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Abstract 
 

Accurate building inventories and relevant information are essential for sustainable urban 

governance, thereby contributing to achieve the Sustainable Development Goal 11, which 

focuses on sustainable cities and communities. Acquiring building information manually in 

complex-built environment with densely populated buildings is impractical and may not 

guarantee the high thematic and spatial detail necessary for real world applications.  

Recent advancements in remote sensing technology, coupled with the availability of high-

resolution satellite and drone-based imagery through open access channels and as machine 

learning (ML) and deep learning (DL) continue to advance, showcasing their capability to 

recognise complex patterns, new opportunities for interpreting various surface features on the 

Earth are made possible. A growing body of literature emphasises the use of both traditional ML 

and DL for building footprint extraction, yet available and accessible literature reveal limited 

application of DL in urban building characterisation. 

This study involves exploring and implementing Random Forest (RF) as machine learning model 

and dense neural network (DNN) as deep learning model in the context of multi-class building 

characterisation encompassing six classes. A total of 35 geometric and distribution features 

calculated using VHR imagery and OpenStreetMap data are used to train the model. The 

experiments show that overall accuracy of RF (79.9%) is higher than that of the DNN (71.9%). 

Upon closer examination and comparison of diagonal elements, representing the number of 

correctly classified samples for each class, it is found that the DNN outperforms RF in correctly 

classifying more instances for four classes. Further the recall rate using DNN is greater for four 

classes- ‘Building block in closed construction’, ‘Detached building block’, ‘Free standing 

individual building’, and ‘Garage’, in comparison to that of RF. Implementation of the DNN and 

comparison with traditional machine learning algorithm- RF provide additional scientific 

contribution, especially in situation where there is limited use of deep learning algorithms in the 

building characterisation. 
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Chapter 1 
Introduction 

1.1 Background  

Over 55% of people worldwide live in cities, and the United Nations predicts that by 2050, about 

70% of the global population will reside in urban areas (UN, 2019). As cities rapidly grow to 

accommodate this influx of population growth, they expand in three ways: more buildings 

(horizontal expansion), filling spaces between existing structures, and constructing taller 

buildings (Lall et al., 2021). This highlights the importance of buildings as primary living spaces of 

cities and integral components of urban morphology (Oliveira, 2016). 

Accurate building inventories and relevant information are essential for various practical 

applications such as disaster management (Cerri et al., 2021; Geiss et al., 2015), climate and 

energy modelling (Anand & Deb, 2023; Masson et al., 2020), urban planning, and transport 

management (Grippa et al., 2018; Scorza & Fortunato, 2021). They also play significant role in 

sustainable urban governance (Wurm et al., 2010), thereby contributing to achieve the 

Sustainable Development Goal 11, which focuses on sustainable cities and communities (UN, 

2023). Traditionally, gathering building information involves labour-intensive and time-

consuming processes such as field surveys and manually digitizing aerial images (Geiss et al., 

2017; Lu et al., 2014). However, these methods may not guarantee the high thematic and spatial 

detail necessary for real world applications (Hall, 2003). In addition, acquiring building 

information manually in complex-built environment with densely populated buildings is 

impractical (Zhou & Chang, 2021). Hence, there is a need for research into automated methods 

for identifying and characterising buildings. 

"Citizen scientists" (Goodchild, 2007) and participatory geographic information systems (PGIS) 

have empowered the general public to actively contribute to the creation of data and participate 

in collaborative decision-making processes using spatial information (Balram & Dragicevic, 2006). 

OpenStreetMap (OSM), a well-known platform for PGIS established in 2014, has achieved 

approximately 80% global data coverage (Barrington-Leigh & Millard-Ball, 2017; Hecht et al., 

2015). Nonetheless, concerns have arisen regarding the accuracy and quality of OSM data due 

to infrequent updates to the database (W. Chen et al., 2020). In the context of buildings, 82% of 

building polygons lack further information (Cerri et al., 2021). There are noticeable gaps in 

attribute information within OSM, specifically in building features such as occupancy, structural 

type, roofing materials, number of floors, and the age of houses. For example, the OSM consists 

of floor area information for only about 5% of building polygons in Germany (Wurm et al., 2021). 
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Nevertheless, these attributes are crucial for developing practical models for real world 

applications. For instance, building features such as footprint area, floor area, and building use 

type are crucial for urban energy models (Anand & Deb, 2023; Wurm et al., 2021). 

