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A B S T R A C T   

An approach for estimating vertically continuous soil moisture profiles under varying vegetation covers by 
combining remote sensing with soil (hydrological) modeling is proposed. The approach uses decomposed soil 
scattering components, after the removal of the vegetation scattering components from fully polarimetric P-band 
SAR observations. By comparing these with hydrological simulations, soil moisture profiles from the soil surface 
until a soil depth of 30 cm (assumed average P-band penetration depth) are estimated. Here, the hydrological 
model HYDRUS-1D, as a representative of any soil hydrological model, is employed to simulate an ensemble of 
realistic soil moisture profiles, which are used for a multi-layer soil scattering model to obtain forward modeled 
soil scattering components. Compared to the decomposed SAR-based soil scattering components, the most 
appropriate soil moisture profile from the ensemble is estimated. The approach is able to provide physically 
(hydraulic) more meaningful soil moisture profile shapes than currently existing profile estimation approaches, 
like polynomial fitting to few measurements at discrete soil depths. Results are presented across eight in situ 
measuring stations in the U.S. within six test sites of NASA’s Airborne Microwave Observatory of Subcanopy and 
Subsurface (AirMOSS) mission between 2013 and 2015. In-depth analyzes and validations with in situ measured 
soil moisture information demonstrate the feasibility of the proposed approach. Overall, estimated soil moisture 
profiles at the different sites match the varying local climate, vegetation cover, and soil conditions. Coefficients 
of determination between estimated and in situ measured soil moisture values vary between 0.48 and 0.92, while 
unbiased errors range from 1.4 vol% to 3.7 vol%, and Fréchet distances (analyzing the similarity of profile 
shapes) vary between 0.1 and 0.2 [− ].   

1. Introduction 

Although soil moisture as part of the geosphere accounts for only 
~0.0089% of the total water on Earth (Dingman, 2015), it significantly 
contributes to the characterization of the Earth’s climate (Bojinski et al., 
2014). Soil moisture links exchanges between the land and the atmo-
sphere, and connects the water and carbon cycles through 

evapotranspiration (Dingman, 2015). In weather forecasting and 
climate modeling, the soil moisture distribution and variability across 
the vertical soil column is evident since it has direct impact on land- 
atmosphere coupling, evapotranspiration as well as heat and water ex-
changes (Dingman, 2015; Dirmeyer et al., 2016; Feddes et al., 2001). For 
example, the current state of the soil moisture variability across the 
vertical soil column, the so-called soil moisture profile, controls how fast 
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water can infiltrate and percolate vertically through the soil as well as 
how quickly a soil dries out (Ford et al., 2014). Hence, it controls, for 
instance, crop and plant growth, soil erosion, landslides, and forest fires. 
Up to now, soil moisture and its vertical variability is mainly treated 
secondarily in climate modeling (Vereecken et al., 2022). However, 
several studies showed that unrealistic initial assumptions on soil 
moisture impact the forecast skill of models, stating that remotely sensed 
soil moisture can have great potential in improving climate modeling by 
describing the coupled land-atmosphere behavior more realistically 
(Dirmeyer et al., 2018; Koster et al., 2011). For instance, the second 
phase of the Global Land-Atmosphere Coupling Experiment (GLACE-2) 
was intended to investigate how more realistic land surface initializa-
tions, notably soil moisture, would improve the forecast skill of climate 
models. Results showed that in many regions realistic initializations, for 
example from remotely sensed soil moisture observations, can signifi-
cantly improve this skill (Koster et al., 2011). 

Up to now, remote sensing approaches allow the estimation of soil 
moistures at the soil surface from L-band measurements (He et al., 2016; 
Jagdhuber et al., 2015), or at deeper soil depths within the root zone 
from P-band measurements (Etminan et al., 2020; Fluhrer et al., 2022; 
Tabatabaeenejad et al., 2015). These approaches represent the behavior 
of moisture across the soil profile from the soil surface until the sensing 
depth of the microwave with just one single uniform value. Estimating 
only single soil moisture values from few radar measurements, however, 
is prone to errors and often impractical due to the high number of un-
knowns compared to the available number of measurements (Konings 
et al., 2014). 

Further, the soil moisture variability with depth cannot be estimated 
from single remote sensing observations despite the fact that the radar 
backscatter is able to provide information about soil moisture discon-
tinuities. However, knowledge about the soil moisture profile is of 
utmost importance in climate research and many environmental appli-
cations, like land surface, weather and climate monitoring (Walker 
et al., 2001), or agricultural production and food security (Almendra- 
Martín et al., 2021). 

There already exist different approaches to estimate soil moisture 
profiles by using land surface modeling or remote sensing data assimi-
lation techniques. The simplest approach to estimate a soil moisture 
profile is from soil moisture information at discrete soil depths by fitting 
a polynomial function of certain degree through the few known points. 
The soil moisture information for that can originate from in situ field 
measurements, L- and P-band remote sensing techniques, or from 
models. Overall, the polynomial approach is rather imprecise and 
physically less robust since this mathematical assumption on very few, 
sometimes just three moisture values, can only represent high level 
simplifications of the reality, although there are recent attempts to 
improve the polynomial soil moisture profile estimation, e.g., (Sadeghi 
et al., 2016). Further, attempts have been made to retrieve RZSM values 
from prognostics describing the ‘average deviations from the equilib-
rium profile’ (Reichle et al., 2017), or by evaluating the degree of as-
sociation or coupling strength between near surface and in situ root zone 
soil moistures, e.g., (Ford et al., 2014; Short Gianotti et al., 2019). Here, 
assumptions on theoretical relationships ignore the lack of trans-
ferability of soil moisture dynamics across spatio-temporal scales. 
However, soil moisture in the subsurface responds slower to changes and 
is less variable compared to near-surface soil moisture (Ford et al., 2014; 
Short Gianotti et al., 2019). This means, the link between both is highly 
complex especially after a precipitation event. Another method for soil 
moisture profiles estimation is the comparison of the observed back-
scatter from radars with simulated backscatters based on forward 
models (Konings et al., 2014). However, a radar signal includes all po-
tential scattering mechanisms from soil, vegetation, and the combina-
tion of both. Hence, the vegetation volume covering the soil also has to 
be modeled and considered in backscatter simulations, which requires 
certain assumptions and adds additional complexity to the modeling. 
Lastly, several soil moisture approaches have been published based on 

land data assimilation. For that, spatially or temporally coarse soil 
moisture in situ measurements or satellite-derived soil moisture infor-
mation are used in a land surface model together with auxiliary infor-
mation, such as precipitation or soil characteristics. In this way, 
enhanced model calibration, spatially or temporally upscaled soil 
moisture information, or RZSM estimates across the vertical soil profile 
can be achieved (Lei et al., 2020; Liu et al., 2011; Tangdamrongsub 
et al., 2020). The advantages of the proposed approach compared to 
assimilation are, for one, that no prior information on soil moisture 
conditions across the vertical soil profile has to be known, neither from 
in situ measurements, nor satellite-derived. Second, no dense time series 
of remote sensing observations is required as input, as the comparison of 
decomposed P-band SAR data and model simulations can be done for 
every time step individually. However, assimilating temporally coarse 
remote sensing data, as available from the AirMOSS mission (~4–5 dates 
per year), is not sufficient enough for valid results. Lastly, the decom-
posed remote sensing estimate can be compared directly with model 
simulations without the need for model adaptions. 

Besides remote sensing, soil states, like soil moisture, can be modeled 
with hydrological models based on measured atmospheric (e.g. precip-
itation, solar radiation, wind speed) and soil (e.g. temperature, matric 
potential, conductivity) parameters. In hydrological modeling, one of 
the general equations for predicting and describing one-dimensional 
water movement in (partially) saturated or unsaturated soils is the 
well-known Richards equation (Dingman, 2015), a combination of the 
mass conservation law (continuity principle) and the Darcy-Buckingham 
equation (Sadeghi et al., 2016). The Richards equation is a partial dif-
ferential and highly nonlinear equation due to the dependence of the 
hydraulic conductivity and the soil water content on the soil matric 
potential. This means, a closed-form analytical solution of the equation 
is impossible, except for special cases with many simplifications and 
certain boundary conditions (Dingman, 2015). However, these can only 
lead to approximate solutions and are not generally applicable. There 
exist many hydrological models to numerically solve the Richards 
equation by either employing “a finite difference, finite volume, or finite 
element approximation in space” (Farthing and Ogden, 2017), e.g., the 
Flux-Penn State Integrated Hydrologic Model (Shi et al., 2013), the 
ParFlow (Ashby and Falgout, 1996), or the RichardsFOAM (Orgogozo 
et al., 2014). 

