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Abstract 

Road surface roughness has a strong influence on vehicle skid resistance and road safety, requiring periodic assessment 

to perform maintenance activities. This study introduces a novel method for large-scale road surface roughness estimation 

using high-resolution X-band SAR data from Germany's TerraSAR-X satellite. The method accommodates spaceborne 

SAR's low SNR by utilizing techniques like multilooking, SNR thresholding, and multi-dataset fusion. Techniques like 

geocoding and automated road extraction are incorporated to enhance the interpretability of the results. The road surface 

roughness values estimated through this method aligns closely with ground truth data and also with results obtained using 

DLR's airborne F-SAR system. 

 

1 Introduction 

The role of safe road infrastructure is indispensable in a 

nation's progress, as it establishes a dependable transporta-

tion network for people, goods, and services. One of the 

critical factors of road safety is the quality of the road sur-

face itself. For example, the road surface roughness di-

rectly influences the friction between the road and vehicle 

tires [1]. Adequate friction is essential for safe acceleration, 

braking, and steering, while insufficient friction can lead to 

accidents [2]. Conversely, excessive friction may result in 

passenger discomfort and increased fuel usage. Therefore, 

the regular assessment of road surface roughness is im-

portant to maintain it within the optimal limits [3]. 

Presently, specialized survey vehicles are employed to as-

sess road quality, measuring parameters like road friction 

and unevenness. However, conducting such surveys across 

an entire country can be time-intensive, laborious, and 

therefore costly. Consequently, these assessments are con-

ducted infrequently, often with intervals of several years, 

such as the four-year cycle employed in Germany [4]. 

The sensitivity of synthetic aperture radar (SAR) to varia-

tions in surface roughness positions it as a promising tool 

for assessing road surface roughness over large areas. Air-

borne SAR systems offer the capability to capture fully po-

larimetric, high-resolution data in stripmap mode, deliver-

ing a high signal-to-noise ratio (SNR) and good swath cov-

erage. Previous studies have been successfully conducted 

by the German Aerospace Center (DLR) to produce road 

surface roughness images using high-resolution fully po-

larimetric airborne X-band SAR datasets acquired by the 

F-SAR system [3], [5]. However, airborne SAR systems 

are constrained by their high operational costs, the neces-

sity for precise flight planning, and limited coverage. In 

contrast, state-of-the-art spaceborne SAR systems in gen-

eral need to be operated in spotlight mode for achieving a 

comparably high spatial resolution, but this generally con-

fines them to a smaller scene size per acquisition. Addi-

tionally, their SNR is reduced due to increased sensor alti-

tude. Nevertheless, spaceborne SAR systems offer the dis-

tinct advantage of global data acquisition at a reduced cost 

[6]. Within the scope of this study, a semi-empirical model 

has been developed to estimate the road surface roughness 

using high-resolution X-band spaceborne SAR datasets       

acquired by Germany's TerraSAR-X (TS-X) satellite. 

2 Study areas and Datasets 

To conduct this study, it is necessary to select areas with 

surfaces constructed using typical road-building materials 

having varying surface roughness values such as concrete, 

asphalt, or comparable materials. Accordingly, two such 

study areas were identified. 

 Figure 1 Kaufbeuren study area. 

The first study area is the Kaufbeuren airfield located in 

Bavaria, which is a former military airfield comprising run-

ways, taxiways, and parking areas that are no longer in use. 