Recent advancements in remote sensing technology, coupled with the availability of high-

resolution satellite and drone-based imagery through open access channels, offer new 

opportunities for interpreting various surface features on the Earth (Guo et al., 2018; Yuan et al., 

2021). Multispectral optical imagery (W. Li et al., 2019), synthetic aperture radar (SAR) data 

(Pasquali et al., 2019), light detection and ranging (LiDAR) data (J. Wang & Shan, 2009) and drone-

derived imagery (Wouters et al., 2021) have been leveraged to extract building footprints and 

compute additional features essential for characterising buildings (Bandam et al., 2022). Further, 

as machine learning (ML) and deep learning (DL) continue to advance, showcasing their capability 

to recognise complex patterns, there is increasing interest in research that employs artificial 

intelligence to automatically delineate building footprints and define their characteristics (Lu et 

al., 2014; Maxwell et al., 2018; Zhou & Chang, 2021).  

1.2 Research Gap and Scientific Significance 

Building characterisation involves two processes- outlining the boundary of building footprints 

and classifying these footprints into one or more classes based on attribute information. 

However, there are challenges in obtaining attribute information. Firstly, the OSM attribute 

information on building function or typology is incomplete (Cerri et al., 2021; Wurm et al., 2021). 

Secondly, governmental geodatabase, while accessible (may be challenging in developing 

country context), might lack consistent and required building information (W. Chen et al., 2020). 

Thirdly, buildings of different classes might have similar geometric and spectral characteristics, 

making solely remote sensing-based building classification quite challenging (Lu et al., 2014). This 

complexity necessitates the computation of additional features to numerically encapsulate 

building characteristics (Labetski et al., 2023) and identify the most significant features that 

contribute to data-driven building characterisation.   

A growing body of literature emphasises the use of both traditional ML and DL for building 

footprint extraction. Notably, conventional machine learning models like Support Vector 

Machine (SVM), Decision Tree (DT), and Random Forest (RF), as well as deep learning models 

such as convolutional neural network (CNN), and U-Net algorithm, have been widely applied in 

building footprint extraction (Neupane et al., 2023; Shrestha & Vanneschi, 2018; Thottolil & 

Kumar, 2022; Virtriana et al., 2023; Wurm et al., 2021; Yuan et al., 2021). In the realm of building 

characterisation, traditional ML algorithms such as RF and SVM have been used (Geiss et al., 

2015; Hecht et al., 2015), but there have been limited efforts in application of deep learning 
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models (Pelizari et al., 2021; Taoufiq et al., 2020). In addition, it is important to acknowledge that 

performance for ML and DL algorithms is specific to a domain, making it challenging to identify 

a single best algorithm across various datasets and applications (Ben-David et al., 2010; 

Sebastiani, 2002). Hence, further research and experimentation are necessary to find potentially 

more effective algorithm for building characterisation (Zhou & Chang, 2021).  

To address above-mentioned gaps and limitations, the proposed research involves exploring and 

implementing Random Forest (refer to section 3.1.1) as machine learning model and dense 

neural network (refer to section 3.1.2) as deep learning model in the context of multi-class 

building characterisation encompassing six classes. Dataset comprises 152 features (refer to 

section 3.2.1) consisting of both 2D and 3D geometric indices, and spectral indices, computed 

using a very high-resolution satellite imagery. The indices are available in three spatial levels- 

individual buildings, aggregated buildings, and building blocks and are integrated into building 

polygons from the OSM dataset for city of Cologne, Germany. Subsequently, 215660 building 

data samples are used to train and test the models and their performances are compared. This 

research contributes to automated classification in the built environment. Given that this 

research is initial effort to implement both machine learning and deep learning for building 

characterisation, the results obtained are potentially significant for benchmarking model 

performance in similar future studies. 

1.3 Objectives and Research Questions 

The primary aim is the automated characterisation of building inventories using high-resolution 

multispectral satellite imagery and OpenStreetMap data. The following objectives and 

corresponding research questions are designed to achieve this goal: 

Objective 1: To design and implement the Random Forest machine learning algorithm for 

building inventories characterisation. 

Research questions: 

a. How are the most significant features distributed across three spatial level- individual 

building, aggregated building, and building block- in characterising building inventories? 

b. What is the performance of Random Forest in characterising building across six classes? 

Objective 2: To design and implement the Dense Neural Network, deep learning algorithm, for 

building inventories characterisation. 

Research questions: 

a. How does Dense Neural Network perform in characterising buildings across six classes? 
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b. What difference exist in the model performance compared to Random Forest in 

characterising buildings across six classes? 

1.4 Thesis structure 

This thesis comprises of five chapters. Following the introductory chapter, Chapter 2 reviews 

relevant literature to assess “state of the art” on application of artificial intelligence (both ML 

and DL) in building type characterisation. Chapter 3 describes the study area, data, and provides 

conceptual background on Random Forest and Dense Neural Network. It further explains 

experimental set up for data preparation and preprocessing and for implementing RF and DNN. 

Chapters 4 describes the results on implementation of models and their performance. It further 

discusses comparative analysis of RF and DNN model and the implications of the results on 

building characterisation. Finally, Chapter 5 summarises the limitation of the study and provides 

recommendation for future work and summarises key findings and contributions of this study. 
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