In this study, a joint approach of remote sensing and soil hydrolog-
ical modeling is proposed for the estimation of continuous soil moisture 
profiles. The approach compares decomposed polarimetric P-band SAR 
estimates with respective simulations from the HYDRUS-1D (soil hy-
draulic model). The advantage of the proposed approach is, for one, that 
vegetation scattering contributions to the total SAR signal are removed 
before the comparison. Second, unlike in standard hydrological 
modeling, less assumptions on initial conditions are made in order to 
decrease potential sources for errors within simulations. That way, the 
proposed approach allows the comparison of actual observed SAR 
measurements with a set of hydrological simulations in order to estimate 
the most probable soil moisture profile. 

The approach is supposed to lead to physically (hydraulic) more 
meaningful soil moisture profile shapes than mathematical approxima-
tions like polynomial fittings. Further, it provides the advantage of 
estimating continuous soil moisture profiles under varying vegetation 
covers (from grassland to forests) and for different climates. 

2. Data sources 

In this study, the polarimetric P-band SAR dataset from the Airborne 
Microwave Observatory of Subcanopy and Subsurface (AirMOSS) 
campaign, compiled between 2012 and 2015 by the National Aero-
nautics and Space Administration (NASA), is used. During the AirMOSS 
campaign, fully polarimetric SAR signals at a center frequency of 430 
MHz, with a high radiometric calibration accuracy of 0.5 dB, and a noise 
equivalent of − 40 dB were recorded across ten sites in Northern and 
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Central America. It was the first P-band airborne mission fully dedicated 
to RZSM estimation. Each monitoring site was revisited at least three 
times every campaign year and covers an area of ~25 × 100 km at ~90 
m spatial resolution (Alemohammad et al., 2018). Detailed information 
on the campaigns and the instrument can be found in, e.g., (Alemo-
hammad et al., 2018; Chapin et al., 2012). 

The proposed approach is validated and analyzed thoroughly with 
comparison to in situ field measurements. The focus in this study is on 
SAR pixels (where in situ data from measuring stations are available) 
within six AirMOSS sites in the U.S. (Fig. 1). These sites are “Howland 
Forest” in Maine, “Duke Forest” in North Carolina, “Metolius” in Oregon, 
“MOISST” in Oklahoma, “Tonzi Ranch” in California, and “Walnut 
Gulch” in Arizona. Information and locations on the investigated Air-
MOSS monitoring sites and the in situ measuring stations are shown in 
Fig. 1 and Table 1. 

Fig. 1 shows that two sites are located at the east and three sites on 
the west coast of the U.S., with one site in the center. Hence, the climate 
regimes vary between cold humid continental climate with warm sum-
mers and significant precipitation in all seasons (Dfb), temperate climate 
with mild, dry, or hot summers (Csa, Csb, Cfa), and arid climate of a 
desert with warm summers (BSk) (Peel et al., 2007). 

The soil textures indicate different types of a loamy soil (Fig. 1), 
while the landcover classes vary from grasslands, pastures or shrublands 
of woody savannas (with forest canopy cover between 30 and 60% and 
forest height exceeding 2 m) to evergreen needleleaf forests (Homer 
et al., 2015). Further, the amount of available dates for every AirMOSS 
site, where SAR measurements were recorded, vary between 13 and 22, 
with three to ten dates per year (in total 143 dates) (Table 1). 

For hydrological simulations of soil moisture profiles (see Sec. 3.2.), 
input parameters from in situ measuring stations of the AmeriFlux 
network (AmeriFlux, 2022) and the US Climate Reference Network (US- 
CRN) (Bell et al., 2013) are used. For the subsequent validation of re-
sults, soil moisture measurements at multiple depths from the same in 
situ networks are used (Fig. 1, Table 1). The focus in this study is on 
presenting and validating the proposed method for estimation of 
continuous soil moisture profiles from combined P-band polarimetry 
and soil modeling. Nevertheless, obtained results are additionally 
compared to two well-known soil moisture products: the European 
ReAnalysis (ERA5) land product from the European Centre for Medium- 
Range Weather Forecasts (ECMWF) (Muñoz Sabater, 2019), and the 
project AirMOSS L4 mission product (Crow et al., 2016). The ERA5-land 
dataset is a reanalysis product combining available observations with 
model data based on physics. The core is the Carbon Hydrology-Tiled 
ECMWF Scheme for Surface Exchanges over Land (CHTESSEL). For 
the ERA5-land soil moisture, for example, a total of >800 in situ sensors 
from various networks around the globe are used to initialize the model 
(Muñoz-Sabater et al., 2021). In contrast, the AirMOSS L4 product is 
based on mathematically integrating (polynomials) the AirMOSS L2/L3 
product (Moghaddam et al., 2016), which provides soil moisture esti-
mates at specific depths by using the AirMOSS P-band SAR observations 
along with several models (vegetation, ground surface scattering, sub-
surface scattering), with the Penn State Integrated Hydrologic Model 
(PIHM) and auxiliary information (e.g., land cover classes, soil texture) 
(Crow et al., 2016). However, no in-depth comparison of the different 
methods for soil moisture estimation is performed and could be done in a 
follow-on study, outlining in detail the differences in algorithms, and 
consequently, results. 

3. Methods 

In this study, a combined technique of remote sensing and soil hy-
drological modeling is proposed for estimating continuous soil moisture 
profiles. As outlined in Fig. 2, the polarimetric soil scattering angle αSAR

s 
can be determined from radar remote sensing, by decomposing the 
observed SAR signals into the individual scattering mechanisms (soil, 

dihedral, and volume) (Fluhrer et al., 2022). 
From hydrological modeling, simulated soil moisture profiles θSMPn 

from HYDRUS-1D can be used as input to the multi-layer small pertur-
bation method (SPM) (Tabatabaeenejad and Moghaddam, 2006) to 
forward model the backscatter coefficients from several soil layers, and 
calculate their polarimetric soil scattering angle αModel

s n. In the end, the 
soil moisture profile is estimated from the best fit between αSAR

s and all 
αModel

s n. 
Here, the comparison between decomposed SAR data and forward 

simulations is performed on the level of the polarimetric soil scattering 
angle αs instead of directly comparing the observed and modeled 
backscatter coefficients. One reason is, that the observed backscatter 
coefficients contain scattering from all mechanisms (soil, dihedral, 
volume) and not only soil scattering. Another reason is that from remote 
sensing fully polarimetric backscatter coefficients are available, while 
from electromagnetic forward modeling only co-polarized (HH, VV) 
backscatter coefficients are obtainable. Hence, the use of αSAR

s after the 
decomposition ensures remotely sensed information from the soil scat-
tering component only but without loss on information since all 
observed co- and cross-polarized (HH, VV, HV, VH) backscatter co-
efficients are used within the decomposition. 

It is important to emphasize that soil hydrological modeling does not 
simulate backscatters. A hydrological model (in this study the HYDRUS- 
1D) is used to compute soil moisture profiles, which in turn are used for 
backscatter simulations based on an electromagnetic model, in this 
study the multi-layer SPM. 

In the following, both procedures to estimate the respective soil 
scattering angle αs and the joint technique will be described in more 
detail. 

3.1. Decomposed polarimetric soil scattering angle from P-band SAR 
observations 

The polarimetric soil scattering angle αSAR
s is estimated by decom-

posing the observed P-band SAR signal into individual scattering com-
ponents by applying the hybrid decomposition method from (Fluhrer 
et al., 2022). This method separates the reflection symmetric, polari-
metric coherency matrix [T] from observed SAR signals into the three 
scattering components (surface [Ts], dihedral [Td], and volume [Tv]): 
⎡

⎢
⎢
⎣

T11 T12 0
T*

12 T22 0
0 0 T33

⎤

⎥
⎥
⎦ = [Ts] + [Td] + [Tv], (1)  

where T*
12 is the complex conjugate (Fluhrer et al., 2022). The volume 

component is defined by 

[Tv] =
fv

2 + 2A2
p

⎡

⎢
⎢
⎣

V11 V12 0
V*

12 V22 0
0 0 V33

⎤

⎥
⎥
⎦, (2)  

where fv is the volume scattering intensity, Ap [ − ] is the particle 
anisotropy, and Vxx [ − ] are the parameters to estimate the volume 
component. The Vxx parameters are based on Ap and the width of the 
orientation angle distribution Δψ , describing ‘the degree of orientation 
of the vegetation volume from oriented (Δψ = 0◦) to random (Δψ =
90◦)’ (Fluhrer et al., 2022). Similar to the study of (Fluhrer et al., 2022), 
realistic parameter spaces for both variables are used, with Ap ∈ [0,1]
and Δψ ∈ [0◦, 90◦]. Further, all Ap − Δψ combinations leading to nega-
tive powers are excluded in further analyses. This way, multiple, valid 
vegetation representatives ensure an improved removal of the vegeta-
tion component. Lastly, the eigen-based soil scattering angle αSAR

s can be 
estimated: 

