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Abstract: The performance of hybrid rocket engines is significantly influenced by the fuel geometry.
Burnback simulations, to determine the fuel surface and fluid volume, are therefore an important
tool for preliminary design. This work presents a method for the simulation of spatially constant
burn-ups on arbitrary geometries. An implicit surface definition by means of a signed distance
function is used to represent the fluid volume and the fuel block on tetrahedral meshes. Two methods
each are used to determine the fluid volume and the burning surface. The first method is based on
a direct integration of the signed distance function with the Heaviside function or the Dirac delta
distribution, respectively. The second method linearly interpolates the position of an isosurface and
thus reconstructs the fuel surface. Both methods are compared and validated with analytical results
of four example geometries. Both calculations of the fluid volume and the calculation of the surface
content with the interpolation method are characterized as first-order methods. With practicable
mesh resolutions of one million computational cells, errors below two percent can be achieved. With
the interpolation method, numerical meshes can also be exported for any time points of the burn.
Finally, the application of the program to the fuel geometry of the VISERION hybrid rocket engine
is demonstrated.

Keywords: hybrid rocket engine; burnback simulation; implicit geometry description; signed distance
function; fuel grain; numerical mesh; marching tetrahedron

1. Introduction

Hybrid rocket engines are a promising alternative to solid and liquid rocket engines.
They are a combination of both concepts, usually using a liquid or gaseous oxidizer and a
solid fuel.

Their intrinsic safety combined with good performance parameters and the option
for throttling makes them a good research platform. Despite their advantages, the design
of hybrid rocket engines is challenging. This is mainly due to the complex combustion
process but also due to the varying shape of the fuel grain during the burn.

The spacecraft department of the German Aerospace Center (DLR) Institute for
Aerodynamics and Flow Technology is developing the preliminary design software
Advanced Hybrid Rocket Engine Simulation (AHRES) for the fast and reliable design of
hybrid and solid rocket engines. The software uses semi-empirical methods which are
verified by numerical and experimental investigations [1].

The AHRES software is compared to three- and two-dimensional numerical
simulations performed by the DLR Triangular Adaptive Upwind (TAU) CFD-Code [2].
The simulations include a detailed combustion process for hydrogen peroxide and
Hydroxyl-terminated Polybutadiene (HTPB) with inflow boundary conditions for the fuel
pyrolyzation [3–5].

The experimental investigations are conducted at the DLR test facility for hybrid
rockets [6] with several hybrid rocket engines based on hydrogen peroxide and HTPB.
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A catalyst chamber is used for hydrogen peroxide decomposition and ignition. The first
engines tested were the AHRES hybrid rocket engines, which were developed parallel to
the design software and therefore have the same name. Within the AHRES hybrid rocket
engine series, several performance improvements were realized. The first engine tested
had an average thrust of 1.2 kN with a burn time of 10 s. These parameters were increased
to a thrust of 2.5 kN with a burn time of 30 s by the last engine of the AHRES series simply
by the redesign of the fuel grain geometry. This is the engine shown in Figure 1.

Figure 1. CAD model of the AHRES-B hybrid rocket engine.

The achieved improvements show the great practical influence of the fuel grain shape
on the performance parameters. These developments led to the VISERION engine [7],
which is an upscaled version of the last AHRES engine with a nominal thrust of 13 kN and
a burn time of up to 30 s. A lightweight version for the Advanced Lithergol Demonstrator
Unit for Increased Altitudes (ALDUINA) upper stage is under development [8]. The
determined first flight is planned for 2025.

In addition to the full-scale engines, a laboratory-scale engine called ATEK Hybrid
Rocket Engine Laboratory device (ARIEL) is used for detailed investigations of the
combustion process. Therefore, it has optical access to the combustion chamber, which can
be used for high-speed and infrared cameras. Additionally, the fuel regression rate can be
measured with ultrasonic sensors [9].

The AHRES software uses the axial distribution of the fuel surface and the flow volume
for its calculations. For unsteady analysis, these variables must be described temporally
throughout the burn duration. Figure 2 shows typical fuel surfaces during the burn. These
have to be described over the burn-up to calculate the fuel surface and the flow volume at
different times. Analytical descriptions of simple fuel grain geometries have already been
implemented. However, non-predefined geometries must be implemented separately. This
is a time-consuming process, particularly for complex geometries. The desire to increase the
regression rate in hybrid rocket engines, together with additive manufacturing techniques,
has led to the development of more complex fuel geometries [10]. These include multi-
port and multi-block (e.g., telescope) geometries with the possibility of changing surface
topologies. Therefore, a simple method to describe the burnback of arbitrary geometries is
needed.

