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Abstract

Variable stiffness actuators (VSA) are used in robotics especially for the safe
interaction with humans and because of their energy efficiency when it comes
to cyclic movements. The elastic structure preserving impedance (ESPi) control
framework is a control concept for VSAs. So far it is unclear how the intrinsic
stiffness setting of the VSA is supposed to be set when the robot is subjected to
external disturbances while controlled by the ESPi controller.
The main goal of this thesis is to utilize the variable stiffness of VSAs in order
to minimize the control effort and the power input of the motor during external
disturbance. The focus lies on sinusoidal disturbances with single and multiple
frequencies.
To analyze the impact of the intrinsic stiffness setting on the control effort and the
power input, four different optimization problems are formulated and solved to
calculate optimal intrinsic stiffness settings. They cover both linear and nonlinear
VSAs.
This work shows the potential of the minimization of the control effort by calculating
optimal intrinsic stiffness values. Performing the minimization of the power input
of the motor did not prove to have a high impact since the influence of the stiffness
setting on the power input is relatively low.
It remains to be investigated whether it is possible to calculate the optimal intrinsic
stiffness values in real time.

iii





Contents

1 Introduction 1

2 Theoretical background 3
2.1 Variable stiffness actuators . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Control theory fundamentals . . . . . . . . . . . . . . . . . . 5
2.2.2 Elastic structure preserving impedance control (ESπ) . . . . 6
2.2.3 Transforming ESπ to three degree-of-freedom design . . . . 9

3 Methodology 13
3.1 Linear elastic element . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Minimization of peak control effort . . . . . . . . . . . . . . 14
3.1.2 Minimization of power input . . . . . . . . . . . . . . . . . 19

3.2 Nonlinear elastic element . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Results 27
4.1 Experiments with linear elastic element . . . . . . . . . . . . . . . . 27

4.1.1 Experiments on minimization of peak control effort . . . . . 28
4.1.2 Experiments on minimization of power input . . . . . . . . . 39

4.2 Experiments with nonlinear elastic element . . . . . . . . . . . . . . 47
4.2.1 Minimization of the peak control effort for nonlinear VSAs . 47
4.2.2 Minimization of power input for nonlinear VSAs . . . . . . . 55

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Discussion and outlook 61

References 63

v





List of Figures

2.1 Floating spring joint mechanism . . . . . . . . . . . . . . . . . . . . 4
2.2 Torque vs. joint deflection of floating spring joint . . . . . . . . . . 4
2.3 One DoF control system . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Two DoF control system . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Linear-elastic joint . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Visualization of closed-loop dynamics of the ESπ control concept . . 7
2.7 Visualization of closed-loop dynamics . . . . . . . . . . . . . . . . . 8
2.8 Elastic structure preserving impedance (ESπ) control system trans-

formed to three DoF standard control structure . . . . . . . . . . . 11

3.1 ESπ standard control structure with qd = qinit . . . . . . . . . . . . 15
3.2 Bode plot of Gu and Gu,red . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Block diagram of transfer functions used for calculating θ̇ and u . . 21
3.4 Local stiffness of an FSJ versus link deflection ϕ . . . . . . . . . . . 23

4.1 Minimization of control effort - excitation with a single frequency . 29
4.2 External disturbance τext oscillates 180° out of phase with spring force 30
4.3 Link coordinate q and motor coordinate θ when K = Keig . . . . . 30
4.4 Minimization of control effort - excitation with multiple frequencies 31
4.5 Optimal stiffness Kopt closer to Keig,2 for equal amplitudes Ai . . . 32
4.6 Variation of the amplitudes - upeak over K . . . . . . . . . . . . . . 33
4.7 Ku

opt not constant over Kq . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Optima found with Keig,i as starting points . . . . . . . . . . . . . . 35
4.9 Bode plot of Gu for varying linkside damping factor ξq . . . . . . . 36
4.10 Stiffness values Kspike leading to peaks in upeak . . . . . . . . . . . . 37
4.11 Damping variation for ωext = 2 Hz . . . . . . . . . . . . . . . . . . 37
4.12 Damping variation - ωext = 3 Hz . . . . . . . . . . . . . . . . . . . . 38

vii



4.13 Bode plot of Gu and Gθ̇ - ξq = 0 . . . . . . . . . . . . . . . . . . . . 39
4.14 Bode plot of Gu and Gθ̇ - ξq = 0.7 . . . . . . . . . . . . . . . . . . . 39
4.15 Average power input Pinput,∅ over K and Kq . . . . . . . . . . . . . 40
4.16 Minimal average power input Pinput,∅ lies on diagonal for varying ωext 41
4.17 Pinput,∅ over K and Kq - diagonal minima . . . . . . . . . . . . . . 42
4.18 Influence of Kspike on diagonal for different damping factors ξq . . . 43
4.19 Comparison of average power input Pinput,∅ and output Poutput,∅ over

K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.20 Power exchange through Pms with varying intrinsic stiffness values K 46
4.21 upeak over K and Kq - nonlinear spring characteristics . . . . . . . . 48
4.22 Peak amplitude of control effort upeak over σ for different excitation

frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.23 Variation of excitation amplitudes . . . . . . . . . . . . . . . . . . . 50
4.24 FSJ stiffness setting σ with its corresponding stiffness values Kcor,σ 51
4.25 Comparison between linear and nonlinear spring characteristics . . 52
4.26 Comparison between nonlinear and linear system for low excitation

amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.27 Comparison between linear and nonlinear system for disturbances

with multiple excitation frequencies . . . . . . . . . . . . . . . . . . 55
4.28 Pinput,∅ over σ for different excitation frequencies . . . . . . . . . . 56
4.29 Pinput,∅ over σ for different excitation amplitudes Ai . . . . . . . . . 57
4.30 Power exchange through Pms . . . . . . . . . . . . . . . . . . . . . . 58

viii



List of Symbols and Abbreviations

Abbreviations

DLR Deutsches Zentrum für Luft- und Raumfahrt
(German Aerospace Center)

DoF Degree of freedom
ESP Elastic structure preserving
ESπ Elastic structure preserving impedance control
FSJ Floating spring joint
SEA Series elastic actuator
SISO Single-input single-output
VIA Variable impedance actuator
VIC Variable impedance control
VSA Variable stiffness actuator

Parameters

Ai Amplitude of the i-th excitation frequency
B Motor inertia
Dq Virtual link side damping
Dη Virtual motor side damping
Einput Energy input from motor into the system
f(K,...) Objective function depending on the intrinsic stiff-

ness K
M Link inertia
Pinput,∅ Average power input from motor

ix



Pms Motor side powerport
Poutput,∅ Normalized power output through Pms

Rin,out Ratio between Pinput,∅ and Poutput,∅

Us(ϕ) Spring potential function
qd Desired link coordinate
q Link coordinate
u Control effort
u1 Virtual control input - linkside
u2 Virtual control input - motorside
upeak Peak amplitude of control effort
upeak,min Minimal peak amplitude of control effort for fixed

controlled stiffness Kq and K = Kopt

upeak,min,glob Minimal peak amplitude of control effort at Kq =
Kq,opt and K = Kopt

upeak,norm Normalized peak amplitude of control effort
η Virtual motor coordinate
θ Motor coordinate
κ(ϕ) Local stiffness of nonlinear spring
ξq Link side damping coefficient
ξη Motor side damping coefficient
τext External disturbance
τext,osc Oscillating external disturbance with multiple fre-

quency components
ϕ Joint deflection
ψ(ϕ) Elastic torque
ωeig Inherent eigenfrequency
ωext Frequency of external disturbance

Transfer functions

Gd Disturbance model transfer function
G Plant transfer function
Gq Transfer function with q input and θ output

x



Gu Disturbance transfer function to u
Gu,red Reduced disturbance transfer function
Gw Closed loop transfer function
Gθ̇ Disturbance transfer function to q
Gτ Transfer function with τext input and θ output
Kd Disturbance control filter transfer function
Kr Reference control filter transfer function
C Controller transfer function
Ky Feedback controller 2-Degree of freedom (DoF)

control system transfer function
Q Disturbance transfer function to q

Nonlinear stiffness parameters

σ Stiffness setting of FSJ set by adjusting the rela-
tive rotation of the cam disks

σopt Optimal stiffness setting which minimizes an ob-
jective function f(σ)

σP
opt Optimal intrinsic stiffness setting which minimizes

the power input Pinput,∅ for a specific Kq

σP
opt,glob Optimal intrinsic stiffness setting which minimizes

the average power input with KP
q,opt

σu
opt Optimal intrinsic stiffness setting which minimizes

the peak control effort upeak for a specific Kq

σu
opt,glob Optimal intrinsic stiffness setting which minimizes

the peak control effort together with Ku
q,opt

σopt,cor Optimal stiffness setting correlated to the optimal
linear stiffness Kopt

Linear stiffness parameters

K Intrinsic stiffness of elastic joint

xi



Kcor,σ Intrinsic stiffness of a joint with linear stiffness
corresponding to the stiffness setting σ of an FSJ
for ϕ = 0

Kdiag Intrinsic stiffness which lies on the diagonal of
minima of Pinput,∅

Keig Intrinsic stiffness which leads to minimal ampli-
tude of control effort while the link is under oscil-
lating disturbance with one frequency ωext

Kopt Optimal intrinsic stiffness which minimizes an
objective function f(K,...)