The runway ends are constructed of concrete, while the 



middle portion is made of asphalt (cf. Figure 1). A ground 

truth (GT) data collection activity was conducted here to 

train the road surface roughness estimation models and to 

validate the results. For this purpose, eight GT spots with a 

1 m2 area were selected on the runway and taxiway, which 

were smooth, rough, and made of different materials such 

as asphalt and concrete, thereby providing varying levels 

of surface roughness. The locations and photos of each of 

these GT spots are shown in Figure 1. The surface undula-

tion values of each GT spot were measured using a 

handheld laser scanner with micrometer accuracy. Since 

the root mean square height (ℎrms) is commonly used as a 

measure of vertical surface roughness, the surface undula-

tion values obtained for each GT spots were utilized to cal-

culate a single GT road surface roughness value (GT ℎrms) 

for each GT spot using the following equation [7]: 

 

ℎrms =  √
∑ (ℎ𝑖 − ℎ̅)

2𝑛
𝑖=1

𝑛 − 1
 , 

 

(1) 

where ℎ𝑖 is the surface undulation value measured for the 

𝑖𝑡ℎ sample, ℎ̅ is the mean of all the surface undulation val-

ues and 𝑛 is the number of surface undulation values. The 

GT ℎrms values computed for each of the GT spots are pro-

vided in Figure 1. 

 Figure 2 Wolfsburg motorway crossing, Braunschweig. 

The second study area is the Wolfsburg motorway crossing 

in Braunschweig. This area comprises long motorways (cf. 

Figure 2) where consistent surface roughness is antici-

pated. Nevertheless, there may be sudden shifts in road sur-

face roughness values in certain areas, possibly due to the 

use of materials with varying surface roughness during 

maintenance activities. For instance, in the section of the 

motorway depicted in the zoomed-in view, a noticeable 

shift in the appearance of the road surface is evident, indi-

cating a sudden variation in road surface roughness. 

 

Table 1 Metadata of the TS-X datasets used. 

Study area Date Pol Incidence 

angle (o) 

Use 

Kaufbeuren 16.03.2014 HH 43.7 Train 

Kaufbeuren 13.08.2022 VV 31.6 Train 

Kaufbeuren 23.09.2022 VV 43.7 Train 

Kaufbeuren 29.09.2022 VV 31.0 Train 

Braunschweig 14.02.2023 VV 26.5 Test 

Braunschweig 21.02.2023 VV 25.5 Test 

This study utilized six TS-X datasets acquired in staring 

spotlight (ST) mode, offering an approximate spatial reso-

lution of 0.24 x 0.60 m (azimuth x range) and covering a 

swath area of 3.7 x 4 km (azimuth x range) [8]. The 

metadata of these datasets can be found in Table 1. 

3 Methodology 

To prepare the TS-X datasets for analysis, pre-processing 

is essential to create noise-minimized sigma nought (𝜎𝑜) 

backscatter images. These noise-minimized 𝜎𝑜 images 

serve as a valuable tool for comparing backscatter meas-

urements across different surfaces and allow for the esti-

mation of surface properties, including roughness [6]. Con-

sequently, a 𝜎𝑜 image, in conjunction with the local inci-

dence angle (𝜃), serves as the input data for the semi-em-

pirical road surface roughness model. Figure 3 illustrates 

the block diagram of the processing chain utilized to gen-

erate the surface roughness images from the TS-X datasets. 

3.1 Pre-processing of the spaceborne SAR 

data 

The pre-processing of the TS-X datasets acquired in ST 

mode begins with the estimation of 𝜎𝑜 values for each 

pixel, without employing any spatial averaging. Addition-

ally, noise-equivalent beta nought (NEBN) values are esti-

mated and subtracted from the 𝜎𝑜 values to effectively 

minimize additive noise [9]. Following this noise reduction 
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Figure 3 Block diagram of the processing chain. 



step, multilooking is applied in the spatial domain to miti-

gate speckle and enhance the SNR. This is achieved by av-

eraging neighboring pixels both in the range and azimuth 

directions. The size of the sliding window for spatial aver-

aging is determined based on the smallest multilooking fac-

tors required in both azimuth and range directions to create 

approximately square pixels, facilitating easier interpreta-

tion of the resulting images. 

3.2 Road surface roughness estimation 

The SAR data can be used to estimate the effective vertical 

surface roughness (𝑘𝑠) parameter, which can be inverted to 

calculate the ℎrms using the following equation [7]:  

 
ℎrms =  

𝑘𝑠

(2𝜋/𝜆c)
 , 

 

 

(2) 

 

 
where 𝜆c is the wavelength of the SAR system. 

