NO2 . Spatially, 
NO2 , PM2.5 , and PM10 concentrations were significantly higher in urban than in rural regions. For O3 , the effect 
is reversed. This result is also confirmed by LISA analysis, where distinct hot and cold spots of the different 
environmental stressors could be identified. In addition, the Pearson correlation coefficients suggest that PM10 
variation was almost entirely explained by PM2.5 and vapor pressure by temperature.

Figure 6.  Local significance map of the individual environmental stressors in BW. The figure represented the 
results of the significance test of LISA analysis using Moran’s I. Different shades of green indicated different 
thresholds: light green p < 0.05 ; medium green p < 0.01 and dark green p < 0.001.
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It is essential to emphasize that correlation does not necessarily imply causality. Correlation means that 
a change in one variable is related to another variable. However, correlation does not mean that one variable 
directly influences the other. Thus, there is not necessarily a cause-and-effect relationship. A third variable could 
affect the two variables that are supposed to be causally related.

Some atmospheric processes can explain the spatio-temporal variability of the correlation coefficients. From 
an atmospheric chemistry point of view NO2 and O3 need to be considered together since they are a function of 
each other which explains the opposite  relationship51:

Their spatio-temporal variability is governed by superimposed emission-based and photochemistry-based 
 regimes52. The predominantly anthropogenic nitrogen oxide ( NOx ) emissions and the resulting NO2 concentra-
tions have a pronounced seasonal cycle, with higher values in winter than in  summer53. This is due to the fact 
that in addition to the higher emissions also the lifetime of NO2 is longer in winter (about 21 h) than in summer 
(about 6 h)54,55. Peak NO2 concentrations in winter are resulting from superimposed atmospheric inversion 
conditions. The photochemically produced tropospheric O3 exhibits higher levels in the summer months when 
there is more solar radiation. Nevertheless, the production depends strongly and non-linearly on precursors 
like NOx and volatile organic compound (VOC) concentrations as well as meteorological conditions. However, 
photolysis of NO2 is the primary chemical source of tropospheric  ozone51,56.

Consequently, the relationship between O3 and NO2 is complex, influenced by a variety of factors and thus 
needs to be distinguished between rural and urban areas. Since NOx are emitted from traffic, industrial processes, 
and other human activities the resulting NO2 concentration are higher in urban areas and industrial agglomera-
tions as can be inferred from Fig. 7. This is in line with the findings  of23 where the urban pollution island of the 
Stuttgart city region could be delineated from satellite.

Ozone in urban areas is primarily formed as a secondary pollutant through chemical reactions involving 
precursor pollutants, especially during sunny, warm weather conditions and can be transported to rural areas, 
affecting rural air quality. Paradoxically, locally high emissions of NOx , such as from traffic, tend to favor ozone 
destruction in urban areas, resulting in NO2 formation. As can be seen in Fig. 7 this results in ozone cold spots 
in urban areas. In rural areas, natural sources like vegetation (emitting biogenic volatile organic compounds) and 
soil contribute to ozone formation. O3 levels tend to be higher in rural areas where there are fewer local emissions 
of NOx to destroy any O3 that was photochemically produced. As can be inferred from Fig. 7 the Black Forest 

(6)O3 + NO → O2 +NO2.

Figure 7.  Local Cluster Map of the individual environmental stressors in BW. The significance level was set to 
p ≤ 0.001 . LISA hot spots were red, representing positive spatial autocorrelation with high values. LISA cold 
spots were blue, representing low values. BW had three postal code areas (78,266, 78,465, 78,479) that were 
isolated without neighboring postal code areas. We omitted these areas from any further consideration. The 
estimation was always relative to the mean, as constructed in formula (4). The combination of the red and blue 
areas results in the dark green areas in Fig. 6.
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mountain range depicts an O3 hot spot in BW due to the high solar irradiation and the abundance of biogenic 
volatile organic substances BVOC ozone precursors. This is also substantiated in Table 2: the more inhabitants 
there are, the less O3 and the more NO2 occur.