A. Fluhrer et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 305 (2024) 114067

4

Fig. 1. Overview of employed in situ measuring stations at AirMOSS monitoring sites in the U.S.: (A) US-Ho1, Howland Forest, ME. (B) US-Me6 (Metolius Young Pine 
Burn), Metolius, OR. (C) US-Ton, Tonzi Ranch, CA. (D) Durham 11 W, Duke Forest, NC. (E) US-SRS (Santa Rita Savanna), Walnut Gulch, AZ. (F) US-Var (Vaira Ranch 
Ione), Tonzi Ranch, CA. (G) Stillwater 2 W, MOISST, OK. (H) Stillwater 5 WNW, MOISST, OK. Political state boundaries on the top of the U.S. are from (Homeland 
Infrastructure Foundation-Level Data (HIFLD), 2012). The soil texture triangle at the bottom (modified after (Sandrock and Afshari, 2016)) show indications on soil 
textures for every station (Table 1). 
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αSAR
s = acos

⎛

⎜
⎝

(

1 + 4*

(
T*

12 − fvV12

T11 − T22 − fvV11 + fvV22 −
̅̅̅̅̅̅
RT

√

)2)− 1
2

⎞

⎟
⎠, (3)  

with RT =

⃒
⃒
⃒T2

11 +
(
T22 + fvV11

)2
+ 4
(
T12 − fvV12

)(
T*

12 − fvV12
)
−

2T11
(
T22 + fv(V11 − V22)

)
− 2fv

(
T22 + fvV11

)
V22 + f2

v V2
22

⃒
⃒
⃒ (Fluhrer 

et al., 2022). For more details on the hybrid decomposition and removal 
of the vegetation component, the reader is referred to (Fluhrer et al., 
2022; Jagdhuber et al., 2015). 

In summary, for every observed SAR signal, one αSAR
s is estimated 

from the soil scattering component after removing the dihedral and 
volume scattering components. 

3.2. Modeled soil scattering angle based on coupled HYDRUS-1D and 
multi-layer SPM simulation 

The HYDRUS-1D (Šimůnek et al., 2013) soil hydraulic model is used 
for simulating one-dimensional water flow with heat and vapor trans-
port in variably saturated, homogeneous soils. The model numerically 
solves a modified version of the Richards equation by using the linear 
finite element method (Šimůnek et al., 2013): 

Table 1 
Information on AirMOSS monitoring sites and in situ measuring stations.  

AirMOSS site Amount of dates (2013/2014/ 
2015) 

climate In situ station In situ network NLCD Land Cover Class Soil texture (Fig. 1) 

Howland Forest, 
ME 

21 
(8/8/5) 

Dfb US-Ho1 AmeriFlux (Hollinger, 
2021) 

Evergreen Needleleaf 
Forests 

Sandy Loam 

Duke Forest, NC 
22 
(8/10/4) Cfa Durham 11 W US-CRN Pasture / Hay Loam 

Metolius, OR 
21 
(5/7/9) 

Csb US-Me6 AmeriFlux (Law, 2021) 
Evergreen Needleleaf 
Forests 

Sandy Loam/ Loamy 
Sand 

MOISST, OK 
19 
(6/9/4) Cfa 

Stillwater 2 W 
US-CRN Grassland / Herbaceous 

Sandy Loam/ Loam 
Stillwater 5 
WNW 

Loam 

Tonzi Ranch, CA 
13 
(3/6/4) Csa 

US-Ton 
AmeriFlux (Ma et al., 
2021) Woody savanna 

Loam 
US-Var 

AmeriFlux (Ma et al., 
2022) Grassland 

Walnut Gulch, AZ 15 
(5/4/6) 

BSk US-SRS AmeriFlux (Vivoni, 2022) Woody Savanna / 
Shrubland 

Sandy Loam  

Fig. 2. Flow chart of the proposed joint technique combining remote sensing and soil (hydrological) modeling for estimation of soil moisture profiles.  
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∂θ
∂t

=
∂
∂x

[

K
(

∂h
∂x

+ cosα
)]

− S, (4)  

where θ is the volumetric water content [L3/L3], t is the time [T], x is the 
spatial coordinate [L], h as the soil matric potential [L], α giving the flow 
direction (= 0 [◦] for vertical flow), S is the sink term [L3/L3/T] to ac-
count for root water uptake, and K is the unsaturated hydraulic con-
ductivity function [L/T]. For simulations, the soil hydraulic properties, 
the soil water retention, θ(h), and soil hydraulic conductivity, K(h), 
functions are given by the Van Genuchten-Mualem analytical model, 
which uses the statistical pore-size distribution model of (Mualem, 
1976): 

θ(h) =

⎧
⎪⎨

⎪⎩

θr +
θs − θr

[1 + |αh|n ]m
h < 0

θs h ≥ 0
, (5)  

K(h) = KsSl
e

[
1 −

(
1 − S1/m

e

)m
]2
, (6)  

Se =
θ − θr

θs − θr
, (7)  

where θr and θs are residual and saturated water contents [L3/L3], Ks is 
the saturated hydraulic conductivity [L/T], Se is the effective saturation 
[− ] given by (7), α is the inverse of the air-entry value (or bubbling 
pressure) [L− 1], n is the pore-size distribution index [− ], m = 1 − 1/n, 
and l is the pore-connectivity parameter [− ], which is assumed to be 
equal and set to 0.5 (Mualem, 1976). The Van Genuchten-Mualem pa-
rameters for every simulation are calculated in this study based on the 
pedotransfer function (PTF) of (Tóth et al., 2015) and input parameters 
from SoilGrids™ at 100 m spatial resolution (Nauman et al., 2017). 

Additionally, to account for non-compensated water uptake by plant 
roots during simulations, the sink term S in (4) is calculated after the 
root-water uptake model from (Feddes et al., 1978), and the root water 
uptake stress response function after (Cai et al., 2018). 

Within simulations, a non-uniform spatial variation of the potential 
extraction term is chosen by assuming a linearly decreasing water up-
take distribution across the root zone (until assumed root depth) 
(Šimůnek et al., 2013). The assumed root depth, limiting the zone where 
root water uptake can occur within the vertical soil profile, was set at the 
soil depth of − 1 m except for landcover class ‘forests’, where roots were 
assumed to expand across the entire soil profile. The heat transport 
parameters, namely the volume fraction of solid phase (Qn = 0.6 [ − ]) 
and organic matter (Qo = 0.0001 [ − ]), the longitudinal thermal dis-
persivity (λL = 6 [cm]), and the heat capacities of solid phase (Cn =

1.43327*1014), organic matter (Co = 1.8737*1014) and water (Cw =

3.12035*1014) 
[
J/m3/

◦C
]
, are fixed for all HYDRUS-1D simulations 

(Nakhaei and Šimůnek, 2014; Šimůnek et al., 2013). The parameters in 
the employed thermal conductivity function after (Chung and Horton, 
1987), namely b1, b2, and b3 [W/m/

◦C], are depending on the respective 
sand, clay and silt fractions from SoilGrids™ (Nauman et al., 2017) for 
every SAR pixel. 

The required meteorological and atmospheric input parameters at 
daily time scales, namely precipitation [mm], net solar radiation [MJ/ 
m2], sunshine hours [h], potential evaporation [mm], air temperature 
[◦C], soil temperatures (for upper & lower boundary of the soil profile) 
[◦C], average humidity [%], and wind speed [km/d], are taken from the 
in situ measuring stations (see Sec. 2.). Here, the number of sunshine 
hours per day was estimated from the measured incoming shortwave 
radiation. For that, the sum of hours per day, where the incoming 
shortwave radiation exceeded 120

[
W/m2] (World Meteorological Or-

ganization, 2021) is calculated. The incoming shortwave radiation was 
taken from in situ measurements at every AmeriFlux station. For all other 
stations, namely Stillwater 2 W, Stillwater 5 WNW, and Durham 11 W 
(Table 1), the ERA5-land reanalysis product (Muñoz Sabater, 2019) is 

used. 
Overall, the chosen simulation set-up in HYDRUS-1D assumes time- 

dependent atmospheric boundary conditions with variable runoff 
(Table 2) at the soil surface, and time-independent atmospheric 
boundary conditions with free drainage (∂h/∂x = 0) at the bottom of the 
profile. For heat transport, the first-type Dirichlet boundary condition at 
the soil surface (ponded infiltration) with zero gradient (continuous 
temperature profile) at the bottom was chosen. Further, no hysteresis in 
soil water retention and hydraulic conductivity is assumed, and initial 
water flow conditions are specified in terms of the soil matric potential 
(Šimůnek et al., 2013). For that, the absolute value of the minimum 
allowed soil matric potential on the soil surface is set to − 100,000 [cm] 
(Cai et al., 2018), and the initial soil matric potential across the soil 
profile is kept variable (Table 2). 