The SAR polarimetry-based methods, SAR backscatter-

based semi-empirical models, and physical models that 

currently exist for estimating roughness (𝑘𝑠 parameter) 

were initially developed for agricultural fields. However, 

the previous study showed that these methods cannot be 

applied to road surfaces due to the significant differences 

in their properties [3]. Therefore, a new semi-empirical sur-

face roughness model based on the assumptions from the 

Dubois model [10] was developed in this previous study to 

reliably estimate road surface roughness using DLR’s air-

borne X-band F-SAR system. The following equation can 

be used to estimate the 𝑘𝑠 parameter using this model [3]: 

 

𝑘𝑠 =  10
[
log(𝜎pq

𝑜 ) − log(𝛿(cos (𝜃))𝛽)

𝜀 𝑠𝑖𝑛(𝜃)
]

 

(3) 

where, 𝜎pq
𝑜  represents the sigma nought values for the p 

transmitted and q received polarizations, while 𝜃 denotes 

the incidence angle. Additionally, 𝛿, 𝛽, and 𝜀 represent the 

model coefficients. This model has a validity range of  𝜃 >
30𝑜 and 𝑘𝑠 < 2.5 (which corresponds to ℎrms < 12.43 mm 

for X-band). This model was adapted in this study to esti-

mate road surface roughness using the TS-X datasets. 

Compared to the F-SAR datasets, the TS-X datasets used 

in this study are single-polarized, were acquired in ST 

mode, have coarser resolution, and have lower SNR. 

Therefore, new model coefficients are estimated to make 

the model suitable for the TS-X data. The process of esti-

mating these model coefficients involves separate calcula-

tions for the HH and VV polarizations. This estimation is 

performed by a least squares-based curve fitting algorithm. 

The input data for this coefficient estimation includes the 

GT ℎrms values, 𝜎𝑜 values, and local incidence angle (𝜃) 

values at the ground truth locations. The new set of model 

coefficients estimated for the TS-X datasets are shown in 

Table 2. For more detailed information on the develop-

ment of this model refer to [3], [6]. 

 

Table 2 Model coefficients estimated for the TS-X data. 

Coefficients Polarization 

HH VV 

𝛿 0.16373946 0.17887929 

𝛽 -0.10682052 -3.95021343 

𝜀 1.99490104 3.38223192 

3.3 Post-processing of the results 

Errors in estimating road surface roughness can occur due 

to high 𝜎𝑜 values that do not correspond to the actual road 

surface. This can be caused by strong backscattering from 

objects like lane dividers, overhead signboards, flyovers, 

and bridge walls, leading to invalid high surface roughness 

values. To address this, pixels with 𝜎𝑜 greater than -10 dB 

were excluded from the final surface roughness (ℎrms) im-

age generated using the TS-X datasets. Additionally, very 

low SNR pixels can result in unreliable surface roughness 

estimates due to noise dominance. To mitigate this, surface 

roughness values from areas with an SNR below specified 

a threshold should be excluded. The minimum required 

SNR threshold for the adapted semi-empirical model to re-

liably estimate the ℎrms values is 2.5 dB and all pixels hav-

ing an SNR below this threshold were removed from the 

final ℎrms image. Both the upper 𝜎𝑜 and lower SNR thresh-

olds were estimated experimentally from the TS-X data 

used in this study and more details can be found in [6]. 

Each SAR dataset has a specific acquisition geometry and 

the ℎrms values estimated using single SAR datasets can be 

unreliable at some regions having shallow incidence an-

gles, speckle, or very low SNR. This can be addressed by 

fusing ℎrms images from multiple SAR datasets with dif-

ferent incidence angles and acquisition geometries into a 

single ℎrms image. The first fusion method, based on the 

highest SNR, selects ℎrms values on a pixel-wise basis 

from SAR datasets with the lowest noise. It identifies the 

pixels with the highest SNR across all datasets, highlight-

ing fine road details but it is potentially sensitive to local 

backscatter variations. The second method, known as 

multi-dataset averaging, treats all ℎrms values as reliable. 