KP
opt Optimal intrinsic stiffness which minimizes the

average power input Pinput,∅ for a specific Kq

KP
opt,glob Optimal intrinsic stiffness which minimizes the

average power input together with KP
q,opt

Ku
opt Optimal intrinsic stiffness which minimizes the

peak control effort upeak for a specific Kq

Ku
opt,glob Optimal intrinsic stiffness which minimizes the

peak control effort together with Ku
q,opt

Kq Virtual controlled stiffness
KP

q,opt Optimal controlled stiffness which mini-
mizes the average power input together with
KP

opt,glob/σP
opt,glob

Ku
q,opt Optimal controlled stiffness which minimizes the

peak control effort together with Ku
opt,glob/σu

opt,glob

Kq,diag Controlled stiffness which lies on the diagonal of
minima of Pinput,∅

Kq,opt Optimial virtual controlled which minimizes an
objective function f(K,...)

Kspike Intrinsic stiffness which leads to spikes of
upeak/Pinput,∅

Ktr Intrinsic stiffness at which amplitude of u higher
than amplitude of τext

xii



1 Introduction

Ongoing research is continuously advancing the development of new actuators for
robots. In the pursuit of creating actuators with capabilities similar to those of
humans, there is a focus on investigating actuators with intrinsic elastic elements.
The compliant actuators are a significant focus in robotics research mainly because
of their mechanical robustness, their energy efficiency when it comes to cyclic
movements and their good applicability for interactions with humans [1, 2]. They
can be categorized into series elastic actuators (SEA) and variable stiffness actuators
(VSA). While SEAs have a constant intrinsic stiffness, that of VSAs is adjustable.
VSAs excel over SEAs especially when it comes to energy efficiency and maximizing
the speed of the actuator [3, 4, 5, 6]. Various mechanical designs for VSAs have
been proposed [7, 8, 9, 10, 11].
The optimal intrinsic stiffness settings of the VSAs during regular operations,
where the elastic element is not used for explosive or non-cyclic movements (e.g.
[3, 11, 12, 13]), is still an active field of study.
A variety of literature covers the variable impedance control VIC of VSAs. [14]
presents a survey, comparing different VIC strategies and categorizing them in
variable impedance control, variable impedance learning and variable impedance
learning control. These control strategies are primarily designed to adjust the
intrinsic stiffness of the VSA to establish a specific impedance for interactions with
the environment. In the ESπ control strategy presented in [15], which is mainly
discussed in this thesis, a differentiation between controlled and intrinsic stiffness
is made. The former predominantly influences the impedance and interaction
behavior and is introduced into the system by the controller. The latter is the
mechanically adjustable intrinsic stiffness of the VSA. The objective of this work
is to optimize this adjustable intrinsic stiffness to minimize the control effort and
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the power input of the actuator. This task is not addressed in the existing control
strategies presented in [14].
Currently, there is no widely established control concept for setting the intrinsic
stiffness during non-cyclic robotic movements or when the robot is subjected to
external loads. In such cases, the potential benefits of the adjustable stiffness
setting remain underutilized.
[16] showed that there is significant potential in reducing the control effort by
adjusting the intrinsic stiffness of the VSA while the system is under external
disturbance. Nevertheless, there is no general control law for adjusting the stiffness
setting of VSAs in those scenarios.
The main goal of this thesis is to utilize the variable stiffness of VSAs in order
to minimize the control effort and the power input of the motor during external
disturbance, effectively making the actuator more efficient. The ESπ controller
presented in [15] is used as the control concept throughout this thesis. To gain
insight into the impact of varying the intrinsic stiffness in disturbance scenarios, a
series of experiments is performed.
The experiments are performed on both linear and nonlinear VSAs on a system
with a single degree of freedom. The focus lies on sinusoidal disturbances with
singular and multiple frequencies. Finally, it is discussed whether improvements on
control effort and power input justify the stiffness adjustment process.
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2 Theoretical background

This chapter includes a brief overview over variable stiffness actuators and the
fundamentals of control theory. Also, the basics of the ESπ control concepts are
explained.

2.1 Variable stiffness actuators

While stiff actuators have exceptional positioning and tracking accuracy [2], they
encounter difficulties when operating in unknown environments or interacting with
humans. That is where the so called variable impedance actuators (VIA) excel [2].
There are various ways to impose impedance behavior into a system. One approach
is to control a stiff actuator to behave like an impedance [2]. Another option is to
incorporate an elastic element between the gear and the link which was first done
in [17]. Such systems are commonly referred to as series elastic actuators (SEA).
When the stiffness of the elastic element is adjustable, they are known as variable
stiffness actuators (VSA), and when damping is incorporated additionally, they are
called variable impedance actuators (VIA) [18]. The impedance behavior facilitates
better behavior in many applications: [2, 19, 18]

• Efficiency: VIAs enhance efficiency by storing energy within their intrinsic
elastic elements, particularly for dynamic movements. By this, the peak
velocity can be increased. This does not work for controlled impedance, but
only for intrinsic elastic elements.

• Shock-absorbing: The elastic element reduces the torque during hard impacts,
thereby protecting the gearbox from damage. Additionally, it provides the
controller with extra reaction time as the impact initially deforms the elastic
element.
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• Adaptability: Impedance behavior is beneficial in situations where continuous
contact and precise force exchange are required.

• Safety: VIAs are safer when interacting with humans, particularly in collisions.
There are many different mechanical designs for VIAs [7, 8, 9, 10, 11, 20]. The
mechanical design of the floating floating spring joint (FSJ) [20] developed at
German Aerospace Center (DLR) is presented in the following.
The FSJ is designed to serve as a VSA in the humanoid robot David (Fig. 2.1)
[20]. It is a compact, lightweight joint, suitable for a robot of human-like size and
capable of reaching torques up to 67.5 Nm. The FSJ consists of two cam disks
which are pressed together by the floating spring seen in Fig. 2.1. One of the disks
is connected to the linkside while the other is attached to a stiffness adjustment
actuator. Between the disks, there are cam rollers which are connected to the gear
output shaft of the main actuator. When the joint is deflected, it causes the rollers
to move radially. This radial movement along the disk profiles results in axial
separation of the cam disks. The force generated by the floating spring acts as a
counter force against the axial movement, which leads to the elastic behavior of
the joint. An additional motor adjusts the relative rotation σ of the two cam disks,
which changes the desired stiffness of the joint, effectively making the mechanism
a VSA. Even though the floating spring has a constant stiffness, the mechanism
leads to a nonlinear stiffness as shown in Fig. 2.2.

Figure 2.1: Floating spring joint mechanism
[20]

Figure 2.2: Torque vs. joint deflec-
tion of floating spring
joint [20]
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2.2 Control
This section first covers the essential control theory knowledge needed for this
thesis. Additionally, the ESπ concept used for the control of compliantly actuated
robots with nonlinear elastic elements is explained.

2.2.1 Control theory fundamentals

The basic control theory knowledge explained in this section is based on [21].
Figure 2.3 shows the structure of a one degree-of-freedom controller used for a
single-input single-output (SISO) system. C and G represent the transfer functions
of the controller and the system’s plant, respectively. qd and q are the input and
output of the system. u is the control signal sent to the plant by the controller.
Gd describes how the external disturbance τext affects the output q.

Gd

-
qd

τext

C G
u q

Figure 2.3: One DoF control system - adapted from [21]

The closed-loop transfer function Gw and the disturbance transfer function Gd are
computed as follows:

Gw = G · C
1 +G · C

(2.1)

Gd = 1
1 +G · C

(2.2)

In certain scenarios, the incorporation of a feedforward term into the control system
is beneficial to enhance tracking performance [21, 22]. This leads to a two DoF
controller which can have different structures [21, 22]. One example for a two DoF
controller is shown in Fig. 2.4. It is called control loop with two DoF because
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there are now two blocks which can be used to control the system (Kr and Ky). In
theory, additional DoF’s can be added to the control system if needed. This thesis
covers the transformation of the ESπ controller into a three DoF standard control
structure (Sections 2.2.2 and 2.2.3).

Kr Ky G

Gd

uqd

-
q

τext

Figure 2.4: Two DoF control system - adapted from [21, 22]

2.2.2 Elastic structure preserving impedance control (ESπ)

The previously shown FSJ mechanism (2.1) is used in the DLR David robot. For the
control of this joint and other VSAs, [1] proposed the elastic structure preserving
(ESP) control concept. The ESπ controller presented afterwards in [15] is a slight
variation of the ESP control system. Throughout this thesis, the ESπ control
concept is used, so the following section explains its fundamentals.
The control concept of the ESπ framework is demonstrated using a compliant
actuator with a single link. The spring connecting the rotor and the link has a
constant stiffness K throughout the derivation of the control concept in order to
keep the equations in the presentation of the design idea simple. It is important to
note that the derivation can also be carried out analogously for nonlinear elastic
elements. The concepts of ESπ for nonlinear elastic elements are briefly discussed
in the next section.
The dynamics of a single link connected to a rotor with a spring with constant
stiffness are shown in Fig. 2.5. u is the control parameter of the system. It imposes
a generalized force which acts on the rotor inertia B. The rotor’s inertia is linked
to the inertia of the connecting link M via a spring with the stiffness K. θ and q

represent the actuated rotor position and the unactuated link position, respectively.
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K(θ − q)

Spring Linkθ

u
B M

q

τext

Rotor

Figure 2.5: Linear-elastic joint [1]

τext is an external torque acting on the link.
The system’s dynamics are given by [1]:

Mq̈ = K(θ − q) + τext (2.3)
Bθ̈ +K(θ − q) = u (2.4)

The goal of the ESπ controller is to incorporate linkside impedance behavior
and motorside damping while maintaining the initial characteristics of the plant.
The desired closed-loop dynamics are shown in Fig. 2.6. The according desired