Several burnback simulations to describe the burning process of fuel grains exist. Miller
et al. [11], Brooks et al. [12] and Ricciardi [13] describe the burnback analytically for certain two-
dimensional geometries. Hartfield et al. [14,15] and Tola and Nikbay [16] give descriptions
of further geometries. These analytical descriptions are limited to simple, mostly two-
dimensional geometries with a constant spatial regression rate. There is no universal
method for arbitrary geometries. Each geometry must be derived and implemented
separately. This can be a challenging and time-consuming process, especially for three-
dimensional or twisted geometries like the VISERION fuel grain.
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Figure 2. Diagram of successive burning surface contours over the burn-up of a multiport geometry,
with initial interface Γ0, burnback distance d, interface at that distance Γ(d), interior region Ω− and
exterior region Ω+.

Therefore, more general methods were developed by Peterson et al. [17] for the
Solid Propellant Rocket Motor Performance Computer Program (SPP) [18–20]. A layering
technique with predefined base geometries is used. These geometries can be combined
by Boolean operations to describe the flow volume of a cylindrical combustion chamber.
This technique is more general than the analytical description and can be adapted to new
geometries. However, it is a time-consuming process to describe the geometries, limited to
the predefined base geometries and only valid for constant spatial regression rates.

Analytical geometry descriptions are useful for simple geometries with constant
spatial regression rates. For complex geometries and variable regression rates, numerical
methods are needed. The numerical description of geometries is mainly divided into
explicit and implicit methods. Explicit methods describe the geometry with a numerical
surface grid. The deformation is performed by moving markers on the surface. This
works for small deformations. However, convex edges can lead to degenerated cells that
are hard to handle.Implicit methods do not underline such restrictions. The geometry
is described by an implicit function, often a Signed Distance Function (SDF). Instead of
a mesh, the surface is described by an isosurface of the function, usually by the zero
isosurface. The deformation is described by the movement of the implicit function with
Hamilton–Jacobi equations, especially by the Level Set Method (LSM). This is usually
performed on stationary numerical grids.

Several implementations of the LSM for burnback simulations exist.

1.1. Level Set Method

The LSM was first developed by Dervieux and Thomasset [21] and later popularized
by Osher and Sethian [22]. It is popular in image processing, computer graphics, computational
geometry, optimization, computational fluid dynamics and computational biology. The first
known application to burnback simulations was by Yildirim and Aksel [23]. Since then, several
implementations have been used for burnback simulations of solid rocket motors: Cavallini
[24] used Cartesian and cylinder structured meshes and calculation methods similar to the ones
used here. Gontijo and Filho [25] used a two-dimensional LSM on Cartesian grids to analyze
hybrid rocket burn-up coupled with a two-phase tank simulation. Funami and Takano [26]
analyzed a star-fractal geometry of a hybrid rocket engine with a three-dimensional Cartesian
grid LSM. Liu et al. [27] also employed a three-dimensional Cartesian LSM and qualitatively
compared their results for a solid rocket motor against CT images. In a recent study, Chao-Fan
et al. [28] used the LSM for solid rocket motor burnback simulations.
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1.2. Fast Marching Method

The Fast Marching Method (FMM) is a method related to the LSM that does not require
temporal integration [29]. It has been used for burnback simulations on unstructured
meshes [30]. In recent times, multiple open-source programs for the analysis of solid motor
geometries have been made available [31,32]. These use an FMM implementation from
scikit-fmm [33] and are therefore limited to Cartesian grids.

1.3. Signed Distance Function

If the regression rate is assumed to be spatially constant, the surface evolution can be
simplified to the distance calculation only. This approach has been used in the Rocgrain
program by Willcox et al. [34], where the SDF was called a Minimum Distance Function
(MDF). Ren et al. [35] used second-order tetrahedral meshes with an improved marching
tetrahedron method to approximate the burning surface. These are very similar to the
methods described in this paper.

This paper focuses on burnback simulations for calculating the fuel surface and fluid
volume for preliminary engine design. The implicit surface tracking method is used to
describe the burn-up of arbitrary geometries, assuming spatially constant regression rates.
Two calculation methods for each of the output variables are presented and validated using
simple geometries with known analytical solutions. Finally, the application on complex,
real-world fuel geometries is shown with the fuel geometry of the VISERION engine.