It generates the final ℎrms image by averaging ℎrms values 

from all datasets, resulting in a smoother image that may 

lose some smaller road details [3], [6]. 

Finally, to display the ℎrms images on Google Earth (GE), 

the images were geocoded from the slant-range coordinate 

system to a geographic coordinate system. Using the Open 

Street Map (OSM) road layer, the roads were extracted 

from the ℎ𝑟𝑚𝑠 images. KML files were then generated to 

display the road surface roughness images in GE [3], [6]. 

4 Experimental results 

The road surface roughness results obtained experimen-

tally are discussed here. 

Figure 4 shows SNR plots created for the runway in the 

Kaufbeuren study area, representing SNR values at 40 ran-

domly selected positions along the entire length of the run-

way. These plots include datasets with different incidence 

angles and polarizations. From Figure 4, it can be seen that 

the concrete surface has a higher SNR compared to the as-

phalt surface. This observation indicates that the concrete 

surface has a rougher texture and leads to a stronger 

backscatter signal. The HH polarization dataset has the 

lowest SNR, especially in the asphalt regions, making it 

unsuitable for accurate roughness estimation. In contrast, 

the VV polarization data exhibit much higher SNR, with 



the VV dataset having the highest SNR among the selected 

datasets at an incidence angle of 31.6𝑜. Therefore, for road 

surface roughness estimation, TS-X VV polarization da-

tasets with incidence angles between 30 and 35 degrees are 

the preferred choice, as they ensure an SNR of at least 2.5 

dB in both concrete and asphalt areas. Importantly, this se-

lection is also consistent with the validity conditions of the 

roughness estimation model, which starts at incidence an-

gles of 30 degrees and above. 

 Figure 4 SNR plot for the Kaufbeuren runway. 

In Figure 5, ℎrms images of a segment of the Kaufbeuren 

runway are presented. Following road extraction and KML 

file creation, these images were superimposed onto GE. 

The GE image (Figure 5(a)) showcases the runway with 

distinct sections of asphalt, smooth concrete, and rough 

concrete with repeated cuts. The ℎrms image in Figure 5(b) 

is derived from the F-SAR dataset with a resolution of 25 

cm. Comparing this image with Figure 5(a), it can be seen 

that asphalt areas are depicted in blue, signifying low ℎrms 

values, while smooth concrete areas appear rougher and are 

denoted by cyan. Concrete sections with repeated cuts ex-

hibit the highest level of roughness, depicted in yellow. 

Figure 5(c) displays the ℎrms image generated using the 

TS-X HH polarization dataset. A majority of pixels from 

asphalt and smooth concrete areas are masked out due to 

an SNR lower than the 2.5 dB threshold. In Figure 5(d), 

the ℎrms image is estimated using the TS-X VV polariza-

tion dataset. Figure 5(d) contains more valid pixels com-

pared to Figure 5(c) due to the higher SNR provided by 

the VV polarization dataset. Asphalt areas are indicated by 

blue, while smooth concrete areas appear rougher in cyan. 

The concrete areas with cuts have the highest roughness 

level, represented by yellow with a value of approximately 

2.25 mm. These findings align with the ℎrms results from 

the F-SAR dataset in Figure 5(b). Figures 5(e) and (f) il-

lustrate the ℎrms images obtained by fusing multiple da-

tasets using the highest SNR method and the multi-dataset 

averaging method, respectively. This fusion incorporates 

all three VV-polarized TS-X datasets available for the 

Kaufbeuren study area listed in Table 1. In both images, 

asphalt areas are represented in blue to cyan colors, and 

smooth concrete areas appear entirely in cyan. Figure 5(e) 

exhibits more yellow pixels in the concrete area with cuts 

compared to Figure 5(f), indicating a higher level of sur-

face roughness. In both cases, the results closely align with 

the F-SAR results. 