Dηη̇ Spring Link
B M

Rotor

K(η − q) Kq(q − qd)
qd

η q

Dq q̇

τext

Figure 2.6: Visualization of closed-loop dynamics of the ESπ control concept - adapted
from [15]

closed-loop dynamics are given by

Mq̈ = K(η − q) + −Kq(q − qd) −Dq q̇ + τext (2.5)
Bη̈ +K(η − q) = −Dηη̇ (2.6)

where η is a virtual motor coordinate. It is derived by equating the link dynamics
of the original system (Eq. (2.3)) and the desired dynamics (Eq. (2.5)):

η = θ −K−1 (−Kq(q − qd) −Dq q̇)︸ ︷︷ ︸
u1

(2.7)
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The resulting control law u is calculated by equating Eq. (2.4) and Eq. (2.6) and
inserting Eq. (2.7):

u = −Dηη̇︸ ︷︷ ︸
u2

+B

K
ü1 + u1 (2.8)

Using this ESπ control law u for actuators with an elastic element like shown in
Fig. 2.5 results in the desired closed loop dynamics shown in Fig. 2.6. In a static
case, where q̈ = η̈ = q̇ = η̇ = 0 and q = η, the behavior of the system under
external disturbance is primarily influenced by the controlled stiffness Kq. Under
stronger, varying external disturbances, the system behavior gets also influenced
by the intrinsic stiffness K.
The control concept can be generalized as follows [23]:

u = u2 + B

K
ü1 + u1 (2.9)

The work in [23] showed that using this control concept transforms the underac-
tuated system (cf. Fig. 2.5) to a "quasi-fully" actuated system while preserving
the original structure. "Quasi-fully" actuated means, that the noncollocated link
coordinate q can be directly controlled via u1. The generalized form of this control
system is shown in Fig. 2.7. The new linkside control input u1 enables the use of

Spring Linkη

u2 u1
B M

q

τext

Rotor

K(η − q)

Figure 2.7: Visualization of closed-loop dynamics - adapted from [1]

classical control concepts for rigid links for compliant systems [23].

ESπ for a nonlinear elastic element

The FSJ which is used in the David robot is a nonlinear elastic joint. This means
that the elastic torque ψ(ϕ) transmitted from the motor to the link is a nonlinear
function of the joint deflection ϕ:

ψ(ϕ) = ∂Us(ϕ)
∂ϕ

∣∣∣∣∣
ϕ=θ−q

(2.10)
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with Us(ϕ) being the spring potential function [1]. The local stiffness κ(ϕ) is
calculated with the Hessian of the spring potential function Us(ϕ):

κ(ϕ) = ∂2Us(ϕ)
∂ϕ2

∣∣∣∣∣
ϕ=θ−q

= ∂ψ(ϕ)
∂ϕ

∣∣∣∣∣
ϕ=θ−q

(2.11)

For the nonlinear ESπ controller, u is designed such that the controlled system’s
dynamics are as follows:

Mq̈ +Kq(q − qd) +Dq q̇ = ψ(η − q) + τext (2.12)
Bη̈ + ψ(η − q) = −Dηη̇ (2.13)

The closed-loop structure is the same as in the linear system [1].

2.2.3 Transforming ESπ to three degree-of-freedom design

One part of this thesis involves analyzing the transfer functions of the controlled
system. To achieve this, the ESπ control concept must be transformed into
the structure of a standard single-input single-output (SISO) control loop. This
transformation was already performed in [24]. This section gives a brief summary
over the transformation process.
The equations for the control inputs on the linkside (u1) and the motorside (u2), as
defined in Eq. (2.7) and Eq. (2.8), undergo a Laplace transformation. Throughout
this thesis, the ESπ regulation controller is used, so q̇d = q̈d = 0. For U2 the
derivative of Eq. (2.7) is substituted into η̇. Furthermore, the link dynamics seen
in Eq. (2.3) are substituted into θ:

U1 = −Kq (q − qd) −Dq q s (2.14)

U2 = −Dη η s =

= −
(
Dη M

K
s3 + Dη Dq

K
s2 + Dη Kq

K
s+Dη s

)
q + Dη

K
s τext

(2.15)

With the control law from Eq. (2.8) this leads to the final control law in the Laplace
domain:

U = Kq qd −
[(
Dη M

K
+ Dq B

K

)
s3 +

(
B Kq

K
+ Dη Dq

K

)
s2

+
(
Dη Kq

K
+Dη +Dq

)
s+Kq

]
q + Dη

K
s τext

(2.16)
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The control law presented in Eq. (2.16) includes the input variable qd, the output
variable q and the disturbance τext. By defining Ky and Kz, the control law
simplifies to:

U = Kq qd −Ky q +Kz τext (2.17)

Defining Kr and Kd as

Kr = Kq

Ky

(2.18)

Kd = Kz

Ky

(2.19)

results in a feedback control loop which takes qd as feedback and subtracts it from
q (compare Fig. 2.8):

U = Ky (Kd τext +Kr qd − q) (2.20)

Kr serves as a prefilter for the commanded qd. Ky is the feedback part of the
controller, which handles disturbances and model uncertainties. Kd also handles
disturbances. The plant G of the system can be derived from the open-loop
dynamic Eqs. (2.3) and (2.4) by performing a Laplace transformation while setting
τext = 0:

Mqs2 = K(θ − q) + τext (2.21)
Bθs2 +K(θ − q) = u (2.22)

Setting τext = 0, solving Eq. (2.22) for θ and substituting it into Eq. (2.21) leads
to the plant transfer function G:

G = q

u
= K

BMs4 + (BK +MK)s2 (2.23)

Similarly Gd can be derived by setting u = 0 in Eq. (2.22) and performing the
same substitution as before:

Gd = q

τext

= Bs2 +K

BMs4 + (BK +MK)s2 (2.24)

Gd describes how external torques affect the link position. The presented transfer
functions Kd, Kr, Ky, G and Gd form a standard control structure as presented in
section 2.2.1. The structure is shown in Fig. 2.8. In case of τext = 0 or qd = 0, the
control system transforms into a two DoF SISO system.
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Kr Ky G

Gd

Kd

-
uqd q

τext

Figure 2.8: ESπ control system transformed to three DoF standard control structure -
adapted from [22, 24]
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3 Methodology

This chapter describes the methodology used to determine the optimal intrinsic
stiffness settings for VSAs under external disturbance while being controlled with
the ESπ control system described in Section 2.2.2.
To determine the optimal stiffness values, objective functions are formulated and
minimized: Let f(K,...) be an arbitrary objective function which should be min-
imized by adjusting the intrinsic stiffness K of a linear VSA controlled via ESπ.
The optimal intrinsic stiffness Kopt calculated with Eq. (3.1) is defined as the value
of K which minimizes f(K,...):

Kopt = arg min
K

f(K, ...) (3.1)

Analog to that, the optimal stiffness setting σopt of the FSJ (cf. Section 2.1)
controlled via ESπ is defined as:

σopt = arg min
σ
f(σ, ...) (3.2)

The sections of this chapter aim to minimize several different objective functions in
order to derive optimal stiffness settings Kopt/σopt. Generally spoken, the regarded
objective functions describe the control effort or the power input from the motor.
The exact definitions of the objective functions are given in the respective sections.
The optimization problems minimizing the objective functions and their respective
optimal stiffness settings are summarized in table Table 3.1.
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Objective function/optimal stiffness setting Linear VSA Nonlinear VSA

Peak control effort upeak

Problem 1
Section 3.1.1

Problem 3
Section 3.2

Optimal stiffness setting Kopt/σopt Ku
opt σu

opt

Average power input Pinput,∅
Problem 2

Section 3.1.2
Problem 4
Section 3.2

Optimal stiffness setting Kopt/σopt KP
opt σP

opt

Table 3.1: Overview of optimization problems and respective optimal stiffness settings

3.1 Linear elastic element
This section presents the methods for finding an optimal intrinsic stiffness for VSAs
with linear elastic elements. First, the goal is to find the optimal intrinsic stiffness
which minimizes the peak control effort. Then the optimal intrinsic stiffness is
determined in order to minimize the average power input of the motor.