The anticorrelation of O3 and NO2 , for the reasons outlined above, can be confirmed for all temporal and 
spatial aggregation levels in the study: Fig. 2 (entire BW, entire period), Fig. 3 (entire BW; Jan, Apr, Oct), Fig. 8 
(population density classes, entire period) and Fig. 9 (hot and cold spots; entire period) except for Fig. 3 (entire 
BW, Jul) where a positive correlation is reported. The negative correlations agree with in-situ measurements 
of O3 and NO2 for Munich, a similar city region to Stuttgart at almost the same latitude, with −0.58 and −0.64 
for the period January to July 2019 and 2020,  respectively57. The same authors find a positive correlation of O3 
and Temp of 0.67 and 0.49 for the time periods given and addresses also the interannual variability. This agrees 
with r = 0.62 in our study for the period 2010 to 2018. Further process-oriented regimes can be identified in 
the results of the study. Temperature-dominated effects can best be seen in the Pearson correlation matrix for 
July (Fig. 3C). In the first column the variables VP, UV, O3 , NO2 , PM2.5 and PM10 are all positively correlated 
with Temp, partly because they are produced by photochemical processes and linked high solar irradiance ( O3 , 
NO2 , UV) or increased by dry weather conditions ( PM2.5 and PM10)1. In the second column the effect of wet 
deposition and cleaning effect is evident by the negative correlation of all air pollutants with precipitation. UV 
shows the strongest negative correlation, due to the presence of clouds. Emission-dominated variables and 
effects can best be seen in winter (Fig. 3A). It can be inferred that low temperatures, low precipitation and 
low water pressure favor high concentrations of NO2 , PM2.5 and PM10 , partly due to increased heating, longer 
photochemical lifetimes and accumulation under inversion conditions or low  windspeeds1,55. More previous 
studies have discussed the effect of meteorological conditions on the concentration of atmospheric pollutants 
and meteorological variables such as wind direction, wind speed and precipitation that have a constraining 
effect on atmospheric pollutant concentrations, but not a simple linear  relationship20,21,58. This study is limited 
to daily data. For further studies, hourly observations could be considered as applied  in10. The different stressors 
usually interact differently during the day and at night since e.g. anthropogenic emissions exhibit a pronounced 
daily cycle and photochemical reactions are confined to sunlit  conditions26. Another potential extension of the 
current analysis is to expand the study area to encompass all of Europe. The study uses air pollution and mete-
orological data that represents background conditions and mesoscale variability. As such air pollution from 
point sources or along roads cannot be resolved. However, such data is not yet available to our knowledge for 
the entire BW and the time period under investigation. A possible addition to the variables considered could be 
wind speed, wind direction and boundary layer height since these parameters have shown a large impact on the 
variability of particulate  matter59,60. Furthermore, boundary layer height and O3 showed the strongest positive 
correlation among all the analyzed variables  in57. The Pearson correlation assumes a linear relationship between 
two continuous variables. Linearity was deemed sufficient for our initial analysis of the internal dependencies 
of environmental stressors, although there are other correlation coefficients like Spearman correlation that deal 
with nonlinear associations. We recommend using nonlinear statistical methods such as generalized additive 
models with splines for advanced studies of air pollution and health factors.

Table 2.  Overview of environmental stressors split by population density categories. Overview of 
environmental stressors split by population density category 1: 0–150 inhabitants/km2, category 2: 151–300 
inhabitants/km2, category 3: 301–1000 inhabitants/km2, category 4: > 1000 inhabitants/km2 including 
information on standard deviation (sd), median, minimum (min) and maximum (max) value. The variables 
covered all postal code areas in BW and were based on daily data from 2010 to 2018.

Variable Parameter 1 2 3 4

Temp (°C)
Mean (sd) 9.0 (7.7) 9.7 (7.7) 10.0 (7.7) 10.3 (7.6)

Median [min, max] 9.2 [−18.5, 29.9] 9.9 [−18.9, 30.8] 10.2 [−18.6, 30.9] 10.4 [−18.2, 30.9]

Prec (mm/day)
Mean (sd) 3.6 (6.3) 3.4 (6.0) 3.3 (5.9) 3.1 (5.6)

Median [min, max] 1.0 [0, 99.3] 0.9 [0, 98.1] 0,9 [0, 98.0] 0.8 [0, 85.4]

VP (hPa)
Mean (sd) 9.7 (4.2) 10.0 (4.2) 10.1 (4.3) 10.2 (4.3)

median [min, max] 9.1 [1.0, 24.0] 9.4 [1.1, 24.6] 9.5 [1.1, 24.6] 9.6 [1.1, 24.3]

UV (W)
Mean (sd) 15.5 (9.6) 15.4 (9.7) 15.3 (9.7) 15.2 (9.7)

Median [min, max] 14.1 [0.4, 37.0] 14.1 [0.4, 37.0] 14.0 [0.4, 37.0] 13.9 [0.4, 37.0]

O3 ( µg/m3)
Mean (sd) 54.4 (22.3) 52.0 (22.8) 50.0 (23.2) 47.2 (23.5)

Median [min, max] 55.1 [0.4, 149] 52.9 [0.6, 148] 51.0 [0.3, 149] 48.3 [0.5, 149]

NO2 ( µg/m3)
Mean (sd) 9.6 (5.8) 11.4 (6.6) 13.5 (7.4) 16.5 (7.5)

Median [min, max] 8.1 [1.7, 31.3] 9.7 [2.0, 38.3] 11.9 [2.5, 45.5] 14.8 [3.3, 53.0]

PM2.5 ( µg/m3)
Mean (sd) 10.5 (6.1) 10.9 (6.3) 11.2 (6.5) 11.6 (8.7)

Median [min, max] 8.0 [1.1, 66.4] 9.7 [1.1, 60.0] 11.7 [1.1, 66.0] 14.7 [1.4, 66.4]

PM10 ( µg/m3)
Mean (sd) 14.1 (7.9) 14.7 (8.3) 15.3 (8.7) 16.0 (9.1)

Median [min, max] 12.6 [0.9, 79.6] 13.1 [1.0, 80.0] 13.6 [1.1, 83.5] 14.2 [1.3, 82.5]
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Figure 8.  Pearson correlation matrices based on daily data aggregated by population density category 1 (A): 
0–150 inhabitants/km2, category 2 (B): 151–300 inhabitants/km2, category 3 (C): 301–1000 inhabitants/km2, 
category 4 (D): > 1000 inhabitants/km2.