The fused ℎrms images for the entire Kaufbeuren study 

area, generated using the multi-dataset averaging method, 

are presented in Figure 6. Figure 6(a) displays the ℎrms 

image resulting from the F-SAR datasets, while (b) show-

cases the ℎrms image obtained from the TS-X datasets. In 

both of these images, it is evident that the concrete regions 

situated at either end of the runway exhibit a higher degree 

of roughness compared to the asphalt regions in between, 

as previously discussed in Figure 5. Furthermore, these 

images reveal the repair work conducted on the runway, 

particularly in the zoomed views, where these regions ex-

hibit noticeably higher surface roughness, likely due to the 

use of materials with different compositions during mainte-

nance activities. Notably, the very small cuts on the runway 

are noticeable exclusively in Figure 6(a), attributable to 

the very high spatial resolution of the F-SAR datasets (25 

cm). Despite the relatively fewer valid pixels in Figure 

6(b), a consequence of the lower SNR of the TS-X datasets 

in comparison to Figure 6(a), the ℎrms values estimated 

using both the F-SAR and TS-X datasets fall within the 

similar range and exhibit consistency between them. 

Figure 7 presents a comprehensive analysis of ℎrms plots 

derived from both TS-X and F-SAR datasets in comparison 

with the GT ℎrms data. The GT ℎrms values for the eight GT 

  
  

  
  

  
 

 
Figure 5 Depictions of the Kaufbeuren runway featur-

ing (a) a GE image, and (b) ℎrms images derived from 

(b) F-SAR, (c) TS-X HH polarization, and (d) TS-X VV 

polarization. Additionally, multi-dataset fusion results 

are displayed using both the (e) highest SNR method 

and (f) multi-dataset averaging method. 



spots are illustrated by the black plot, while the blue plot 

represents the ℎrms values estimated from the F-SAR da-

taset. Although the blue plot generally aligns with the 

GT ℎrms plot, over- and underestimations are observable 

for certain GT spots. Overall, these plots exhibit a root 

mean square error (RMSE) of 0.30 mm. The green plot 

showcases ℎrms values estimated using the VV-polarized 

TS-X dataset, featuring an incidence angle of 31.6 degrees. 

This green plot closely matches the GT ℎrms plot, with an 

RMSE of 0.32 mm. It is important to note that this dataset 

was employed for calculating the model coefficients, and 

the F-SAR ℎrms image, which exhibits an RMSE of 0.30 

mm, was utilized as supplementary reference data. Conse-

quently, the RMSE of the TS-X roughness data cannot be 

less than 0.30 mm. In contrast, the orange plot, generated 

through multi-dataset fusion using the highest SNR 

method, tends to overestimate the ℎrms values, yielding the 

highest RMSE of 0.51 mm. This discrepancy is possibly 

attributed to its sensitivity to local backscatter variations. 

The purple plot, resulting from the multi-dataset averaging 

fusion method, demonstrates an RMSE of 0.42 mm when 

compared to the GT ℎrms plot. In summary, Figure 7 offers 

valuable insights, indicating that the TS-X VV-polarized 

datasets can provide reliable ℎrms estimations, exhibiting a 

comparable RMSE to both the F-SAR and GT data. 