The HYDRUS-1D soil moisture profiles θSMPn, where n stands for one 
simulation within the ensemble, are always simulated on daily basis for 
one entire year with a three-month initialization period, in order to align 
initial conditions with given weather conditions. Lastly, a total of 101 
simulation nodes, which were distributed non-linearly across the soil 
profile with decreasing density from the soil surface to the lower 
boundary of the determined soil column, have been defined. The input 
parameters that were kept flexible within simulations in order to mini-
mize the amount of initial assumptions, and to calculate a variety of 
potentially occurring soil moisture profiles, are listed in Table 2. This 
means that for every in situ measuring station (Fig. 1, Table 1) and every 
AirMOSS acquisition year (2013 to 2015) 735 simulations were per-
formed, respectively. All simulated HYDRUS-1D soil moisture profiles 
θSMPn are then converted to soil permittivity εSMPn according to the 
dielectric mixing model of (Mironov et al., 2009), and used as an 
ensemble input for backscatter simulations with the multi-layer SPM 
(Tabatabaeenejad and Moghaddam, 2006) (Fig. 2). Previous studies 
showed that at P-band, penetration depths between 10 cm to 30 cm soil 
depth are realistic for the investigated soil conditions in this study 
(Fluhrer et al., 2022; Konings et al., 2014). Hence, only the simulated 
soil moisture profile values of individual soil layers from the surface 
until a soil depth of 30 cm are considered for backscatter simulations in 
order to align with remotely sensed P-band SAR observations. For an 
assumed soil depth of 2 m during hydrological simulations, 36 indi-
vidual soil moisture layers from the corresponding HYDRUS-1D simu-
lation nodes between 0 and 30 cm are considered for backscatter 
simulations with the multi-layer SPM. For an assumed soil depth of 4 m, 
24 individual soil moisture layers are considered (Table 3). This 
assumption on maximum soil depth of 30 cm for comparison is 
reasonable although, of course, the penetration depth of P-band SAR 
signals varies with different soil and vegetation cover conditions (i.e., 
moisture, texture, density, etc.). It can be further improved in the future 
when sufficient information on penetration depths are available. 

The first-order solution of the multi-layer SPM computes backscatter 
coefficients σo

pp from multiple subsurface layers by considering “multiple 
scattering processes between the boundaries” (Tabatabaeenejad and 
Moghaddam, 2006), suitable for analyzing P-band soil interactions. The 
required input parameters for modeling σo

ppn and their respective values, 

Table 2 
Static values of input parameters for HYDRUS-1D soil moisture profile 
simulations.  

HYDRUS-1D input parameter Static values 

Depth of soil profile [m] 2, 4 
Maximum allowed soil matrix potential at 

the soil surface [cm] 
0, − 1, − 5, − 10 

Initial soil matric potential across the soil 
profile [cm] 

− 250, − 500, − 1000, − 2000, 
− 4000, − 8000, − 16,000 

Distribution of the initial soil matric 
potential across the soil profile [− ] Static, decreasing 

Upper boundary condition for water flow 
[− ] 

Runoff, zero runoff (water can 
accumulate at the surface)  
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approximated for the acquisition scenario in this study, are listed in 
Table 3. 

Due to the fact that no roughness information for any soil layers are 
available for the AirMOSS monitoring sites or in situ measuring stations, 
the DLR TanDEM-X DEM at 90 m resolution (Rizzoli et al., 2017) was 
used to get first-order roughness indicators for every SAR pixel. For that, 
the TanDEM-X elevations were converted with the GDAL DEM utility 
algorithm (GDAL/OGR contributors, 2021) in QGIS© (QGIS Develop-
ment Team, 2021) to roughness values, giving the degree of irregularity 
of the surface, and scaled to the employed AirMOSS wavelength at P- 
band (λ = 69.72 [cm]) to account for the reduced impact of surface 
roughness at P-band than at X-band. Thus, depending on the estimated 
roughness indicator RTDX (Table 4, left column) for every SAR pixel, 
typical surface roughness parameter sets for each layer i (Table 4, right 
column) are fixed as input for the multi-layer SPM to account for varying 
layer roughness (from smooth to rather rough). 

The modeled σo
ppn [− ], for horizontal and vertical polarization, are 

then used to calculate for every simulation the model-based αModel
s n after 

(Cloude, 2010), valid for 0 ≤ αs ≤
π
2 : 

αModel
s n = tan− 1

(
σo

HHn − σo
VV n

σo
HHn + σo

VV n

)

. (8)  

3.3. Joint technique of remote sensing and hydrological modeling for soil 
moisture profile estimation 

From remote sensing, one αSAR
s value for every resolution cell and 

recording date can be estimated (see Sec. 3.1.). From soil hydrological 
modeling, an ensemble of αModel

s n for n simulations can be calculated for 
every resolution cell and recording date based on varying initial settings 
(see Sec. 3.2.). In order to determine the most suited soil moisture profile 
for every resolution cell and recording date, the observed remote sensing 
information is compared with all hydrological modeling outputs. In 
detail, the actual observed αSAR

s from measured SAR observations is used 

to select the most suited soil moisture profile from hydrological 
modeling. The smallest absolute differences between αSAR

s and all αModel
s n 

is then used to estimate the final soil moisture profile: 

θSMP = argmin
( ⃒
⃒αSAR

s − αModel
s n

⃒
⃒
)

(9) 

In Fig. 3A, the ensemble of simulated soil moisture profiles θSMPn, 
based on HYDRUS-1D, are displayed at station US-SRS, Walnut Gulch, 
AZ, on the 12th of July in 2014. It can be seen that the different as-
sumptions on initial model conditions lead to various soil moisture 
profile shapes. For every simulated soil moisture profile θSMPn, the pro-
cedure described in Sec. 3.2. is applied to obtain the model-based αModel

s n. 
Finally, the best fit between αSAR

s and all αModel
s n is estimated (Fig. 3B). A 

sensitivity study was conducted to analyze the estimation procedure 
regarding potential multiple solutions and uncertainties of the best fit. It 
was found that the method estimates the global minimum (always only 
one single best fit) with 2nd best and higher best fits deviating at least 
1.75% from the best one. In the end, the comparison of the SAR- 
extracted soil information is indicative for selecting the appropriate 
soil moisture profile. For one, the estimated θSMP profile fits best to in situ 
measurements (green stars in Fig. 3B). Second, although the upper soil 
moisture conditions cannot be confirmed by in situ observations, the 
decrease in soil moisture values between 0 cm and 3.8 cm soil depth 
match the apparent soil and meteorological conditions, as described in 
detail in Sec. 4. 

4. Results 

In this study, the Pearson’s coefficient of determination R2, the un-
biased root mean square error (ubRMSE), giving the error between 
curves without the mean bias (Maity, 2022), and the Fréchet distance F 
(Fréchet, 1906), representing the curve shape similarity, are employed 
for statistical analyses. F provides the similarity of curves taking into 
account not only absolute values but also the ordering of points along 
the investigated curves (Eiter and Mannila, 1994). Further, since 
auxiliary products are only available at discrete soil depths (i.e. symbols 
in Fig. 4), a polynomial function of 2nd order is applied to combine these 
values in order to estimate the approximate profile shapes for compar-
ison. Although it is known that polynomials are physically unrealistic 
and can only give an approximate of the vertical soil moisture variability 
(see Sec. 1.), it is used in this study to be able to compare not only results 
at two to three discrete measuring depths but also across the entire soil 
column to evaluate the shape of the estimated soil moisture profiles. 

In total, three types of typical soil moisture profiles could be 
observed within all estimated results, depending on prior precipitation 
events and soil conditions. As shown in Fig. 4A, a typical drying profile 
with increasing soil moisture at increasing soil depths was estimated 
when, at the respective station, no precipitation occurred at least seven 
days prior to the recording date. The soil dries at different rates, ac-
cording to the soil type and texture, from the soil surface towards deeper 
soil layers. In contrast, a typical wetting profile could be observed when, 
at this station, precipitation occurred some days before the recording 
date (Fig. 4B). The soil moisture profile decreases with increasing soil 
depth since the water infiltrates from the soil surface downwards to the 
deeper soil layers. The depth of the inflection point varies depending on 
the infiltration rate and elapsed time since the rain event. In the pre-
sented example, the decrease in soil moisture values at the top (from 0 
cm to − 4.5 cm) of the soil is rather rapid and the profile below is rather 
dry at ~18 vol% because of the local conditions around the station US- 
SRS. At this station in Arizona an (hyper-)arid climate with warm 
summers led to predominantly shrublands on top of sandy loam soils 
(62% sand fraction, ~19% silt and clay fractions) (Fig. 1, Sec. 2.). This 
means, precipitation is less frequent and water can infiltrate rather 
quickly into the uppermost soil layers. At other stations with different 
soil and landcover conditions, e.g. at the forest station US-Ho1, the 
decrease in soil moisture values was less rapid and more continuous. 

Table 3 
Required input parameters for the multi-layer SPM to simulate σo

ppn, with the 
applied values in this study.  

