Contrails, contrail prediction, contrail avoidance

Klaus Gierens Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen

What are contrails and how do they form?

What are contrails and how do they form?

What are contrails and how do they form?

- Combustion of kerosene leads to emission of mainly carbon dioxide and water vapour
- The hot exhaust plume expands and mixes isobarically with cold ambient air

const

atmosphere

 $G = \frac{c_{\rm p}p}{\varepsilon} \frac{EI_{\rm H2O}}{Q(1-\eta)}$

• If the mixture gets supersaturated wrt liquid water, water vapour condenses to droplets and freezes in the cold environment. A contrail forms.

aircraft/

engine

EI_{H20}

A contra-intuitive consequence: modern aircraft produce more contrails than old ones!

Schumann et al., 2000

Is contrail formation possible only in high altitudes?

Formation of a contrail at start in very cold air: T=-45°C https://www.reddit.com/r/aviation/comments/ugtymq/when_you_hit_the_chemtrail_switch_too_early_by/

Temporal evolution and phases of contrails

persistent (i.e. long-lived) contrails: Ice supersaturated regions (ISSR)

- only persistent contrails have a non-negligible climate effect
- persistence requires ice supersaturation (RHi \geq 100%)
- ISSRs occur mostly 0-200 hPa beneath the tropopause
- roughly 10 to 15% of all flight distances transsect ISSRs

Photo: N. Dotzek

MOZAIC data 1995-2010 Petzold et al. 2021

180

"lifetimes" of contrails

- most contrails are short (RHi<100%, duration less than 5 minutes)
- 10-15% of all contrails are persistent
- typical duration 2-3h, but >17 h have been observed
- contrail termination due to subsidence, sedimentation of crystals, and mixing with natural cirrus.

0.8

0.6

0.4

0.2

Ω

cumulative distribution

Gierens & Vazquez-Navarro, 2018

ACTA observed contrail lifetimes

0.1

0.01

0.001

0.0001

0

2

4

6

8

10

observed lifetime (h)

12

14

16

18

20

Interaction of radiation with contrails: longwave and shortwave contrasts

Influences by: Temperature of the contrail ground temperatur position of the sun background albedo crystal habits and –sizes

Cold contrail over a warm background: strong warming

Thick (white) contrail over a dark background: strong cooling

Radiative effect of single contrails and effective radiative forcing on climate

Avoidance of persistent contrails \Leftrightarrow Don't fly in ISSRs

- Three steps with increasing difficulty:
- 2. Predict the **persistence** of contrails

- Forecast of ice supersaturation
- 3. Predict the individual radiative impact of a contrail expressed in an appropriate metric (EF, GWP, ATR, ...)

The DLR-MUAC experiment for tactical avoidance of contrails

- 1 February 22 October 2021, daily 1600-2200 UTC
- Flight levels 240 400 (hft)
- ICON-EU forecast of temperature and relative humidity
- Avoidance (tactical measures) each even day, if possible
- Validation using contrail detection in MSG satellite data

- We could demonstrate that *a/c>a'/c'*, and that this does very probably not due to random fluctuations.
- It is thus possible to avoid persistent contrail in daily operations with takctical measures.
- However, the unaffected yes/no ratio *a/c=44.9/55.1* shows that forecast of ISSR is almost like tossing a coin.

Conditional distributions of RHi

Wilhelm, Gierens, and Rohs, 2021: Analysis of 10 years of IAGOS data

Many quite dry cases in ERA-5 where IAGOS measurements show ice supersaturation and SAC fulfilled

Red: No contrails or at least no persistence possible (acc. to IAGOS data)
 Black: Persistent contrails possible (acc. to IAGOS data)
 Blue: Persistent contrails with strong instantaneous RF possible (acc. to IAGOS)

Dynamical proxies: Relation between ISS and PV, ζ , γ , Z Distinct conditional distributions

Log-likelihood ratios are too small!

- Use dynamical proxies in a Bayesian learning procedure:
- $\log(\Omega|x) = \log \Lambda + \log \Pi$
- with
- $(\Omega|x) = P(ISS|x)/P(\overline{ISS}|x)$
- $\Lambda = f_X(x|ISS)/f_X(x|\overline{ISS})$
- $\Pi = P(ISS)/P(\overline{ISS}), \log \Pi \approx -2$
- Unfortunately too small log-likelihood ratios (almost always < 2).
- Thus the probability for ISS does hardly raise above 1/2.
- Hofer et al., 2024, egusphere-2024-385

Regressions using dynamical proxies

		RHi _{era}	Т	ω	DIV	ζ	PV	γ	Z
Expectation of the absolute logit	E _{AL}	2.58	0.36	0.50	0.38	1.08	1.49	1.10	0.70
Mutual information with RHi (IAGOS)	I(RHi _{M/I} ; X)	1.26	0.29	0.06	0.04	0.37	0.57	0.38	0.23

Generalised Additive Model: log $(\Omega|X) = \beta_0 + s_1(X_1) + s_2(X_2) + ... + s_p(X_p)$

Comparison of raw data (assessment of the <u>ISS</u> -prediction; without using a GAM)				
$RHi_{ m ERA5}$ and $RHi_{ m M/I}$				
Prediction of potential persistent contrails using proxies and GAMs: $\log \left(\frac{p(X)}{1-p(X)}\right) =$				
GAM_0	$\beta_0 + s(RHi_{\rm ERA5})$	0.337		
GAM_1	$\beta_0 + s(T) + s(RHi_{\text{ERA5}})$	0.372		
GAM_2	$\beta_0 + s(PV) + s(T) + s(RHi_{\text{ERA5}})$	0.372		
GAM_3	$\beta_0 + s(PV) + s(T) + s(\zeta) + s(RHi_{\text{ERA5}})$	0.373		
GAM_4	$\beta_0 + s(\gamma) + s(T) + s(Z) + s(PV) + s(\zeta)$	0.197		
GAM_5	$\beta_0 + s(\gamma) + s(T) + s(Z) + s(PV) + s(\zeta) + s(RHi_{\text{ERA5}})$	0.378		

Hofer et al., 2024, egusphere-2024-385

Main problem: large overlap between conditional RHi distributions

- inclusion of RHi(ERA5) is essential for GAMs
- ETS values do not get larger than about 0.38
- inclusion of proxies does not raise ETS significantly
- a priori correction of RHi does not help
- better results are prohibited by the large overlap btw. the cond. pdfs
- reducing the overlap would yield much better results

Necessary further steps

★Improve the forecast of RH and ISS in the upper troposphere:

- Regular measurements of humidity on cruise levels with instruments aboard passenger and cargo aircraft (like AMDAR, but with much more aircraft and availability of data in cruise)
- >Assimilation of data of upper-tropospheric relative humidity into numerical weather forecast
- Improved representation of the interaction of cirrus clouds and their humid environment in numerical weather forecast models
- ★ Improved methods for the identification of contrails in satellite imagery for validation purposes
- \bigstar Improvement of operational measures:

>Automatic strategic and tactical flight guidance for contrail avoidance

- ATCO position with automated advisory for ISSR prevention
- ★ Including all non-CO2 effects, CO2 emissions and operational cost in a scheme for minimising climate impact of aviation (⇒ eco-efficient flight trajectories)

Thank you for your attention!

Photo: Ron Smith, Henstridge in Somerset UK