2. Methods

This section explains the implicit surface tracking method using a zero-level-set
approach. It also describes the numerical discretization and two methods for calculating
the fuel surface area and fluid volume.

2.1. Implicit Surface Tracking

Surface tracking methods divide the considered region Ω into an interior region
Ω− and an exterior region Ω+, separated by the interface Γ. Implicit methods define a
function ϕ on the whole region Ω and use the zero-level-set ϕ(x) = 0 as the interface
definition. A moving interface can then be described by manipulating ϕ. The level set
Equation (1) [22] describes the movement of the interface due to an interface velocity in the
normal direction F:

∂ϕ

∂t
+ F|∇ϕ| = 0, ϕ0 = ϕ(x, t = 0), (1)

where ϕ0 defines the initial position of the interface. To set ϕ numerically, a Signed Distance
Function (SDF) is used. This is achieved by calculating the signed wall distance to the
initial burning surface Γ0. The SDF also satisfies ∇ϕ = 1, which leads to good numerical
behavior near the interface. For homogeneous burn-ups, that is, with spatially constant
regression rates F(t), new solutions can be generated by the subtraction of the burnback
distance d(t) =

∫ t
t0

F(τ)dτ from the initial solution:

ϕ(x, d) = ϕ0(x)−
∫ t

t0

F(τ)dτ = ϕ0(x)− d. (2)

With this, the homogeneous burn-up can be reduced to the burnback distance without
the need to use specific regression rates. The interface for a specific distance is then
described by the zero-level-set ϕ(x, d) = 0.

To consider locally varying regression rates F(x, t), Equation (1) can be solved directly
with the LSM or with the FMM. This will be implemented in a follow-up project.
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2.2. Meshing

For spatial discretization of arbitrary geometries, it was decided to use an
unstructured, tetrahedral mesh. Therefore, the implementation only has to consider
tetrahedral and triangle elements for volume and surface cells, respectively. Mesh
generation is performed with the Gmsh software [36]. This tool allows CAD-generated
STEP files of arbitrary geometries to be imported and meshed. This enables the meshing
of the grain geometry and the enclosed fluid volume with a conformal boundary as the
initial interface between. For the handling of mesh data and coupling to external programs,
the DLR FlowSimulator DataManager environment is used [37]. Originally designed
to unify flow simulation capabilities with Python APIs, this framework is used here
for the extensive import/export capabilities as well as simple data access as NumPy
structures [38] for efficient calculations. One of the FlowSimulator plugins FSWallDistance
is used to set up the SDF ϕ. It calculates the distance of each node in the mesh to the
nearest node on the initial interface. After this, the sign in the fluid region is set to negative
to create the Signed Distance Function.

2.3. Calculation of Output Values

For preliminary design analysis within AHRES, the fluid volume within the chamber
Vc and the burning surface area A f are used. For both geometry quantities, two calculation
methods are implemented and analyzed.

2.3.1. Direct Method

The first method evaluates the SDF directly via a Heaviside function for the fluid
volume and the Dirac delta distribution for the surface area calculation [29,39]:

Vc =
∫

Ω
H(−ϕ(x))dV, (3)

A f =
∫

Ω
δ(ϕ(x))|∇ϕ(x)|dV. (4)

For a first-order approximation, the continuous integrals are evaluated as discrete
sums over the N volume cells:

Vc ≈
N

∑
i=1

H(−ϕi)Vi, (5)

A f ≈
N

∑
i=1

δ(ϕi)|∇ϕi|Vi. (6)

With Vi being the volume of cell i, to generate the required values of ϕ on the cell
volumes, the values of the nodes are averaged for each cell:

ϕi =
1

MNodes

MNodes

∑
j=1

ϕj. (7)

The gradient of the SDF ∇ϕ(x) in the calculation of the burning surface area is
approximated as the nodes-based Green Gauss gradient with first-order accuracy:

∇ϕ(x) ≈ 1
Vi

M f aces

∑
k=1

ϕknk Ak. (8)
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For the numerical evaluation, the Heaviside function and the Dirac delta distribution
also have to be approximated. Here, a regularization version based on trigonometric
functions is used [39]:

H(x) =





1, x > α

0, x < −α
1
2

[
1 + x

α + 1
π sin

(
πx
α

)]
|x| ≤ α,

(9)

δ(x) =

{
0, |x| > α
1

2α

[
1 + cos

(
πx
α

)]
, |x| ≤ α.