Parameter Value 

Frequency, f [MHz] 430 

Number of layers, N [− ] 
36 (for soil profile depth of 2 m), 24 (for soil 
profile depth of 4 m) 

Incidence angle in range, ϕi, and 
azimuth, φi [◦] 

ϕi from AirMOSS; φi = 0 

Scattering angle in range ϕs, and 
azimuth, φs [◦] 

ϕs = ϕi; φs = 180 (backscattering) 

z-coordinates of the respective 
boundary layers [cm] 

Increasing from λ/10 (6.97) at the soil surface 
to λ/2 (34.86) at the profile bottom 

Surface roughness parameters of 
each layer i [cm] 
(RMS height s, correlation 
length l) 

si and li are dependent on a roughness indicator 
derived from TanDEM-X (Table 4) 

Autocorrelation function, ACF 
[− ] Exponential 

Permittivity εSMPn of each layer i 
[− ] 

From HYDRUS-1D simulated and converted soil 
permittivity profiles εSMPni  

Table 4 
Surface roughness parameter sets for each layer i (RMS height s, correlation 
length l; step size equals number of layers) within the multi-layer SPM based on 
TanDEM-X derived roughness indicators RTDX.  

Roughness Indicator From Tandem-X 
[M] 

Input Roughness Parameters 
[CM] 

RTDX < 5 si = 0.5 − 0 ; li = 30 − 60 
5 ≤ RTDX < 10 si = 1.5 − 0.75 ; li = 25 − 50 
10 ≤ RTDX < 15 si = 2 − 1 ; li = 20 − 40 
RTDX ≥ 15 si = 3 − 1.5 ; li = 15 − 30  
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Lastly, saturated profiles at higher moisture values with almost no 
variation across the vertical soil column were estimated after heavy 
precipitation events prior to the recording date (Fig. 4C). Unfortunately, 
no soil moisture comparison data could be found for soil depths between 
0 to − 5 cm to confirm the upper conditions. However, it can be seen that 
all three estimated profiles from the proposed method (SAR with hy-
drological modeling) fit best to the in situ measurements with overall 
highest correlation coefficients, lowest ubRMSE and smallest Fréchet 
distances, hence, highest similarity not only in absolute values but also 
in profile shape along the vertical soil column (Table 5, upper rows). 
Further, statistics are overall better between estimated profiles and in 
situ measurements compared to statistics between in situ measurements 
and auxiliary products (ERA5-land, AirMOSS L4) (Table 5, lower rows). 
While significantly high R2 ≥ 0.93 are found between estimated soil 
moisture profiles and in situ measured profiles, overall lower R2 ≤ 0.64 
are found between in situ measurements and auxiliary products. Corre-
spondingly, overall higher ubRMSE and F are found, except for the 
wetting profile at station US-SRS (Fig. 4b), where the same ubRMSE of 1 
vol% for all comparisons and slightly better F between in situ measure-
ments and the AirMOSS L4 product are found (Table 5). 

In this study, soil moisture profiles are only shown from the soil 
surface until a depth of 30 cm, since this part of the simulated soil 
moisture profiles are used for comparison with P-band SAR observations 
(see Sec. 3.2.). In the following, soil moisture profiles are presented first 
for all measuring stations (see Sec. 4.1.), and then detailed analyzes are 
performed at two selected stations (see Sec. 4.2.). 

4.1. Soil moisture profile results for all measuring stations 

In Figs. 5 and 6, estimated soil moisture values between 0 cm to − 30 

cm soil depth for all available AirMOSS dates are compared with cor-
responding auxiliary profiles. Here, individual plots of kernel density 
estimates show the conditional distribution of values with indications on 
the density of values (the darker the color, the higher the amount of 
values) and the fitted linear regression (solid line). First, the measuring 
stations with landcover types forest (Fig. 5, 1st and 2nd row), woody 
savanna (Fig. 5, 3rd row) or shrublands (Fig. 5, 4th row) are displayed 
(Fig. 1, Sec. 2.). Noticeable is the overestimation of soil moisture values 
from all three auxiliary products at the two forest stations, with more 
significant overestimation at the more homogeneously vegetated sta-
tion, US-Ho1, covered by dense forests (Fig. 5, 1st row). At the less 
densely vegetated forest station, US-Me6 (Fig. 1, Sec. 2.), estimated soil 
moisture values range between 10 vol% and 38 vol%, while in situ 
measurements only indicate values between 2 vol% and 22 vol%. Here, 
the rather dry in situ measured values (highest density at 6.9 vol%) are 
overestimated with the proposed approach, similar to the ERA5-land 
product. In contrast, good agreement between estimated values and 
the AirMOSS L4 product can be observed, with highest density of values 
around the 1:1 line (Fig. 5, 2nd row). Further, at the woody savanna 
station, US-Ton, the highest density of values is located close to the 1:1 
line, with a slight overestimation of rather dry in situ measurements and 
ERA5-land values. Noticeable at this station are the two additional, very 
dominant accumulations of values. 

One at low estimated soil moisture values around 18 vol% and high 
in situ measurements around 37 vol%. And one around the 1:1 line be-
tween 35 vol% and 40 vol%. This means, correlations between esti-
mated and in situ measured soil moisture values increase, when in situ 
measured values increase, but with some exceptions, where higher field 
measurements are in turn underestimated with the proposed approach 
(Fig. 5, 3rd row). Unfortunately, no AirMOSS L4 soil moisture profiles 

Fig. 3. Visualization of the estimation procedure to determine the best fitting soil moisture profile θSMP from all simulated θSMPn by comparing SAR observations 
with soil modeling. (A) Ensemble of simulated θSMPn from HYDRUS-1D based on varying initial conditions (Table 2, Sec. 3.2.) at station US-SRS, Walnut Gulch, AZ, 
on the 12th of July 2014. (B) Estimated soil moisture profile θSMP at station US-SRS, Walnut Gulch, AZ, on the 12th of July 2014, in comparison to in situ observations 
from the same day. 
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are available at this station and two others (Fig. 6). Lastly, at the desert 
station US-SRS in Arizona, similar patterns as describe before can be 
seen. While estimated soil moisture values range between 10 vol% and 
45 vol%, in situ measurements range between 10 vol% and 20 vol%. 
Again, the estimated values overestimate the rather dry in situ mea-
surements (highest density at 8.8 vol%), similar as to the AirMOSS L4 
product, which, at this station, shows the smallest value range of all 

(between 8.4 vol% to 17.3 vol%). Only the ERA5-land product achieves 
similar value ranges compared to the estimated values, with the highest 
density of values deviating approximately 6 vol% from the perfect fit 
(1:1 line) (Fig. 5, 4th row). 

When analyzing all results at the pasture station Durham 11 W 
(Fig. 6, 3rd row), most estimated and in situ measured soil moisture 
values are close to the 1:1 line, with a tendency to an overestimation of 

Fig. 4. Typical profile shapes of estimated soil moisture profiles based on the proposed approach in comparison with auxiliary soil moistures products of the same 
day. (A) Drying profile on the 21st of October 2014 at station Stillwater 2 W, MOISST, OK (no precipitation). (B) Wetting profile on the 12th of July 2014 at station US- 
SRS, Walnut Gulch, AZ (51.6 mm of precipitation in the week before the recording date). (C) Saturated profile on the 17th of June 2013 at station Stillwater 5 WNW, 
MOISST, OK (in total 57.6 mm of precipitation two days before the recording date). The y-axis is stretched between 0 cm and − 10 cm to emphasize the most dynamic 
part of the soil moisture profile. 

Table 5 
Statistical measures between estimated (upper rows) or in situ measured (lower rows) soil moisture profiles and auxiliary profiles displayed in Fig. 4.  

Statistical measure Drying profile Wetting profile Saturated profile  

Estimated vs. Estimated vs. Estimated vs.  

In Situ ERA5 AirMOSS L4 In Situ ERA5 AirMOSS L4 In Situ ERA5 AirMOSS L4 

R2 [− ] 0.95 0.71 0.61 0.93 0.64 0.57 0.95 0.58 0.22 
ubRMSE [vol%] 0.3 1.2 1.6 1 1.1 2.1 0.3 2 0.1 
F [− ] 0.02 0.08 0.1 0.08 0.1 0.09 0.07 0.1 0.2  

In situ vs. In situ vs. In situ vs.  

ERA5 AirMOSS L4 ERA5 AirMOSS L4 ERA5 AirMOSS L4 

R2 [− ] 0.61 0.45 0.59 0.37 0.64 0.13 
ubRMSE [vol%] 2 2 1 1 2 0 
F [− ] 0.09 0.12 0.15 0.05 0.06 0.09  
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estimated moisture values for decreasing in situ measurements. In 
contrast, the comparison between estimated values and the ERA5-land 
product shows a slight underestimation, as most ERA5-land soil mois-
ture values are in the range of 38 vol% to 42 vol%, whereas most esti-
mated values range between 22 vol% and 40 vol% (Fig. 6, 3rd row). 
Lastly, analyzing the results at the two grassland and one shrubland 
station (Fig. 6, 1st, 2nd and 4th row) similar results as those for the pre-
viously described stations can be seen, except for the station Stillwater 2 
W in Oklahoma (Fig. 6, 2nd row). Here, estimated and in situ measured 
soil moisture values are closest to the 1:1 line with lowest deviations, 
confirmed by the overall highest correlation of all stations with a R2 of 

0.92 (Table 6). Similar to the first station at the AirMOSS site Tonzi 
Ranch, US-Ton (Fig. 5, 3rd row), the second shrubland station US-Var 
also shows a large variety in soil moisture values with several accumu-
lation spots (Fig. 6, 4th row). The highest density of estimated and in situ 
measured values, however, are located at the 1:1 line, which explain the 
clearly higher R2 of 0.81 compared to the R2 of just 0.59 at US-Ton. 