3.1.1 Minimization of peak control effort

In this section, the goal is to minimize the the objective function upeak, which is
defined as the maximum value of the control effort:

upeak = max
t∈R+

u(t) (3.3)

u(t) is the control effort of the ESπ control concept resulting from an external
disturbance τext on the link. The calculation of the control effort u with respect to
an external disturbance is described in the following. For the sake of simplicity,
the analysis is performed on a single joint as shown in Fig. 2.5.
Fig. 3.1 shows the three DoF control structure derived in Section 2.2.3. Throughout
this thesis, the regulation controller’s set-point is established at the initial motor
position qinit, so the system is in its equilibrium state:

qd = qinit (3.4)

Consequently, the transfer functions Kd and Ky can be adapted to minimize the
control effort u. Equation 3.5 shows the ESπ control law for u (Eq. (2.8)) in its
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Figure 3.1: ESπ standard control structure with qd = qinit

full form.

u = −Dq q̇ −Kq(q − qd)︸ ︷︷ ︸
u1

+ B

K
(−Dq

(3)
q −Kq q̈)︸ ︷︷ ︸
ü1

− Dη

(
θ̇ + Dq q̈ +Kq q̇

K

)
︸ ︷︷ ︸

u2

(3.5)

The parameters Dq, Dη, K and Kq can be adjusted in order to minimize u. The
parameter Dq is usually set in relation to M and Kq so that the linkside damping
can be adapted via the damping coefficient ξq:

Dq = ξq · 2
√
KqM (3.6)

In order to keep this analysis more simple, the motorside damping introduced by
u2 will not be considered, so Dη is set to zero throughout the analysis of the system
with a linear elastic element.
The intrinsic stiffness K and the controlled stiffness Kq are the remaining alter-
able parameters in Eq. (3.5) that influence the control effort u. While Kq could
theoretically be set to an arbitrary positive value, the intrinsic stiffness K de-
pends on the specifications of the VSA. To assess the impact of K, Kq, and the
external disturbance τext on the output u, a transfer function denoted as Gu is
formulated. Gu characterizes how the external load affects the control effort u. The
transfer function Gu can be derived from the control structure seen in Fig. 3.1 as
follows:

u = Ky(Kdτext − q) (3.7)
q = Gdτext +G · u (3.8)

Gu = u

τext

= KyKd −KyGd

1 +KyG
(3.9)

15



Since Dη = 0 for this analysis, Gu reduces to:

Gu,red = u

τext

= −KyGd

1 +KyG
(3.10)

Fig. 3.2 shows the bode plots of Gu (green) and Gu,red (blue) for one set of system
parameters which are listed in the table below the figure. The negative spike in
Gu,red at 25 rad/s occurs due to the natural eigenfrequency which is determined by
the motor inertia B and the intrinsic stiffness K as follows:

ωeig =
√
K

B
(3.11)

Motorside damping (Dη ̸= 0) of the system introduced by u2 results in a damped
spike. The orange line in Fig. 3.2 marks the frequency

√
2 ·ωeig at which |Gu,red| = 1.
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Figure 3.2: Bode plot of Gu and Gu,red

When the link is subjected to a sinusoidal disturbance with one frequency compo-
nent, Fig. 3.2 shows that the peak amplitude of the control effort upeak is minimal
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when the excitation frequency matches the eigenfrequency ωeig. Note that ωeig

is independent of the controlled stiffness Kq. Since ωeig can be set by changing
the intrinsic stiffness K of the VSA (cf. Eq. (3.11)), it is possible to minimize the
peak control effort upeak by setting the intrinsic stiffness to Keig which is defined
as follows:

Keig = ω2
extB (3.12)

with ωext being the frequency of the external disturbance. Clearly, this optimization
is constrained to the stiffness-setting boundaries of the VSA.
Under external excitation with multiple frequencies, upeak cannot be determined
solely by examining the transfer function Gu. The considered external disturbance
τext,osc is a superposition of i sine waves with different amplitudes Ai, frequencies
ωext,i and phase shifts ϕi:

τext,osc =
∑

i

Ai(sin (ωext,i · t) + ϕi) (3.13)

The objective remains to determine the optimal intrinsic stiffness which minimizes
upeak with respect to the new disturbance τext,osc. Additionally, it should be
investigated how the controlled stiffness Kq influences the value of Kopt. For that,
the optimal controlled stiffness Kq,opt is determined. This yields the subsequent
optimization problem:

Problem 1: Suppose the control system defined in Eqs. (2.3) and (2.4),
with the controller from Eq. (2.8) subjected to an external disturbance
τext,osc of the form of Eq. (3.13).
Consider the problem of minimizing the objective function upeak by ad-
justing the intrinsic stiffness K and the controlled stiffness Kq in order to
calculate the minimal peak amplitude of the control effort upeak,min,glob:

upeak,min,glob = min
K∈[Kmin,Kmax],Kq∈R+

upeak(K,Kq) (3.14)

with the objective function

upeak(K,Kq) = max
t∈R+

u(t) = max
t∈R+

∑
i

Ai |Gu(jωext,i)|

· sin(ωext,i · t+ ∠Gu(jωext,i) + ϕi) (3.15)

and Gu being the transfer function defined in Eq. (3.9).
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For a specific controlled stiffness Kq, Eq. (3.14) simplifies to

upeak,min = min
K∈[Kmin,Kmax],Kq∈R+

upeak(K) (3.16)

which calculates the minimal peak amplitude of the control effort upeak,min.

The optimal intrinsic stiffness Ku
opt,glob and controlled stiffness Ku

q,opt that minimize
the objective function in Eq. (3.15) are defined as follows:

(Ku
opt,glob, K

u
q,opt) = arg min

K∈[Kmin,Kmax],Kq∈R+
upeak(K,Kq) (3.17)

The controlled stiffness Kq often cannot be chosen arbitrarily since it mainly
influences the linkside impedance. For a specific controlled stiffness setting Kq, the
optimal stiffness Ku

opt is defined as follows:

Ku
opt = arg min

K∈[Kmin,Kmax]
upeak(K) (3.18)

For Ku
opt, the objective function upeak(K,Kq) defined in Eq. (3.15) is minimized for

a specific controlled stiffness Kq.
upeak consists of a sum of sine waves. The amplitude and phase of each sinu-
soidal component in the sum of upeak is calculated using the magnitude response
(|Gu(jωext,i)|) and phase response (∠Gu(jωext,i)) of the transfer function Gu at
the corresponding excitation frequency ωext,i. The magnitude response and phase
response of Gu are calculated as follows:

|Gu(jωext,i)| =
√

Re(Gu(jωext,i))2 + Im(Gu(jωext,i))2 (3.19)

∠Gu(jωext,i) = arctan
(

Im(Gu(jωext,i))
Re(Gu(jωext,i))

)
(3.20)

Kmin and Kmax are the stiffness-setting boundaries of the VSA. Problem 1 is solved
with matlab. First experiments indicate that multiple local minima exist depending
on the external disturbance. That is why the matlab GlobalSearch algorithm is
used to ensure finding the global minimum upeak,min,glob of upeak. GlobalSearch runs
the local optimization solver fmincon from multiple starting points to find the
global minimum of the objective function.
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3.1.2 Minimization of power input

This section describes the process of determining the optimal intrinsic stiffness Kopt

and optimal controlled stiffness Kq,opt which minimize another objective function
Pinput,∅. The objective function Pinput,∅ describes the energy introduced into the
system by the motor during external disturbances while being controlled by ESπ.
The derivation of Pinput,∅ is explained in the following.
The motor introduces energy into the system through the motorside power port
Pms:

Pms = θ̇ · u (3.21)

When Pms is positive, the motor velocity θ̇ and the control effort u are both either
negative or positive, indicating that the motor introduces energy into the system
by accelerating the motor inertia B. Conversely, when Pms is negative, the motor
decelerates B, resulting in a decrease in the system’s energy. Since this energy is
practically unusable1, it is disregarded in the evaluation of the energy input. This
leads to the following definition of the energy input Einput from the motor into the
system.

Einput =
∫ t1

t0
Pms,pos dt

Pms,pos =

Pms if Pms > 0
0 if Pms ≤ 0

(3.22)

For easier comparison between energy inputs measured over different time intervals,
the energy input is normalized with respect to time. Finally, this leads to the
definition of the objective function Pinput,∅. It describes the average power supplied
by the motor while being under disturbance for ∆t seconds:

Pinput,∅ = Einput

∆t (3.23)

The following section describes the derivation of the transfer functions needed to cal-
culate the motor velocity θ̇ and the control effort u to compute Pinput,∅. The transfer

1This is only true if the actuator does not have energy recuperation capacity, which is generally
the case for most VSAs.
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function Q is determined by examining the block diagram in Fig. 3.1:

Q = q

τext

= Gd +KdKyG

1 +KyG
(3.24)

Q describes how the external disturbance τext affects the output q. Laplace
transforming the link dynamics (Eq. (2.3)) leads to:

Mqs2 = K(θ − q) + τext (3.25)

Setting τext = 0 gives the transfer function Gq with q as the input and θ as the
output (Eq. (3.26)). Similarly, setting q = 0 yields Gτ with τext as the input and θ
as the output (Eq. (3.27)).

Gq = θ

q
= M

K
s2 + 1 (3.26)

Gτ = θ

τext

= − 1
K

(3.27)

Combining Gq, Gτ and Q yields the desired transfer function Gθ̇ which is used to
calculate the output θ̇ with respect to the input τext.