(10)

The parameter α is set to α = 1.5∆x, where ∆x is the specified cell length for meshing
with Gmsh.

2.3.2. Interpolation Method

The second method interpolates the explicit position of the interface and calculates
the output quantities based on the extracted interface. For this, a variation of the marching
tetrahedra algorithm [40] is used. Similar approaches have been used in burnback
simulations before [24,30,35]. When extracting the zero-level-set ϕ = 0, the nodes
on each tetrahedron can be sorted in ascending order of the node values such that
ϕA ≤ ϕB ≤ ϕC ≤ ϕD. With this, 15 different possibilities of the relative position between
the interface and the tetrahedron exist. For the interface extraction, there are 8 relevant
intersection versions that are shown in Figure 3.

A

B
C

D

A

B
C

D

A

B
C

D

A

B
C

D

A

B
C

D

A

B
C

D

A

B
C

D

A

B
C

D

Figure 3. Interpolation of interface in a tetrahedron with ϕA ≤ ϕB ≤ ϕC ≤ ϕD.

After classifying the intersection version, the cell edges with interface intersection are
determined. The intersection point of the interface with the cell edge can then be linearly
interpolated based on the node values of the SDF. With this, the method is expected to
be first-order accurate. From these points, new surface elements describing the interface
can be created, and the original volume elements can be split into fluid and solid parts.
To retain the tetrahedron-based mesh, the resulting prisms and pyramids are split further
into tetrahedrons. Here, care is taken to retain the mesh connectivity of adjacent cells by
matching the splitting directions [41].

The calculation of the fluid volume and the burning surface area is then performed
by a simple summation of the appropriate cell volumes and cellface areas respectively.
Due to the explicit representation generated by this interpolation method, it can also be
used to export mesh representations of the volumes and interface at arbitrary times of the
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burn-up. These meshes can then be used for coupling with other programs, for example,
flow simulations.

3. Validation and Results

To validate the implementation and generated results, comparisons to analytical
solutions are evaluated. For this, four example geometries are considered. All geometries
consist of constant two-dimensional cross sections that are extruded and calculated in three
dimensions. To resolve the burn-up process, 200 burnback distances d were evaluated for
every calculation.

The first geometry is a Quasi-1D geometry, consisting of two neighboring cubes, see
Figure 4a. Both cubes have edge lengths of 1 mm, and the initial interface is the shared
surface between these cubes. The second geometry is a cylindrical fuel grain with an
external diameter of 100 mm and a port diameter of 30 mm, see Figure 4b. The third
geometry is a telescope geometry with an annular chamber, see Figure 4c. The initial port
has an inner diameter of 30 mm and an outer diameter of 40 mm. The overall diameter is
100 mm with the length being 30 mm. The final geometry represents a multiport geometry
with two cylindrical fuel ports in a rectangular fuel block, see Figure 4d. The ports have
initial diameters of 10 mm and are offset by 10 mm from the plane of symmetry. The outer
dimensions of the fuel block are 70 mm × 40 mm with a length of 50 mm.

(a) (b)

(c) (d)
Figure 4. Validation geometries: (a) Quasi-1D geometry, (b) cylinder geometry, (c) telescope geometry,
and (d) multiport geometry. In cut-plane: green—initial fluid volume; yellow—initial fuel volume.
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3.1. Convergence

Firstly, the convergence of the methods and implementation for different mesh sizes is
analyzed. For this, the error E between the numerical solution f (∆x) and the analytical
solution fexact is calculated:

E = f (∆x)− fexact (11)

The corresponding order of a method can be calculated from the results of two different
cell sizes ∆x1 and ∆x2. When meshing with Gmsh, the cell size ∆x is set, but in the resulting
mesh, slightly different sizes can be generated to accommodate the geometry. Therefore,
to calculate the observed order of the method, the generated number of volume cells N
is used:

p =
log

(
E2
E1

)

log
(

∆x2
∆x1

) = 3
log

(
E2
E1

)

log
(

N1
N2

) . (12)

To characterize the error over all burnback distances d, two error functions are utilized.
The first is the maximum absolute error over all distances Emax:

Emax = max
d

(| f (∆x, d)− fexact(d)|). (13)

The second error is an averaged value in the form of the root-mean-square-error Erms
over the distances:

Erms =

√
1
n ∑

d
( f (∆x, d)− fexact(d))

2. (14)

Each geometry was evaluated with four different mesh sizes, each step at least halving
∆x. This resulted in meshes from 5438 to up to 8.4088 × 106 volume cells.