Further, compared to all other stations, these two stations in Cali-
fornia show the overall highest ubRMSE of 2.9 vol% and 3.7 vol%, 
respectively (Table 6). In Table 6, the statistical measures between 
estimated soil moisture profiles and the corresponding auxiliary prod-
ucts (upper rows) as well as between in situ measurements and ERA5- 

Fig. 5. Comparison of estimated soil moisture values for all layers from soil depths between 0 cm to − 30 cm, with auxiliary soil moisture products of the corre-
sponding same recording day (including all AirMOSS overflight dates between 2013 and 2015). 1st row: US-Ho1, Howland Forest, ME. 2nd row: US-Me6, Metolius, 
OR. 3rd row: US-Ton, Tonzi Ranch, CA. 4th row: US-SRS, Walnut Gulch, AZ. 
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land or AirMOSS L4 products (lower rows) are displayed. In general, 
when comparing the estimated soil moisture profiles with all auxiliary 
products, the R2 varies between 0.32 and 0.94, the ubRMSE ranges from 
0.7 vol% to 3.7 vol%, and the F varies between 0.07 and 0.26 [− ]. In 
detail, the overall highest R2, lowest ubRMSE and smallest F are found 
between estimated soil moisture profiles and the ERA5-land product. 
This simply means, that the proposed method and the reanalysis method 
for soil moisture estimation agree well for soil depths between − 7 cm 
and − 30 cm (ERA5-land values are available for − 7 cm and − 28 cm), 

where changes in the soil moisture profile are less prominent (see Sec. 
1). 

With focus on the in situ observations, R2 between 0.48 and 0.92 are 
reached in comparison with the estimated soil moisture profiles. 
Further, F varies between 0.1 and 0.23 [− ], overall confirming the high 
similarity in profile shapes along the vertical soil column, since F varies 
in total between 0 (identical lines) and 0.4 (no similarity between lines) 
in this study. In absolute values (ubRMSE varying between 1.4 vol% and 
3.7 vol%) the estimated results deviate from the in situ measured soil 

Fig. 6. Comparison of estimated soil moisture values for all layers from soil depths between 0 cm to − 30 cm, with auxiliary soil moisture products of the corre-
sponding same recording day (including all AirMOSS overflight dates between 2013 and 2015). 1st row: Stillwater 5 WNW, MOISST, OK. 2nd row: Stillwater 2 W, 
MOISST, OK. 3rd row: Durham 11 W, Duke Forest, NC. 4th row: US-Var, Tonzi Ranch, CA. 
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moisture profiles. However, the overall profile shapes are very well 
captured with this approach. The reasons why the in situ measurements 
fit a bit less to the estimated profile results (compared to the ERA5-land 
results) are, on the one hand, because they are constantly really low. For 
example, at the forest station US-Me6 in Oregon no in situ measured soil 
moisture value exceeds 24 vol%, and in average a soil moisture value of 
just 9.5 vol% was observed. On the other hand, because they vary quite 
much along the profile, indicating a high change in soil moistures within 
only a few cm of soil depth. Here, the highest change within in situ 
measured soil moisture values are observed at the forest station US-Me6 
with a change of 13.2 vol% between − 10 cm (7.1 vol%) and − 30 cm 
(20.3 vol%) soil depth. Further, in average soil moisture differences of 
6.3 vol% within just 20 cm soil depth (between − 10 cm and − 30 cm) 
are measured at this station across all dates. 

Lastly, comparing estimated soil moisture profiles with the AirMOSS 
L4 product, the lowest R2 of all stations and products can be found at the 
forest station US-Ho1. Here, the AirMOSS L4 product almost always 
significantly underestimates the estimated profiles. This is exacerbated 
by the fact, that the AirMOSS L4 products almost always leads to more or 

less uniform soil moisture profiles, showing no changes is soil moisture 
values across the vertical soil column, as displayed in the three examples 
of Fig. 4. 

For comparison, additional statistics between in situ measurements 
and the two auxiliary soil moisture products are conducted. At some 
stations, the statistics between in situ measurements and the ERA5-land 
or AirMOSS L4 product are better (i.e., US-Ho1), but at others not (i.e., 
Stillwater 2 W). The slightly better performance of the two auxiliary 
products at the homogeneous forest station US-Ho1, with higher R2 and 
lower ubRMSE and F, is the consequence of the already described 
overestimation of estimated values compared to the in situ measure-
ments (Fig. 5, 1st row). Overall however, no clear pattern can be found 
when comparing the performance of statistics at all stations, dates and 
depths. 

4.2. Detailed analyses at the two measuring stations US-Ho1 and 
Stillwater 2 W 

In this section, results for estimated soil moisture profiles are 

Table 6 
Statistical measures between estimated (upper rows) or in situ measured (lower rows) soil moisture profiles from 0 cm to − 30 cm soil depth and auxiliary products at all 
measuring stations and all available AirMOSS dates. R2 gives Pearson’s coefficient of determination, ubRMSE the unbiased error, and F the Fréchet distance.  

Statistical measure Estimated results vs. Station   

US-Ho1 US-Me6 US-Ton US-SRS Durham 11 W Stillwater 5 WNW Stillwater 2 W US-Var 

R2 [− ] 
In situ 0.52 0.71 0.59 0.49 0.48 0.59 0.92 0.81 
ERA5-land 0.78 0.87 0.79 0.9 0.76 0.89 0.94 0.88 
AirMOSS L4 0.32 0.49  0.81  0.76 0.86  

ubRMSE [vol%] 
In situ 1.84 1.38 3.69 2.47 1.86 1.61 2.89 2.92 
ERA5-land 1.05 0.95 0.77 1.47 1.41 1.05 1.32 1.46 
AirMOSS L4 1.67 1.65  1.88  0.71 1.29  

F [− ] 

In situ 0.22 0.17 0.19 0.23 0.13 0.22 0.1 0.19 
ERA5-land 0.26 0.13 0.12 0.1 0.09 0.13 0.1 0.13 
AirMOSS L4 0.17 0.07  0.21  0.17 0.14   

In situ results vs.         

R2 [− ] ERA5-land 0.53 0.69 0.89 0.43 0.53 0.66 0.9 0.56  
AirMOSS L4 0.62 0.41  0.52  0.54 0.79  

ubRMSE [vol%] ERA5-land 1.32 1.48 0.77 1.4 2.45 1.06 3.37 1.38  
AirMOSS L4 1.2 1.9  1.13  1.5 3.88  

F [− ] ERA5-land 0.08 0.06 0.05 0.17 0.21 0.11 0.1 0.07  
AirMOSS L4 0.07 0.16  0.02  0.08 0.13   

Fig. 7. Comparison of estimated soil moisture values between 2013 and 2015 at specific depths with auxiliary soil moistures products at monitoring stations US-Ho1, 
Howland Forest, ME. (A) Top soil depths (0–15 cm). (B) Deeper soil depths (15–30 cm). 
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analyzed in more detail at two selected stations, the most homogeneous 
forest station US-Ho1, and the grassland station Stillwater 2 W (Fig. 1 & 
Table 1, Sec. 2.). 

In Figs. 7 and 8, auxiliary soil moisture values at actual measuring 
depths are compared to the respective estimated soil moisture values. 
The measuring depths are hereby divided into two groups, top soil and 
deeper soil depths. This way, different layers of the soil moisture profiles 
can be analyzed in addition. In situ measurements at station US-Ho1 are 
available from the AmeriFLX network at − 10 cm and − 20 cm, and at 
station Stillwater 2 W from the US-CRN network at − 5 cm, − 10 cm, and 
− 20 cm soil depth (see Sec. 2.). ERA5-land soil moisture values are 
available for soil depths at − 7 cm and − 28 cm, while the AirMOSS L4 
product provides values for the integrals between 0 and 10 cm and 
10–40 cm. For the latter, the average depths at − 5 cm and − 25 cm were 
considered for comparison. This simplification does not affect the ana-
lyzes since the AirMOSS L4 product, as shown before, almost always 
results in more or less uniform soil moisture profiles (Fig. 4). 