Gθ̇ = θ̇

τext

= (QGq +Gτ )s (3.28)

The control effort u necessary for calculating Pms is computed using the previously
derived transfer function Gu (Eq. (3.9)). An overview over the used transfer
functions is shown in Fig. 3.3. With these transfer functions, the energy input
Einput and the average power input Pinput,∅ can be calculated with respect to an
external disturbance τext using Eq. (3.22) and (3.23).
The following presents the minimization of the average power input Pinput,∅ while
the link is subjected to the sinusoidal disturbance τext,osc. The disturbance is a
superposition of multiple sine waves and has the same form as in Eq. (3.13). Again,
the optimization is carried out by calculating the optimal intrinsic and controlled
stiffness values Kopt and Kq,opt. K is optimized within the stiffness boundaries Kmin

and Kmax of the VSA. Kq can theoretically be set to an arbitrary positive value,
so its boundaries are [0,∞]. This yields another optimization problem:
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Figure 3.3: Block diagram of transfer functions used for calculating θ̇ and u

Problem 2: Suppose the control system defined in Eqs. (2.3) and (2.4),
with the controller from Eq. (2.8) subjected to an external disturbance
τext,osc of the form of Eq. (3.13).
Consider the problem of minimizing the objective function Pinput,∅ by
adjusting the intrinsic stiffness K and the controlled stiffness Kq in order
to calculate the minimal power input from the motor:

min
K∈[Kmin,Kmax],Kq∈R+

Pinput,∅(K,Kq)

with Pinput,∅ defined in Eq. (3.23)

The optimal intrinsic stiffness KP
opt,glob and controlled stiffness KP

q,opt that minimize
the objective function Pinput,∅ in Problem 2 are defined as follows:

(KP
opt,glob, K

P
q,opt) = arg min

K∈[Kmin,Kmax],Kq∈R+
Pinput,∅(K,Kq) (3.29)

For a specific controlled stiffness Kq, the optimal intrinsic stiffness KP
opt is defined

as follows:

KP
opt = arg min

K∈[Kmin,Kmax]
Pinput,∅(K) (3.30)

The angular velocity of the motor θ̇ and the commanded torque u which result
from the external disturbance τext,osc are needed for the calculation of Pinput,∅ (c.f.
Eq. (3.21)-(3.23)). θ̇ and u are calculated using the respective transfer functions
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Gu and Gθ̇(c.f. Eqs. (3.9) and (3.28)):

θ̇ =
∑

i

Ai |Gθ̇(jωext,i)| · sin(ωext,i · t+ ∠Gθ̇(jωext,i) + ϕi) (3.31)

u =
∑

i

Ai |Gu(jωext,i)| · sin(ωext,i · t+ ∠Gu(jωext,i) + ϕi) (3.32)

Problem 2 is solved with matlab using the GlobalSearch algorithm, since first
experiments indicated that for certain disturbances, local minima of Einput are
present. fmincon is used as the local optimization solver.

3.2 Nonlinear elastic element

This section addresses finding an optimal intrinsic stiffness setting for VSAs with
nonlinear elastic elements. Similar to the previously described linear case, it
describes the methodology for determining the optimal intrinsic stiffness setting that
minimizes the objective functions upeak (cf. Eq. (3.3)) and Pinput,∅ (cf. Eq. (3.23))
when the link is subjected to an external disturbance.
Due to the nonlinearity of the system, transfer functions cannot be used to calculate
upeak and Pinput,∅. Therefore, a Simulink model of the dynamics of a one DoF
system and the ESπ controller is created to calculate upeak and Pinput,∅ for different
intrinsic and controlled stiffness settings.
The nonlinear spring characteristics of an FSJ are used in the Simulink model
(cf. Section 2.1). To adjust the intrinsic stiffness of an FSJ, an additional motor
changes the relative rotation σ of two cam disks. The parameter σ ranges from
0° (lowest stiffness setting) to 10° (highest stiffness setting). Fig. 3.4 shows the
intrinsic stiffness κ(ϕ) (cf. Eq. (2.11)) versus the deflection of the spring ϕ defined
by:

ϕ = θ − q (3.33)

It is important to note that the physical FSJ has a maximum joint deflection due
to the saturation of the spring [20]. The maximum joint deflection decreases as σ
increases. Therefore, for high deflection values, the high stiffness values shown in
Fig. 3.4 may not be reachable on the physical FSJ, depending on σ. In the nonlinear
case, the intrinsic stiffness K cannot be used as an optimization parameter because
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Figure 3.4: Local stiffness of an FSJ versus link deflection ϕ

it changes with the joint deflection and thus with the external disturbance. Instead,
the optimization parameter for the nonlinear case is the relative rotation of the
cam disks σ. For the same reason, the linkside damping Dq cannot be calculated
via Eq. (3.6). Instead, the damping factor is calculated with respect to the joint
deflection ϕ = θ − q:

Dq = ξq · 2
√
κ(θ − q)M (3.34)

κ(ϕ) is the local stiffness of the nonlinear FSJ. Similarly, the motorside damping
Dη is varied with the damping factor ξη and calculated by:

Dη = ξη · 2
√
κ(θ − q)B (3.35)

The optimal stiffness setting σopt defined in Eq. (3.2) is calculated to minimize the
objective functions upeak and Pinput,∅ (cf. Eq. (3.3) and (3.23)). This poses the
following optimization problems:
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Problem 3: Suppose the control system defined in Eqs. (2.3) and (2.4)
(κ(ϕ) instead of K(θ − q) because of nonlinearity), with the controller
from Eq. (2.8) subjected to an external disturbance τext,osc of the form of
Eq. (3.13).
Consider the problem of minimizing the objective function upeak by adjust-
ing the intrinsic stiffness setting σ and the controlled stiffness Kq in order
to calculate the minimal amplitude of the control effort upeak,min,glob:

upeak,min,glob = min
σ∈[0°,10°],Kq∈R+

upeak(σ,Kq)

upeak is defined in Eq. (3.3).

upeak is calculated via a Simulink simulation. The optimal intrinsic stiffness σu
opt,glob

and controlled stiffness Ku
q,opt that minimize the objective function in Eq. (3.3) are

defined as follows:

(σu
opt,glob, K

u
q,opt) = arg min

σ∈[0°,10°],Kq∈R+
upeak(σ,Kq) (3.36)

For a specific controlled stiffness Kq, the optimal intrinsic stiffness setting is defined
as σu

opt

σu
opt = arg min

σ∈[0°,10°]
upeak(σ) (3.37)

with upeak defined in in Eq. (3.3).

Problem 4: Suppose the control system defined in Eqs. (2.3) and (2.4)
(κ(ϕ) instead of K(θ − q)), with the controller from Eq. (2.8) subjected to
an external disturbance τext,osc of the form of Eq. (3.13).
Consider the problem of minimizing the objective function Pinput,∅ by
adjusting the intrinsic stiffness setting σ and the controlled stiffness Kq to
calculate the minimal power input from the motor:

min
σ∈[0°,10°],Kq∈R+

Pinput,∅(σ,Kq)

with Pinput,∅ defined in Eq. (3.23).

The minimal value of Pinput,∅ is calculated via a Simulink simulation.
The optimal intrinsic stiffness σP

opt,glob and controlled stiffness KP
q,opt that minimize
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the objective function Pinput,∅ in Problem 4 are defined as follows:

(σP
opt,glob, K

P
q,opt) = arg min

σ∈[0°,10°],Kq∈R+
Pinput,∅(σ,Kq) (3.38)

For a fixed controlled stiffness Kq, the optimal intrinsic stiffness is defined as
σP

opt:
σP

opt = arg min
σ∈[0°,10°]

Pinput,∅(σ) (3.39)

For both Problem 3 and Problem 4, σ is optimized within its stiffness setting
boundaries σ ∈ [0°, 10°]. Kq can theoretically be set to an arbitrary positive value,
so its boundaries are [0,∞]. Pinput,∅ and upeak which result from the disturbance
τext,osc are calculated using the Simulink model.
For both optimization problems, the transient state after inducing the external
disturbance is neglected and only the steady state is considered. This makes the
nonlinear case more comparable to the linear case, since the use of transfer functions
in the linear case neglects the transient state as well.
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4 Results

This chapter summarizes the knowledge acquired from the application of the
procedures presented in Chapter 3. Section 4.1 covers the results for joints with
linear elastic elements, while Section 4.2 presents the results for joints with nonlinear
elastic elements. Table 4.1 lists the parameter values that were used for the following
analyses and simulations. A linkside damping factor of ξq = 0.7 is used since it
showed the best overall performance for practical applications.

Link inertia M Motor inertia B
Linkside

damping factor
ξq

Motorside
damping factor

ξη

1 kg m2 0.598 kg m2 0.7 0/0.3

Table 4.1: Parameter settings for experiments

4.1 Experiments with linear elastic element

The following section presents the results for a linear elastic element based on theory
and simulation. Initially, the minimization of the peak amplitude of the control
effort upeak is addressed according to Problem 1 followed by the minimization of the
average power input Pinput,∅ according to Problem 2. Various plots are included to
illustrate the peak amplitude of the control effort upeak for different disturbance
scenarios. They will be analyzed to derive heuristics for setting the intrinsic stiffness
K in order to minimize upeak or Pinput,∅. Additionally, the influence of the controlled
stiffness Kq on upeak and Pinput,∅ is discussed.
For the calculation of upeak and Pinput,∅ for a linear elastic element, a Simulink
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simulation is not necessary since they can be directly calculated via the transfer
functions Gu and Gθ̇ (Section 3.1) which determine the steady state. Therefore
the transient behavior of the system is not analyzed. Gu and Gθ̇ needed for the
calculation of the peak amplitude of the control effort upeak and the average power
input Pinput,∅ were validated via the Simulink model of the ESπ controller.

4.1.1 Experiments on minimization of peak control effort

This section examines the effect of the intrinsic and controlled stiffness K and
Kq on the peak amplitude of the control effort upeak when subjected to sinusoidal
disturbances as previously defined in Problem 1.