Figure 5 shows the errors Emax and Erms over different mesh sizes when calculating the
fluid volume for each example geometry. In every case, the order of the method is higher
than one, so both the direct method using the Heaviside function and the interpolation
method converge. The direct method produces smaller errors than the interpolation method,
both in terms of maximum errors Emax and average errors Erms. Further, the direct method
is of slightly higher order as well, so it should be the preferred method for calculating the
fluid volume. When evaluating the maximum errors in the telescope geometry (Figure 5c),
an increase in errors over the first mesh refinement is seen. This can be attributed to the
very coarse mesh setting, where the cell size ∆x is the same as the width of the initial fluid
volume (5 mm).
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Figure 5. Convergence of fluid volume calculations: (a) Quasi-1D geometry, (b) cylinder geometry,
(c) telescope geometry, and (d) multiport geometry.

Figure 6 shows the errors over different mesh sizes when calculating the burning
surface area. Here, the direct method using the Dirac delta function does not converge. Only
the averaged error of the multiport geometry has an order of higher than one (Figure 6d),
while in some cases the errors stay constant. This non-convergent behavior could be a result
of the regularization version of the Dirac distribution, which is known to be lower than
first-order in some cases [42]. Even with better approximations of the Dirac distribution,
Cavallini [24] found similar problems with this method. Convergence of the interpolation
method is considerable better and, except for the Quasi-1D geometry (Figure 6a), can be
seen as a first-order method.
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Figure 6. Convergence of burning area calculations: (a) Quasi-1D geometry, (b) cylinder geometry,
(c) telescope geometry, and (d) multiport geometry.

3.2. Accuracy

To evaluate the accuracy of the burnback simulations, the behaviors of the Quasi-1D-
and multiport geometries are evaluated and compared to the analytical solutions. Here, the
second-finest meshes from the convergence study are used. These contain 580 × 103 and
834 × 103 cells, respectively. For better comparisons between geometries, a relative error ε
is introduced:

ε =

∣∣∣∣
f (∆x, d)− fexact(d)

fexact(d)

∣∣∣∣. (15)

The burnback process of the Quasi-1D geometry is shown in Figure 7. The fluid
volume and burning surface area both show only small deviations from the exact, analytical
solution. Only the area calculation using the direct method has noticeable differences at the
minimum and maximum distances of the burnback process. These can be attributed to the
Dirac approximation smearing the interface over multiple cells and here, over the geometry
edges. Further deviations are at the initial interface d → 0 in the form of oscillations.
These are a result of the imprecise calculation of the distance function by calculating the
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distance between nodes instead of the interface normal direction. The oscillations are also
a cause of the non-convergence discussed previously, as their amplitude does not reduce
with further mesh refinement. In the plot of the errors, additional deviations in the fluid
volume for small distances d are indicated. These are a result of very small values of
the reference quantity in the calculation of the relative error, Equation (15). Overall, the
errors are small with typical values being less than 1%. The results from the cylinder- and
telescope geometries behave very similarly to the Quasi-1D geometry and can be found in
Supplementary Figures S1 and S2.

For the more complex multiport geometry, the burnback behavior is shown in Figure 8.
The process can be divided into five phases due to the merging of the ports and splitting
into smaller slivers when the burning surface reaches a wall of the geometry. Again, all
calculations show good agreement with the analytical result and no visual differences;
only the direct calculation of the burning surface area shows differences at the transition
between the phases. At these points, where the area is not differentiable, the direct method
smears the discontinuity over a larger distance, again due to the regularization. In contrast,
the interpolation method can resolve these transitions precisely and shows considerably
smaller errors here. While there are no direct differences seen in the volume, the error of the
interpolation method is larger by a factor of two to three. When choosing the interpolation
method for the burning surface area calculation and the direct method for fluid volume,
the results are the most accurate. With this, the error is often smaller than 1% and only
approaches 3% at non-differentiable points.
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Figure 7. Burnback behavior of the Quasi-1D geometry and error relative to the analytical solution.
Lines of analytical solution (blue) hidden behind the interpolation (purple and orange). Line of direct
volume calculation (green) also hidden behind the interpolation (orange).
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Figure 8. Burnback behavior of the multiport geometry and error relative to the analytical solution.
Lines of analytical solution (blue) hidden behind the interpolation (purple and orange). Line of direct
volume calculation (green) also hidden behind the interpolation (orange).