Figure 8 presents a comparative analysis of the ℎrms im-

ages generated for the Wolfsburg motorway crossing, uti-

lizing both the F-SAR and TS-X datasets. Specifically, 

Figure 8(a) displays the ℎrms image derived from a single 

F-SAR dataset, while Figure 8(b) showcases the fused 

ℎrms image generated through the multi-dataset averaging 

method, utilizing the two VV-polarized TS-X datasets 

listed in Table 1. In both of these images, the motorway in 

the east-west direction predominantly appears in blue, in-

dicating a consistent road surface roughness. However, to-

wards the eastern end of the motorway, a sudden transition 

to cyan becomes evident, signifying an abrupt change in 

road surface roughness. This could be due to the use of ma-

terials with differing compositions during road construc-

tion or maintenance activities in this particular area. This 

change in appearance aligns with the observations in the 

GE image displayed in Figure 2, providing further support 

for this explanation. A noteworthy observation is the close 

agreement between the F-SAR and TS-X ℎrms results for 

this east-west motorway. Conversely, the ℎrms results de-

rived from the TS-X datasets for the north-south motorway 

exhibit greater noise compared to the F-SAR result. This 

noise arises because the north-south direction aligns with 

the azimuth direction of the satellite in the sun-synchro-

nous dusk-dawn orbit, with a 97° inclination. Moving ve-

hicles in the azimuth direction of the SAR system create 

disturbances in the SAR image. In contrast, the ℎrms result 

obtained using the F-SAR dataset remains consistently 

smooth for the north-south motorway and matches the sur-

face roughness values observed for the east-west motorway 

(blue color). This is because the north-south motorway is 

not within the azimuth/flight direction of the F-SAR sys-

tem during data acquisition, as indicated by the azimuth 

and range direction arrows in Figure 8(a). Therefore, to 

obtain reliable surface roughness estimates for north-

south-oriented roads using the TS-X satellite, data acquisi-

tion should ideally occur during periods of reduced traffic. 

 Figure 7 Comparison of ℎrms plots from TS-X and F-

SAR datasets with GT ℎrms plot. 

  (a) (b) 

Figure 6 Fused ℎrms images for the Kaufbeuren study area generated using the multi-dataset averaging method from 

(a) F-SAR and (b) TS-X datasets. 



5 Conclusion 

This study presents an innovative approach for assessing 

road surface roughness utilizing high-resolution space-

borne SAR datasets. The staring spotlight TS-X datasets 

used in this study demonstrated notable sensitivity to sur-

face variations, highlighting their potential for large-scale 

road surface roughness (ℎrms) estimation. The ℎrms results 

obtained using the adapted semi-empirical model exhibited 

good agreement with both the F-SAR results and GT data. 

Nevertheless, the low SNR of the TS-X data, especially for 

the HH-polarized datasets, poses a serious challenge for 

road roughness estimation. The most suitable TS-X da-

tasets for road surface roughness estimation are the VV-

polarized TS-X datasets acquired in ST mode with inci-

dence angles in the range of 30 to 35 degrees. This choice 

is based on the fact that the highest possible spatial resolu-

tion can be achieved through the use of the ST-mode and a 

steeper incidence angle and VV polarization ensure higher 

SNR, both of which are essential for reliable ℎrms estima-

tion. Post-processing of the ℎrms images by applying the 

upper 𝜎𝑜 and lower SNR thresholds are essential to elimi-

nate invalid ℎrms values. In addition, the fusion of ℎrms 

images generated from multiple datasets with different in-

cidence angles and acquisition geometries can be per-

formed using the multi-dataset averaging technique to im-

prove the quality of the results. Road extraction and Google 

Earth visualization approaches can help in the interpreta-

tion of the results. Looking ahead, the use of future high-

resolution wide-swath SAR systems (HRWS) with band-

widths up to 1200 MHz and improved noise-equivalent 

sigma zero (NESZ) can significantly improve the accuracy 

of road surface roughness estimates. In addition, using 

SAR technology to regularly monitor road conditions can 

identify potential problems early and facilitate predictive 

maintenance. This predictive approach can significantly 

extend the life of road networks, reduce maintenance costs, 

and improve overall road safety and efficiency. 
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  (a) (b) 

Figure 8 ℎrms images for the Braunschweig study area. (a) From a single F-SAR dataset. (b) Fused ℎrms image from 

two TS-X datasets using multi-dataset averaging data fusion method. 