Excitation with one frequency component

First, the influence of sinusoidal disturbances with one frequency component on
upeak is discussed.
Fig. 4.1 shows the surface plot of the peak amplitude of the control effort upeak over
the intrinsic and controlled stiffness K and Kq for sinusoidal excitation τext with a
frequency of 2 Hz and an amplitude of 10 Nm. The values of upeak were calculated
using the transfer function Gu and Eq. (3.15). The green line in the plot shows the
minimal peak amplitude upeak,min calculated with Eq. (3.16) in Problem 1 over Kq.
For this disturbance, the optimal stiffness Ku

opt remains constant at 94.4 Nm/rad
regardless of the choice of Kq. This confirms Eq. (3.12) for Keig, as discussed in
Section 3.1.1, which states that upeak,min correlates with the eigenfrequency ωeig of
the system. When the intrinsic stiffness K is set to Keig, upeak is close to zero.
Fig. 4.2 shows the plot of the external disturbance torque τext and the spring force
Keig(θ − q) for this example with the intrinsic stiffness set to Keig. The torques
oscillate out of phase by exactly 180° with the same amplitude, resulting in no
movement of the link coordinate q (red line in Fig. 4.3). Examining Eqs. (2.7)
and (2.8) for q̇ = q = 0 and no motorside damping (Dη = 0) shows that upeak is
also zero in this case. The motor coordinate θ moves 180° out of phase with the
external disturbance τext (blue line in Fig. 4.3).
Calculating upeak for multiple different disturbances with different excitation fre-
quencies resulted in similar plots with the minimal peak amplitude upeak,min at
Ku

opt = Keig. For all disturbances, upeak always increases significantly for small
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Figure 4.1: Minimization of control effort - excitation with a single frequency

intrinsic stiffness values below Keig. When the intrinsic stiffness is below Keig,
the eigenfrequency ωeig of the system is lower than the excitation frequency ωext.
Examining the bode plot (Fig. 3.2), it can be observed that |Gu,red| rises with 20
dB/decade after ω =

√
2 · ωeig. This explains the strong rise of upeak below Keig.

The orange line in Fig. 3.2 marks the frequency at which |Gu,red| = 1 implying that
τext and u have the same amplitude at this frequency. For an arbitrary disturbance,
the corresponding stiffness threshold Ktr at which the amplitudes of τext and u

match is calculated using:

Ktr = ω2
ext

2 ·B (4.1)

For intrinsic stiffness values K<Ktr, the peak amplitude of the control effort upeak

is higher than that of τext. For K>Keig, upeak rises comparably slowly and does
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not diverge to infinity. In scenarios where ωext is unknown, it is suggested to set K
to a high value since it is less likely to result in very high amplitudes of the control
effort upeak.
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Figure 4.2: External disturbance τext oscil-
lates 180° out of phase with
spring force
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Figure 4.3: Link coordinate q and motor
coordinate θ when K = Keig

Excitation with multiple frequency components

In this section, the minimization of the peak amplitude upeak for the external dis-
turbance with multiple frequency components is addressed according to Problem 1.
The considered external disturbances consist of multiple superimposed sine waves
with different frequencies and phase shifts (compare Eq. (3.13)). The resulting
control effort u and its peak amplitude upeak are calculated with Eqs. (3.15), (3.19)
and (3.20), again using the derived transfer function Gu.
Fig. 4.4 shows the plot for an external disturbance with two frequencies ωext,1 = 3 Hz
and ωext,2 = 4.5 Hz, each having an amplitude of 1 Nm. The z-axis is scaled
logarithmically to facilitate the analysis. Similar to excitation with one frequency,
upeak rises faster for low intrinsic stiffness values than for high ones. Solving
Problem 1 within the stiffness boundaries K ∈ [50, 800] and Kq ∈ [50, ∞] results
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in the minimum amplitude of the control effort upeak,min,glob = 0.085 Nm. The
optimal intrinsic and controlled stiffness values Ku

opt,glob and Ku
q,opt are calcualted in

Eq. (3.17). They lie at Ku
opt,glob = 431 Nm/rad and Ku

q,opt = 50 Nm/rad leading
to upeak,min,glob which is shown in Fig. 4.4 as the yellow dot.
The optimal controlled stiffness Ku

q,opt lies at the lower boundary of the optimization
range. This was the case for all experiments performed with respect to different ex-
ternal disturbances. However, Kq can usually not be chosen arbitrarily in practical
applications since it influences the interaction behavior of the link. That is why
for the practical case, the optimal intrinsic stiffness Ku

opt defined in Eq. (3.18) is
usually of higher interest.
For the excitation with one frequency, finding Ku

opt is straight forward since it is
directly related to the eigenfrequency of the system. For excitations with multiple
frequencies, solving Problem 1 is required to calculate Ku

opt,glob/Ku
opt. In Fig. 4.4,

the values of Keig of the respective frequency components are represented by the
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red lines. They are calculated using Eq. (3.12) by inserting the frequencies ωext,i of
the disturbance τext,osc.
The green line shows the upeak,min over Kq. Similar to the previous example, Ku

opt

is constant over Kq. upeak,min lies in between Keig,1 and Keig,2 over the full range
of Kq. This is an interesting finding since it can be used as a heuristic for setting
the intrinsic stiffness K without performing an optimization. Multiple experiments
with different excitations were performed to confirm this heuristic.
Another example is shown in Fig. 4.5 for disturbance with lower frequencies ωext

of 1 Hz and 2 Hz. Again, Ku
opt lies in between of Keig,1 andKeig,2 and stays nearly
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Figure 4.5: Optimal stiffness Kopt closer to Keig,2 for equal amplitudes Ai

constant over Kq. The small deviations of Ku
opt in the lower Kq range originate

from the damped spikes in the bode plot of Gu, which is explained in Section 4.1.1
- Damping variation. It is noteworthy that Ku

opt is closer to the higher value of Keig

over the full range of Kq in both examples. This was the case for all performed
experiments with equal excitation amplitudes Ai. Therefore, choosing the highest
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Keig as the intrinsic stiffness K for excitations with similar amplitudes can serve
as a heuristic. Although there is no general rule for predicting how close Ku

opt will
be to Keig, using this heuristic increases the probability to be close to Ku

opt.
When the excitation amplitudes Ai differ, this influences Ku

opt. Fig. 4.6 shows the
plots of the peak amplitude of the control effort upeak for the same disturbance τext

with two excitation frequencies of 1.2 Hz and 3 Hz. Only the amplitudes Ai differ
between both examples. upeak,min calculated by solving Problem 1 is marked with
the red crosses. The controlled stiffness is set to Kq = 300 Nm/rad for both cases.
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Figure 4.6: Variation of the amplitudes - upeak over K for Kq = 300 Nm/rad
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Increasing the amplitude A1 of the lower frequency by a factor of six results in a
decrease in Ku

opt so Ku
opt moves closer to Keig,1. This can result in local minima

(see Fig. 4.6(b)) which is why the global optimizer is used for the experiments (cf.
Section 3.1.1).
Fig. 4.7 shows the course of the optimal intrinsic stiffness Ku

opt over Kq for the
same disturbance as in Fig. 4.6(b). Ku

opt jumps from being close to Keig,1, closer
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Figure 4.7: Ku
opt not constant over Kq

to Keig,2 at Kq ≈ 335 Nm/rad. This shows that differing amplitudes of the
excitation frequencies can lead to Ku

opt not being constant over Kq. Determining
the controlled stiffness Kq at which the jump occurs remains a promising topic for
future research.

Efficient solution of optimization problem

To be able to find Ku
opt in real time and react quickly to external disturbances, it is

necessary to solve Problem 1 for a specific controlled stiffness Kq quickly. Solving
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the optimization problem using the Matlab GlobalSearch algorithm takes fairly
long because it uses many different starting points. This makes it unusable for
real-time applications.
Since all performed experiments showed that Ku

opt lies somewhere between the high-
est and the lowest Keig, it is possible to reduce the optimization time by using only
the Keig,i values as starting points for an optimization with a local solver. Fig. 4.8
shows an example for the optimization. Keig,1 = 34 Nm and Keig,2 = 212.4 Nm
are used as starting points. Two different minima are found (see red crosses in
Fig. 4.8), successfully finding the optimal intrinsic stiffness at Ku

opt = 40 Nm/rad.
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Figure 4.8: Optima found with Keig,i as starting points

By reducing the starting points, the optimization process becomes significantly
faster (by a factor ≈ 100) compared to the previously used GlobalSearch algo-
rithm. Without further optimizations to the script the calculation time for an
optimization problem with two starting points was around 0.4 s on average1. This
duration can likely be further reduced with more adjustments to the optimization
problem. It remains to be investigated whether this change allows for real time
optimization.

1The optimizations were performed on an Intel Core i5 - 12400F (2.5GHz) processor using
16 GB of RAM running on Windows 11.
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Damping variation

The optimal intrinsic and controlled stiffness values Ku
opt,glob/Ku

opt and Ku
q,opt are

also influenced by the linkside damping factor ξq. Fig. 4.9 shows the bode plot
for varying ξq. For ξq = 0 there are two positive spikes which are damped with
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Figure 4.9: Bode plot of Gu with varying linkside damping factor ξq

K = 374 Nm/rad, Kq = 200 Nm/rad

increasing linkside damping factor ξq. The spikes appear at the poles of the transfer
function Gu. When the poles match with the excitation frequency of the external
disturbance, the peak control effort upeak increases (especially for low ξq), which
influences the optimal intrinsic stiffness value Ku

opt. The poles are calculated by
solving the characteristic equation of the undamped system [21]. Rearranging the
characteristic equation for the intrinsic stiffness K allows calculating the stiffness
Kspike:

Kspike = BKq ω
2
ext −BM ω4

ext

Kq −B ω2
ext −M ω2

ext

(4.2)