At the forest station, US-Ho1, estimated soil moisture values at 
deeper soil depths (Fig. 7B) overestimate auxiliary soil moisture prod-
ucts considerably more than estimated values at top soil depths 
(Fig. 7A). Here, results are almost always beyond 40 vol%, while 
auxiliary values mostly range between 20 vol% to 40 vol%. This is also 
supported by statistical measures since the R2 between estimates and in 
situ measurements decreases from 0.68 for top soil depths to 0.61 for 
deeper soil depths. In contrast, the R2 between estimates and ERA5-land 
or AirMOSS L4 values increases from 0.67 to 0.77 or 0.2 to 0.26 from top 
soil to deeper soil depths due to less variations within results. This is 
confirmed by the improved ubRMSE from 5.5 vol% to 2.7 vol% for 
ERA5-land, and from 6.5 vol% to 4.6 vol% for AirMOSS L4. Moreover, 
the probability density plots (PDFs) next to the scatterplots show that at 
this station the auxiliary products are not overlapping and deviate from 
another. The value ranges of the ERA5-land and AirMOSS L4 products 
hardly overlap with the in situ measured values at top soil depths 
(Fig. 7A). Only at deeper soil depths, the value ranges of the AirMOSS L4 
product and the in situ measured ones converge (Fig. 7B). 

In contrast, at measuring station Stillwater 2 W in Oklahoma, esti-
mated values are overall closer to auxiliary values with always higher 
correlations for top soil values (Fig. 8). Here, the R2 between estimates 
and in situ measurements decreases from 0.41 for top soil depths to 0.08 
for deeper soil depths. Similar, the R2 decreases from 0.43 for top soil 

depths to 0.15 for deeper soil depths between estimates and ERA5-land 
values, as well as from 0.58 for top soil depths to 0.55 for deeper soil 
depths between estimates and AirMOSS L4 values. Further, auxiliary 
products at this station are more overlapping since the value ranges 
clearly overlap with another as shown in the PDFs of Fig. 8. Only for 
deeper soil depths, the in situ measurements reach considerably higher 
values compared to the ERA5-land and AirMOSS L4 product (Fig. 8B). 

5. Discussion 

In this study, soil moisture profile shapes for drying, wetting and 
saturated soil conditions are estimated (Fig. 4, Sec. 4.). In order to obtain 
continuous soil moisture profiles, the decomposed SAR remote sensing 
scattering component of the soil is compared to soil hydrological sim-
ulations with HYDRUS-1D, converted to a soil scattering component by 
the multi-layer SPM scattering model. The comparison of the soil com-
ponents is performed on the level of the polarimetric soil scattering 
angle αs (see Sec. 3.). In previous studies, soil moisture retrieval ap-
proaches are mainly conducted on the level of backscattering, e.g. 
(Huang et al., 2021; Kim and Liao, 2021; Konings et al., 2014). This way, 
remotely sensed backscatter coefficient can be used without the pre-
ceding application of a decomposition technique. However, since SAR 
backscatter coefficients contain scattering mechanisms of all targets 
within the SAR footprint (soil, vegetation, and the combination of both), 
this circumstance in turn complicates the modeling of backscattering. In 
order to compare SAR backscatter coefficients with modeled backscat-
ters, the combined soil and vegetation scattering has to be modeled first. 
Fortunately, in this study, only soil scattering has to be modeled since 
the decomposed soil scattering component of the total SAR signal is used 
for comparison. Certainly, the application of a decomposition method to 
extract the soil scattering from the SAR signal is not that simple and 
requires certain preconditions, like fully polarimetric SAR observations. 
However, as emphasized in Sec. 3., the comparison on the level of αs 
instead of backscatters has several advantages (e.g., no modeling of 
complex vegetation). Nevertheless, one of the main restrictions of this 
approach, for sure, is the correct removal of the vegetation component 
from the SAR signal. As outlined in many previous studies, e.g. (He et al., 
2016; Jagdhuber, 2012; Sato et al., 2012; van Zyl et al., 2011), 
decomposition techniques tend to overestimate the vegetation scat-
tering component, which leads to (physically impossible) negative 

Fig. 8. Comparison of estimated soil moisture values between 2013 and 2015 at specific depths with auxiliary soil moistures products at monitoring station 
Stillwater 2 W, MOISST, OK. (A) Top soil depths (0–15 cm). (B) Deeper soil depths (15–30 cm). 
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decomposed powers (Fluhrer et al., 2022). Similar to the study of 
(Fluhrer et al., 2022), this problem is solved here by allowing multiple 
vegetation representations (see Sec. 3.1.), instead of fixing them to, for 
instance, ‘a cloud of randomly oriented dipoles’ (Alemohammad et al., 
2018). This potential overestimation of vegetation during the decom-
position is considered as one of the reasons why at the dense forest 
station US-Ho1 an overestimation of in situ measurements occurs (Fig. 5, 
Sec. 4.1.). Here, an improved removal of the vegetation scattering 
component by, for instance, including machine learning, may even 
decrease the overestimation of soil moisture profile estimates as indi-
cated by (Fluhrer et al., 2022). Another reason could be that, as shown 
from (Fluhrer et al., 2022), in strongly vertically oriented vegetated 
areas, like the boreal forest at US-Ho1, the dihedral scattering mecha-
nism is dominant in the total SAR signal. However, in this study the soil 
scattering mechanism is considered within the retrieval, which hence, 
may not be representative enough under dense and strongly oriented 
forests. This explanation is strengthend by the fact that at the other, less 
vegetated stations overall higher correlations with less pronounced 
overestimation are determined. Further, the highest correlation between 
estimates, based on this approach, and in situ measurements are found at 
the grassland station Stillwater 2 W (Sec. 4.). Also other studies, e.g. 
(Lucas et al., 2004; Moghaddam and Saatchi, 1995), outlined ‘that at P- 
band the ground and trunks contribute with more relevance to the SAR 
signal than the branches and leaves‘(Fluhrer et al., 2022), leading to 
dominant dihedral scattering components. However, using the dihedral 
scattering components instead of the soil scattering component is not an 
option for the proposed method. The main reason is that the estimation 
of soil moisture profiles with depth requires SAR observations from a 
comparable integral of the soil surface until the main scattering center 
within the soil. Here, the actual sensitivity depth of the soil part within 
the dihedral scattering component has to be further analyzed 
beforehand. 

One of the advantages of the proposed approach is that profiles can 
be estimated more continuously along their vertical gradient and 
without the assumptions of empirical mathematical functions (i.e. 
polynomials of certain degree), e.g. (Etminan et al., 2020; Sadeghi et al., 
2016; Tabatabaeenejad et al., 2015). As shown in the results section, no 
auxiliary soil moisture values could be found for continuous validation 
with soil depth since in situ measurements are done once between 0 and 
5 cm soil depth or lower. However, this circumstance in turn emphasizes 
the need for the proposed approach (or similar ones), since it is able to 
provide continuous soil moisture profiles also for near-surface soil 
depths, and hence, capture this most variable uppermost part of soil 
moisture profiles more closely and reliable. This is of utmost importance 
since, as outlined in section one, near-surface soil moisture responds 
faster to environmenal changes because of, e.g., precipitation or evap-
oration, and is more variable compared to subsurface soil moisture. 
Further, the approach provides the advantage that simulations are not 
restricted to a single model set-up. Admittingly, the simulation of an 
ensemble of soil moisture profiles for varying model set-ups and 
potentially for different locations is computationally expensive. How-
ever, the practicality of the proposed approach benefits from the 
circumstance, that the computationally highly expensive hydrological 
model simulations can be done independently from processing of the 
remote sensing observations, e.g., on HPC (high performance 
computing) clusters. Further, the model simulations only need to be 
done once for the desired time series and can then be endlessly analyzed 
for different remote sensing observations (in case the model set-up fits 
the remote sensing set-up). Hence, the final comparison of hydrological 
model outputs and remote sensing observations for soil moisture profile 
estimation is less computationally expensive and can further be done for 
every SAR observation date separately, enabling, e.g., parallel process-
ing. This allows soil moisture profile simulations to be less prone to 
errors since variable assumptions on critical input parameters, such as 
the initial pressure head or the upper soil condition, reduce the potential 
for erroneous model runs. Here, the decomposed SAR observations, after 