3.3. Application to the VISERION Engine

The VISERION hybrid rocket engine uses a helical geometry for the fuel grain with
a length of 800 mm and an outer diameter of 219.5 mm. Because of this complex three-
dimensional geometry, no analytical solution is available. To discretize the geometry, a cell
size of ∆x = 2 mm is used, resulting in a mesh with 17.5 million cells. Figure 9a shows the
initial interface geometry.

The behavior of the burnback process is shown in Figure 10. As from the example
geometries expected, both methods demonstrate a strong agreement in volume, with a
nearly linear increase from 0 mm to 41 mm, and no visual differences. At a burnback
distance of 41 mm, this flattens as the burning surface reaches the outer diameter and the
fuel block degrades into slivers. The burning surface area plots also agree between both
methods. However, as previously mentioned, the direct methods are unable to resolve
non-differentiable points. This is especially obvious at the local maximum at a distance of
d = 2 mm, which is completely missing with the direct method.

In Figure 9, four characteristic points in the burn-up process are shown. These are
direct results from the interpolation method extracting the interface and exporting it to a
new mesh. The initial condition prior to the burn-up is shown in Figure 9a. The second point
at a distance of d = 5 mm shows a less pronounced geometry with only a marginal increase
in port diameter and is near the minimum area during the burn-up, shown in Figure 9b.
Figure 9c shows a burnback distance of 25 mm and is characteristic for the main portion
of the burn-up from 8.5 mm to 41 mm. Here, the wedges are almost completely burned
up and do not increase the area significantly. The final point shows the disintegration of
the fuel block into helical slivers, shown in Figure 9d. This is avoided in engine testing to
prevent the danger of damage to the chamber walls and problems from slivers breaking off.
The complete burn-up process is visualized in Supplementary Video S1.

In the future, these calculations will be directly coupled with the AHRES software
to improve internal ballistic calculations for unsteady simulations over the complete
burn time.
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(a) (b)

(c) (d)
Figure 9. VISERION burn-up at different burnback distances (a): d = 0 mm, (b): d = 5 mm,
(c): d = 25 mm, (d): d = 42 mm. Green: initial fluid volume, yellow: initial fuel volume, blue: cut
cells, red: momentary interface.
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Figure 10. Burnback of VISERION fuel grain geometry. Line of direct volume calculation (green)
hidden behind the interpolation (orange).

4. Discussion and Conclusions

In this paper a new burnback simulation for the AHRES software is introduced.
Arbitrary, three-dimensional geometries can be automatically meshed and calculated. For
this, a SDF is set up as the solution of burn-up with locally constant regression rates. This
SDF can also be used as an initial solution for inhomogeneous calculations using LSM or
FMM. For this, an extension of the software is planned. It will accept spatially resolved
regression rates, calculated by the AHRES software and flow simulations to evolve the
interface accordingly.

The fluid volume and the burning surface area are calculated via two methods each.
The direct method shows good qualitative results by numerical integration of the SDF
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and is the preferred method for evaluating the fluid volume. The interpolation method
uses a modified marching tetrahedron approach to extract the interface position. It is the
preferred method to calculate the burning surface area. In combination, the calculations are
characterized as first-order methods and produce small errors of less than 2% for practical
mesh resolutions.

The interpolation method also enables the export of numerical meshes at arbitrary
points during the burn-up process. In the future, this can be used to couple the burnback
simulation with other programs, for example, flow solvers.

Finally, the results from the VISERION geometry are shown. With this, practical
application of the software on real, complex three-dimensional geometries is demonstrated.

The software was developed and validated in the context of complex hybrid rocket
fuel designs, including multiport designs with changing surface topologies. It can also be
used for burnback simulations of solid rocket motors, often using simpler geometries. The
underlying implicit method is a general surface-tracking method and can therefore be used
for other problems involving moving surfaces. In the context of hybrid rocket engines, this
could be ablative components in the form of heat shields or rocket nozzles, for example.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/aerospace11020103/s1, Figure S1: Burnback behavior of the
cylinder geometry and error relative to analytical solution; Figure S2: Burnback behavior of the
telescope geometry and error relative to analytical solution; Video S1: Complete burn-up Process of
the VISERION—Geometry.
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