Kspike represents the stiffness values corresponding to the spikes of the transfer
function. Unlike Keig, Kspike not only depends on ωext and B but also on M and
Kq. Especially for lower linkside damping ξq, the peak amplitude of the control
effort upeak rises when the intrinsic stiffness is set to Kspike.
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Fig. 4.10 shows the relationship between Kspike and Kq calculated using Eq. (4.2)
for an excitation frequency of ωext = 2 Hz with A1 = 1 Nm. Fig. 4.11 displays upeak
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Figure 4.10: Stiffness values Kspike leading to peaks for ωext = 2 Hz

over K for Kq = 400 Nm/rad (upper orange line in Fig. 4.10) and varying linkside
damping factors. Here Kspike lies at 155 Nm/rad. As anticipated, decreasing the
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Figure 4.11: Damping variation for ωext = 2 Hz, Kq = 400 Nm/rad

linkside damping results in a higher peak at Kspike. For ξq > 0.3, upeak is not
affected significantly by Kspike anymore. At Kspike, ξq = 0.1 results in an amplitude
five times higher than that of ξq = 0.7. Additionally, a higher damping factor
appears to lead to lower upeak especially for intrinsic stiffness values greater than
Keig in this disturbance scenario. However, this trend does not hold true for other
disturbances as Fig. 4.12 shows. It displays upeak for the same damping factors but
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an excitation frequency ωext = 3 Hz and Kq = 100 Nm/rad. Here, the opposite
to the previous example is observed, with lower damping resulting in lower upeak.
Additional research is required to determine under which circumstances increasing
the damping leads to higher/lower upeak.
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Figure 4.12: Damping variation for ωext = 3 Hz, Kq = 100 Nm/rad
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4.1.2 Experiments on minimization of power input

This section covers the minimization of the average power input Pinput,∅ while the
link is under sinusoidal disturbance τext,osc according to Problem 2.
To calculate Pinput,∅ (cf. Eq. (3.23)), the velocity of the motor coordinate θ̇ and
the control effort u are derived via the transfer functions Gθ̇ and Gu (cf. Eq. (3.28)
and Eq. (3.9)). The bode plots of both transfer functions are shown in Fig. 4.13
for ξq = 0 and Fig. 4.14 for ξq = 0.7.
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Figure 4.13: Bode plot of Gu and Gθ̇
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Figure 4.14: Bode plot of Gu and Gθ̇

ξq = 0.7

Both transfer functions Gu and Gθ̇ have the same positive spikes at their poles.
Only Gu has a negative spike at the eigenfrequency ωeig. When the excitation
frequency of the disturbance matches with the poles it can result in a high average
power input Pinput,∅, especially for low linkside damping ξq. When the linkside
damping factor ξq is increased, the positive spikes of Gu and Gθ̇ are damped.
Fig. 4.15 shows Pinput,∅ over K and Kq for a single frequency disturbance with
2 Hz and an amplitude of 20 Nm. The z-axis is scaled logarithmically. As expected,
Pinput,∅ is minimal for KP

opt = Keig = 94.4 Nm (green line in Fig. 4.15) regardless
of Kq, since ωext = ωeig for this stiffness. The magnitude of Pinput,∅ ranges from
0 W to 16.05 W for an excitation amplitude of 20 Nm. The highest power input is
reached for stiffness values at the lower intrinsic stiffness border of K = 50 Nm,
which was the case for all performed experiments. This is due to the fact that
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for low stiffness values, ωeig is smaller than ωext which means that ωext lies in the
frequency range where |Gu,red| rises with 20 dB/decade. This results in a rising
magnitude amplification |Gu,red| when the stiffness K is further decreased below
Keig.
Apart from the minima at Keig there is another diagonal line of minima in the plot
for K > 200 Nm where the average power input Pinput,∅ is low (red line in Fig. 4.15).
On this diagonal, the average power input Pinput,∅ is smaller than 1 × 10−5 W,
essentially zero. When analyzing the diagonal of multiple different excitations, it
stands out that the slope of the diagonals is always 1, regardless of the external
excitation. To describe this diagonal, a linear equation is used:

Kq,diag = Kdiag + b (4.3)

With changing parameters, the diagonal is shifted by b.
Fig. 4.16 shows the diagonal of the minima for different excitation frequencies
between 1 Hz and 4 Hz with their respective b. It shows that b declines with rising
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Figure 4.16: Minimal average power input Pinput,∅ lies on diagonal for varying ωext

excitation frequency. When Kdiag is known for one value of Kq,diag, it is possible to
calculate Kdiag for any other Kq using Eq. (4.3).

Excitation with multiple frequency components

For external disturbances with multiple frequency components, the course of the
minima run diagonally as well. Fig. 4.17 shows the plot of Pinput,∅ over K and Kq

for an excitation with 1.5 Hz and 3 Hz. The green line representing the minimal
average power input over Kq runs diagonally, however the diagonal starts only
above a certain value of Kq. The reason for this are the spikes of the transfer
functions Gu and Gθ̇ (cf. Fig. 4.13), which result in a higher average power input
Pinput,∅ at certain stiffness values Kspike. The position of those peaks is derived
from the poles of Gu/Gθ̇ and can be calculated with Eq. (4.2) as discussed in the
last chapter. Although the spikes are low for a damping factor of ξq = 0.7, they
still have an influence on the optimal intrinsic stiffness values KP

opt/KP
opt,glob.

To illustrate this, Fig. 4.18 shows the course of KP
opt over Kq for varying damping

factors with respect to the same disturbance as in the last example. The red and
yellow lines represent the spikes in Pinput,∅ for the respective excitation frequencies

41



P
in

p
u

t,
∅

[W
]

K [Nm/rad]
Kq [Nm/rad]

100

10−2

minimal Pinput,∅ over Kq

2500

2500

2000

2000

1500

1500
10001000 500

500

0

0

ωext,1 = 1.5 Hz A1 = 5 Nm
ωext,2 = 3 Hz A2 = 3 Nm

Figure 4.17: Pinput,∅ over K and Kq - diagonal minima

ωext,1 and ωext,2. Clearly, the diagonal behavior starts for stiffness values above
the higher Kspike, regardless of the damping factor. The lower spike (red line) for
ωext = 1.5 Hz also influences the optimal stiffness value KP

opt. For stiffness values
below the higher Kspike (yellow line), no consistent behavior for the course of KP

opt

is found. In these cases, an optimization is needed to calculate KP
opt/KP

opt,glob.
Fig. 4.18 also shows the damping factor influencing the position of the diagonal:
Increasing the damping factor decreases b. The slope of the diagonal remains
constant at 1, regardless of the damping factor.
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Analysis of power input vs power output

This section compares the power input and the power output through the power
port Pms = θ̇ · u under different parameters (cf. Eq. (3.21)).
Fig. 4.19 shows the plot of the average power input Pinput,∅ (blue) and output
Poutput,∅ (green) over the intrinsic stiffness K. The regarded external disturbance
for this example is written below Fig. 4.19. Setting the intrinsic stiffness to the
optimal stiffness calculated by solving Problem 2 KP

opt = 651 Nm/rad leads to
the minimal power input of 3.66 mW (see Fig. 4.20(b)). In the stiffness range of
[50, 2000] Nm/rad, the power input varies between 3.66 mW and 2.4 W for this
disturbance. The absolute power output varies between 254.44 mW and 2.68 W.
Fig. 4.20(a)-(c) illustrate the relationship between power input (red) and power
output (blue) for the same external disturbance. The graph shows the power
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Figure 4.19: Comparison of average power input Pinput,∅ and output Poutput,∅ over K

Kq = 600 Nm/rad

transmitted through the powerport Pms over time for three different stiffness values.
The three considered stiffness values are highlighted by the dashed lines in Fig. 4.19.
In Fig. 4.20(a)-(c) the values on the dashed lines show the respective values of
Pinput,∅ and Poutput,∅. For the intrinsic stiffness K = 100 Nm/rad, both the power
input and the power output are the highest compared to the other stiffness values.
Additionally, the ratio between Pinput,∅ and Poutput,∅ is the highest. This ratio is
calculated using Eq. (4.4) resulting in Rin,out = 0.8 for K = 100 Nm/rad.

Rin,out =
∣∣∣∣∣ Pinput,∅

Poutput,∅

∣∣∣∣∣ (4.4)

Fig. 4.20(b) shows the power throughput for the optimal intrinsic stiffness of
KP

opt = 651 Nm/rad. Both Pinput,∅ and Poutput,∅ as well as Rin,out are minimal at
this stiffness setting. Multiple experiments conducted at different disturbance
frequencies have shown that calculating the optimal intrinsic stiffness KP

opt which
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minimizes the power input also minimizes the absolute value of the power out-
put |Poutput,∅|. This is also seen in this example. Additionally, for the optimal
stiffness the power input-output ratio is always the lowest at KP

opt, meaning that
Pinput,∅<<Poutput,∅. For the optimal intrinsic stiffness Ku

opt = 651 Nm/rad shown
in Fig. 4.20(b), the ratio is 0.014.
Fig. 4.19 and Fig. 4.20(c) show that for K > Ku

opt, Pinput,∅, Poutput,∅ and Rin,out

rise again, but comparably slow. Fig. 4.19 also shows that the average power input
is always greater than the power output for ξq = 0.7 meaning that Rin,out < 1
for all stiffness values K. For lower damping factors, the ratio Rin,out increases.
Without damping (ξq = 0), the average power input equals the average power
output (Pinput,∅ = Poutput,∅) meaning that the power input-output ratio Rin,out = 1.
In summary, Section 4.1.2 demonstrates that the optimal intrinsic stiffness KP

opt

with respect to an external disturbance can be calculated by solving Problem 2.
Additionally, certain heuristics have been identified to aid in the selection of an
intrinsic stiffness value K which leads to low average power input Pinput,∅ without
optimization. However, it is questionable whether the influence of KP

opt on the
average power input Pinput,∅ justifies the use of the heuristics or the optimization,
since the power input increases very little with changing intrinsic stiffness values,
especially for K>KP

opt.
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4.2 Experiments with nonlinear elastic element

This section presents the results for simulations of the ESπ controller on a one DoF
system with nonlinear stiffness characteristics. As for the linear case, minimization
of the peak control effort upeak and of the average power input Pinput,∅ by adjusting
the intrinsic stiffness setting is addressed by solving Problem 3 and Problem 4.
For the nonlinear case, a Simulink simulation is needed to derive u and Pinput,∅.
This procedure is addressed in Section 3.2. For the following section, the motorside
damping factor ξη is set to 0.3, because this factor proofed to be reliable for
practical applications. As in the linear case, the linkside damping factor ξq is set
to 0.7.