the removal of the vegetation and double-bounce scattering compo-
nents, is employed to provide the most realistic simulation compared to 
actual observations and hence, the most suited initial model set-up. In a 
follow-on study, this approach could be even used to analyze and 
improve initial model conditions and their susceptibility to errors. 
Additionally, since remote sensing is able to provide areal observations, 
simulations could be improved even in regions, where less or no in situ 
point measurements for initializing the model are available, similar as 
outlined from (Ottlé et al., 1989). For instance, results indicate a po-
tential need for improving the estimation of the soil hydraulic input 
parameters during model simulations, since the model was not able to 
capture dry soil conditions (i.e. below 8 vol%), e.g. at station US-SRS in 
Arizona, or overestimated soil moisture values at the dense forest station 
US-Ho1 in Maine (Fig. 5, Sec. 4.1.). At the dry station US-SRS, the 
highest deviations between estimated soil moisture profiles and in situ 
measurements are found during extended dry downs with no precipi-
tation event, where the in situ measured soil moistures are most variable. 
Here, high changes in in situ measured soil moisture could be found 
within only a few centimeters of soil (see Sec. 4.1.). This raises the 
question of how reliable in situ soil moisture measurements are, when 
only few measurements at specific dates are picked out (instead of 
looking at continuous time series). Further, results at the woody savanna 
station, US-Ton, showed that static initial model parameters, such as the 
soil texture, are a strong assumption, which can lead to opposing soil 
moisture profiles (Fig. 5, 3rd row, Sec. 4.1.). Here, static soil conditions 
prevent that changes in soil hydraulic properties, due to precipitation or 
root water uptake, can be captured correctly in HYDRUS-1D model 
simulations. Not only depend the soil hydraulic properties on soil 
texture, but several studies showed that soil texture mediates the soil 
moisture dynamics to some degree (Case and Staver, 2018), and affect 
the soil moisture retention (Bouma and Bryla, 2000; Sperry and Hacke, 
2002). Soil texture composition and its spatio-temporal variability de-
termines how soils response to precipitation events due to its effect on 
water infiltration and surface runoff. For one, soils with low water 
permeability (e.g. clay soils) are more susceptible to high rates of water 
runoff, which decreases the available moisture in the soil (Case and 
Staver, 2018). Second, the study of Sperry and Hacke showed that rather 
loamy soils can have lower soil water potentials, and hence, lower soil 
moisture (Dingman, 2015), during summers than rather sandy soils, 
despite the higher precipitation over the loam site (Sperry and Hacke, 
2002). Although, soil types are not that different at employed measuring 
stations (Fig. 1, Sec. 2.), this finding can be confirmed to some extent at 
the two in detail investigated stations, US-Ho1 and Stillwater 2 W (see 
Sec. 4.2.). While at the grassland station Stillwater 2 W the overall 
precipitation sum during the summer months (1164.9 mm) and the clay 
percentage (11%) is higher compared to at the forest station US-Ho1 
(sum of 1092.8 mm, and 7% of clay), Stillwater 2 W shows overall 
lower soil moisture profile values (Figs. 5 & 6, Sec. 4.1., Figs. 7 & 8, Sec. 
4.2.). In average, during the summer months at Stillwater 2 W, soil 
moisture profile values of 33.3 vol% are estimated compared to that at 
US-Ho1 of 46.6 vol%. These results also confirm the influence of vege-
tation cover on soil moisture profile results, since the influence of soil 
textures is potentially higher in non-vegetated areas (Gómez-Plaza et al., 
2001). Further, studies proved that changes in soil textures over time 
due to plant and root growth influences how water flows in soils (Fatichi 
et al., 2020), and hence, affect the soil moisture profiles. In order to 
improve the performance of the proposed approach, or soil hydraulic 
models in general, variable soil texture or structure information over 
time during model simulations should be considered, but can not be 
realized in common models until now. Additional analyses between in 
situ measurements and the two auxiliary soil moisture products showed 
that sometimes, the auxiliary products outperform the proposed 
approach with better statistics. This is true, for example, for the dense 
forest station US-Ho1 due to the overestimation of retrieved soil mois-
ture values (Fig. 5, Table 6). In the end however, all products showed 
reasonable results, but the proposed method has the advantage of 
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continuous determination of soil moisture information with depth 
without the assumption of non-physical polynomials and is able to 
provide soil moisture information at depths, where other in situ or 
remote sensing products cannot provide any continuous information 
with depth (mainly 0–5 cm). 

In this study, estimated soil moisture profiles match the local climate 
and soil conditions. On the one hand, lower soil moisture values are 
estimated at drier measuring stations, like US-SRS or US-Var, and higher 
soil moisture values are found at wetter measuring stations, like US-Ho1 
(Figs. 5 & 6, Sec. 4.1.). Further, the steepest profile shapes with rather 
quick changes in soil moisture values across the profile could be found at 
the driest station, US-SRS in Arizona, as shown in Fig. 4 (see Sec. 4.1.). 
By contrast, the most uniform profile shapes with less variabilities in soil 
moisture values across the vertical profile were estimated at the wet and 
most dense forest station US-Ho1 in Maine. Hence, the statement from 
(Wu et al., 2002) ‘that soil wetness influences how quickly soil wet-
ting/drying moves through the soil column’ (Ford et al., 2014) can be 
confirmed here. On the other hand, analyses regarding average soil 
moisture profiles for respective dry and wet seasons of the three years 
(not shown) confirm that during the wet seasons soil moisture is more 
independent of the soil depth as variabilities across the vertical soil 
column average out, as demonstrated in (Konings et al., 2014). Further, 
deeper soil depths have an overall higher persistence of soil moisture 
than near the surface, as described by (Georgakakos and Bae, 1994), 
since the highest variabilities are always found in the uppermost part of 
the soil moisture profiles due to land-atmosphere interactions and 
feedback. Further, several studies have shown that near-surface and root 
zone soil moisture are correlated (Ford et al., 2014; Short Gianotti et al., 
2019; Akbar et al., 2018). Hence, combining L-band and P-band mi-
crowave observations may even advance soil moisture profile ap-
proaches and help to analyze the complex link between near-surface and 
subsurface soil moisture in the future. 

6. Conclusions 

An approach for estimating continuous soil moisture profiles by 
combining remotely sensed SAR observations and soil hydraulic model 
simulations is proposed in this study. The advantages of this approach 
are, for one, the usage of soil scattering information from remotely 
sensed SAR observations after the removal of vegetation scattering from 
the total signal by a polarimetric decomposition. Hence, solely the soil 
component without influences of the vegetation are employed and no 
vegetation scattering effects have to be simulated. Second, regarding the 
soil hydraulic model, a variable set-up of initial assumptions is less prone 
to model errors. Instead of using just one model realization, as done in 
standard climate modeling, with potentially false initial assumptions, an 
ensemble of (realistic) simulations with varying initial assumptions is 
created, and then compared to actual SAR observations in order to 
receive the most realistic model set-up and soil moisture profile 
simulation. 

The estimated soil moisture profiles are analyzed in the context of 
varying climatic and soil conditions as well as validated against several 
auxiliary soil moisture products (in situ measurements, the ERA5-land 
reanalysis, and the AirMOSS L4). Overall, estimated results agree with 
satisfying accuracy to in situ measurements and other auxiliary products 
(ERA5-land reanalysis and AirMOSS L4 mission products). The co-
efficients of determination between estimates and in situ values vary 
between 0.48 and 0.92. The lowest correlations could be found at rather 
dry desert stations since the employed soil hydraulic model almost al-
ways overestimates values. Here, higher correlations might be achieved 
by improving model initialization parameters, like the soil hydraulic 
properties, or using non-static soil property information over time. 
However, the achieved low Fréchet distances, varying between 0.1 and 
0.23, showed, that the shape of estimated soil moisture profiles overall 
fit well to in situ measured profiles, what is needed in climate modeling 
(see Sec. 1.). 

In summary, the proposed approach enables the possibility to esti-
mate continuous soil moisture profiles with reasonable shape and ac-
curacy based on remotely sensed observations and hydrological 
simulations. However, because of the coarse temporal resolution of the 
AirMOSS SAR observations (recorded from an airplane), no continuous 
time series analyzes for soil moisture estimations could be performed. 
Although, theoretically, estimations of timely-dense soil moisture pro-
files are feasible with this approach, since model simulations can be 
performed at any temporal scale. Changes in long-term soil moisture 
profile estimations are important as indicators, e.g., for emerging 
droughts, with direct impact on agricultural productivity and food se-
curity (Almendra-Martín et al., 2021). Further, temporally continuous 
SAR observations would provide the opportunity to evaluate the per-
formance of the HYDRUS-1D and its ability to capture temporal varia-
tions in soil moisture. 

The first P-band SAR observations from space will be available from 
ESA’s BIOMASS mission from 2024 onwards with a three-daily repeat 
pass configuration and 50 m to 200 m resolution (Gelas et al., 2021). As 
our approach makes use of SAR signals in combination with hydrolog-
ical simulations, this opens the potential for the assimilation of 
BIOMASS mission data into hydrological models, using the multilayer 
SPM as observation operator for comparison with P-band SAR scattering 
angle observations, to finally update the upper soil states in the pre-
diction step. 

Lastly, the proposed approach can be easily used for estimating soil 
moisture profiles in space. In this study, estimations and analyses are 
conducted at selected in situ measuring stations only since all required 
input parameters are available from detailed field measurements at high 
quality, and in order to evaluate the overall performance of the proposed 
method. However, since remote sensing observations are available over 
larger areas, only the hydrological model would have to be initialized 
and driven with the required input parameters in space at comparable 
spatial resolution. Hence, with this approach the generation of soil 
moisture profile maps for providing soil moisture information in the 
horizontal, vertical, and z-direction are possible and will be analyzed in 
an add-on study. 
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