Table 3.  Overview of environmental stressors split by LISA spatial units. Overview of NO2 , O3 and PM2.5 
split by LISA spatial units hot spot, cold spot, isolated and other non significant postal code areas including 
information on standard deviation (sd), median, minimum (min) and maximum (max) value. The variables 
covered all postal code areas in BW and included all days from 2010 to 2018. Note that the LISA spatial units 
differed based on the environmental stressor, as illustrated in Fig. 7. As a result, the quantity of values in each 
category varied.

Variable Parameter LISA hot spots LISA cold spots Isolated Non significant

NO2 ( µg/m3)
Mean (sd) 18.5 (8.7) 7.6 (4.6) 11.2 (6.5) 12.0 (6.9)

Median [min, max] 16.7 [2.5, 66.4] 6.24 [1.1, 42.9] 9.2 [1.7, 40.3] 10.3 [1.1, 66.4]

O3 ( µg/m3)
Mean (sd) 59.7 (21.8) 45.1 (23.2) 53.7 (23.5)) 51.5 (22.8)

Median [min, max] 59.5 [1.1, 149] 46.4 [0.5, 136] 55.2 [3.3, 125] 52.4 [0.3, 149]

PM2.5 ( µg/m3)
Mean (sd) 12.0 (7.1) 9.5 (5.9) 11.3 (6.9) 11.0 (6.7)

Median [min, max] 10.5 [1.2, 63.1] 8.3 [0.8,50.4] 9.8 [1.1, 57.3] 9.6 [0.7, 72.3]
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Conclusion
Selecting the appropriate variables for a statistical model can be a challenging task. This paper offers decision-
making assistance for upcoming analyses describing the health effects of environmental stressors. Including a 
single environmental variable in the model may result in information loss, while including too many variables 
may lead to correlations and biases. Finding the right balance is important. The optimal choice of variables relies 
on the specific research question and the given data. However, this paper provides recommendations regarding 
the variable selection that can be considered. In this work, it turned out to be sufficient to consider PM2.5 . PM10 
has larger particles but almost identical temporal and spatial characteristics. The only possible deviation would 
be for Saharan  dust61,62. The variables VP and Temp show strong similarities by design so that future investiga-
tions can be limited to the temperature.

The opposite relationship between NO2 and O3 was confirmed both temporally and spatially. NO2 is more 
often observed in metropolitan areas and O3 in rural areas. How can this knowledge be addressed in a future 
model describing the health effects of environmental stressors? For future analyses, we propose incorporating 
interaction terms to effectively illustrate the relationships between the two variables, NO2 and O3 , and their 
impact on the dependent variable. Considering only one environmental stressor in a future model may lead 
to loss of information and confusion in interpreting. Moreover, including both variables in the model without 

Figure 9.  Pearson correlation matrices based on daily measurements aggregated by postal code areas in hot (A) 
and cold (B) spots as obtained from the LISA analysis.

Figure 10.  Illustration of the correlations between NO2 and O3 in January (gray) and July (blue). The 
correlation values originated from Fig. 3. This diagram had been designed using images from flaticon.com.
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an interaction term is not advisable, as high Pearson correlation coefficients may cause bias. Based on this, we 
recommend using an interaction term between NO2 and O3.

It is important to note that different stressors have different health effects. Although the previous analysis 
suggests that NO2 and O3 are opposite, they have different impacts on human  health40. This fact makes the choice 
of model and the interpretation of the relationships more complex and must be considered in future analyses.

When applying the LISA model, we found substantial spatial differences in some variables (e.g. PM2.5 ), but 
not in others (UV) between urban and rural areas. This indicates that this spatial variation can be statistically 
exploited for epidemiological studies. Notably, a large fraction of postal code regions show lack of coherence with 
their neighbors, as can seen from the high proportion of uncolored areas in Fig. 7. In addition, we also identified 
clear patterns of LISA hot and cold spots, particularly in urban areas, mountainous regions Schwarzwald, and 
Schwäbische Alb. All of these identified patterns show positive autocorrelations, and no negative autocorrela-
tion was observed.

We spatially categorized the state of Baden-Wüttemberg in two ways: first, by population density (Fig. 2 and 
table 2) and second, by LISA hot and cold spots (Fig. 7 and table 3). The two categorizations matched spatially well 
for some air pollution variables (e.g. PM2.5 and NO2 ) and less well for some meteorological variables (e.g. UV).

To conclude, it will be straightforward to implement the principle findings of our study, namely (a) the tem-
poral coherence of stressor patterns, and (b) the spatial clustering into statistical models for the epidemiological 
study of stressor effects on human health, e.g. by affording the necessary spatial categorical variables and the 
opportune interaction terms into the statistical models.

Data availability
The data that support the findings of this study are available on request from the corresponding author LH.
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