4.2.1 Minimization of the peak control effort for nonlinear
VSAs

This section analyzes the impact of the intrinsic stiffness setting σ of an FSJ and
of the controlled stiffness Kq on the peak control effort upeak. For this purpose,
several plots are analyzed to derive heuristics for the optimal intrinsic stiffness
setting σopt. Also, Problem 3 is solved in order to calculate the optimal intrinsic
stiffness settings σu

opt,glob/σu
opt which are defined in Eqs. (3.36) and (3.37).

Figure 4.21 shows the surface plot of upeak over varying intrinsic stiffness settings σ
and controlled stiffness values Kq. The link is excited with an excitation frequency
ωext of 1.5 Hz and an amplitude of 5 Nm. The peak amplitude of the control effort
upeak varies between 3 Nm and 6 Nm. The green line in the plot shows the minimal
peak control effort upeak,min at its optimal stiffness setting σu

opt over Kq. σu
opt ranges

from σ = 0.2° for Kq > 330 Nm to σ = 1.6° for low Kq. This is different to the
linear case, where the optimal stiffness Ku

opt was always constant for disturbances
with one frequency component. For stiffness settings σ < σu

opt, the peak amplitude
of the control effort upeak increases more rapidly compared to stiffness settings
σ > σu

opt. This trend is also observed for linear spring characteristics (refer to
Section 4.1.1).
To evaluate the influence of the excitation frequency of the disturbance on the
optimal stiffness setting σu

opt, Fig. 4.22 shows upeak over σ for varying excitation
frequencies between 1 Hz and 4 Hz. The amplitude of all excitations is set to
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Figure 4.21: upeak over K and Kq - nonlinear spring characteristics

5 Nm and the controlled stiffness is set to Kq = 500 Nm/rad. With increasing
excitation frequencies, the minimal amplitude of the control effort lies at higher
stiffness settings σ (σu

opt rises).
Fig. 4.22 shows that as the excitation frequency ωext increases, the value of upeak is
affected more by the choice of the stiffness setting σ. For instance, the value of upeak

varies by 66 Nm for ωext = 4 Hz, whereas it only varies by 1 Nm for ωext = 1 Hz.
Additionally, Fig. 4.22 shows that the minimum peak amplitudes of the control
effort upeak,min differ when changing the excitation frequency. The lowest amplitude
of the control effort is reached at 3 Hz for σu

opt = 4.9°.
The plot also shows how upeak rises rapidly for stiffness settings below the respective
optimal stiffness settings σu

opt of the excitation frequencies.
For linear spring characteristics, the amplitude of the external disturbance Ai

scales directly proportional with the peak amplitude of the control effort upeak. For
nonlinear stiffness values, this is not the case. Increasing the amplitude results in
higher deflection of the spring ϕ which results in higher stiffness values (see Fig. 3.4).
This influences the resulting control effort. To evaluate the impact of changing the
amplitude on the control effort, Fig. 4.23 shows upeak over σ for different excitation
amplitudes Ai. The excitation frequency is set to 2 Hz and the controlled stiffness
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Kq to 500 Nm/rad. The amplitudes Ai range from 1 Nm to 20 Nm. The control
effort is normalized with respect to the amplitude of the excitation:

upeak,norm,i = upeak,i

Ai

; (4.5)

This way, the results are easier to compare. The red crosses mark the normalized
minimal peak amplitude of the control effort upeak,norm,min for the respective ampli-
tudes. The plot shows that increasing the amplitudes has an impact on the optimal
stiffness setting σu

opt. σu
opt rises with the amplitude Ai of the external excitation.

Also, for all amplitudes, upeak,norm convergences to 1 for high stiffness settings. This
means, that for high stiffness settings σ, upeak,i equals the excitation amplitude Ai.
For low amplitudes, upeak,norm,min is lower than for high amplitudes. For instance,
upeak,norm,min is only 10 % of A1 for A1 = 1 Nm (blue line). For A20 = 20 Nm,
upeak,norm,min is almost exactly equal to its excitation amplitude A20 = 20 Nm. This
means that optimizing the stiffness setting to calculate σu

opt for high amplitudes
Ai brings no huge benefit compared to the highest stiffness setting (σ = 10°). On
the other hand, when the stiffness is set smaller than σu

opt, upeak,norm gets higher
than the excitation amplitude quickly for high amplitudes. For lower amplitudes,
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optimizing the stiffness setting is more beneficial. For instance, at A5 = 5 Nm
(yellow line), upeak,norm,min at σu

opt = 1.7° is only 48 % of A5.

50



Comparison between linear and nonlinear spring characteristics

This section compares the peak control effort of the nonlinear system calculated
in Problem 3 with the one of linear spring systems calculated in Problem 1. It
discusses the transferability of results from the linear system to the nonlinear system.
Understanding the limits of transferability is advantageous because optimizing
the linear system requires less computational effort, potentially enabling real-time
optimization.
The comparison between the intrinsic stiffness K of a linear system and the stiffness
setting of an FSJ is not straight forward since the stiffness setting of the latter is
defined by the angle σ. In order to perform a comparison between the two systems,
correlating stiffness values Kcor,σ can be assigned to the stiffness settings σ. One
possibility, which is used in the following, is to assign the stiffness κσ(ϕ = 0) of the
FSJ at a link deflection of ϕ = 0 to the corresponding values of σ:

σ =̂ Kcor,σ = κσ(ϕ = 0) (4.6)

The stiffness settings σ with their corresponding stiffness values Kcor,σ are shown
in Fig. 4.24.
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Figure 4.24: FSJ stiffness setting σ with its corresponding stiffness values Kcor,σ

Initially, the comparison is carried out for disturbances with one single frequency.
Figure 4.25 shows the comparison between the linear and nonlinear case for an
excitation with a frequency ωext of 2 Hz and an amplitude of 5 Nm. The plot
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Figure 4.25: Comparison between linear and nonlinear spring characteristics
Kq = 500 Nm/rad

has two different x-axes. The lower axis shows the stiffness setting σ of the FSJ,
with the corresponding stiffness values shown on the upper axis. The upper axis
is nonlinear, since the correlation of σ and Kcor,σ is also nonlinear (see Fig. 4.24).
The plot shows the peak amplitude of the control effort upeak of the nonlinear FSJ
in blue and that of the linear joint in green for different intrinsic stiffness settings
σ. The red crosses mark the respective minimum peak amplitudes upeak,min.
The general course of both curves is similar, however as σ decreases, they diverge
more. This is because for lower stiffness settings σ, the joint deflection ϕ is higher,
which results in the nonlinear effects of the FSJ becoming more significant. For
high stiffness settings, the joint is deflected less so the stiffness also changes less
which is more similar to the linear case. That is why the resulting peak amplitude
of the control effort upeak for the linear and nonlinear case converge with rising
stiffness settings.
Furthermore, the peak amplitude of the control effort upeak of the nonlinear sys-
tem is higher than that of the linear system over the full stiffness range σ. This
phenomenon is observed for the majority of simulated disturbances with a single
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frequency:

upeak,nonlinear ≳ upeak,linear ∀ σ (4.7)

Only for very low amplitudes Ai ≲ 3 Nm some experiments showed that the nonlin-
ear elastic element led to slightly lower peak amplitudes upeak like shown in Fig. 4.26.
In this example, both minima upeak,min lie at σu

opt ≈ 1.7° =̂ Ku
cor,σ = 87.2 Nm. How-

ever, the amplitude analysis of the last section (Fig. 4.23) shows that changing the
amplitude changes the optimal stiffness setting σu

opt for nonlinear elastic elements.
The optimal linear intrinsic stiffness Ku

opt on the other hand stays constant when
changing the excitation amplitude. This shows that the value of Ku

opt of the linear
system does not necessarily equal the corresponding optimal value σu

opt of the
nonlinear system. Generally experiments showed that the optimal stiffness setting
σu

opt =̂ Ku
cor,σ,opt of the nonlinear system is approximately equal or higher than

the optimal stiffness Ku
opt of the linear system for excitations with one frequency

component:
σu

opt =̂ Ku
cor,σ,opt ≳ Ku

opt ∀ Ai (4.8)

When the amplitude of the disturbance is further decreased, the nonlinear effects
decrease because the joint deflection ϕ decreases. Consequently, the nonlinear
system approaches the linear system. This is shown in Fig. 4.26 where the external
disturbance has an amplitude A1 = 1 Nm. Both curves are now similar to each
other, regardless of the stiffness setting σ. The minimal peak amplitudes upeak,min

are also similar.
The previous results apply on disturbances with a single frequency. The following
section discusses if they are applicable to external disturbances with multiple
frequency components. Fig. 4.27 shows the peak amplitude of the control effort
upeak over σ for an excitation with 1.2 Hz and 3 Hz and an amplitude of 5 Nm
and 1 Nm respectively. In contrast to the single frequency excitation, the peak
amplitude upeak of the nonlinear case is smaller than that of the linear case for
stiffness values σ > 6°. Although most experiments have shown that the linear
system leads to lower peak amplitudes, the statement made in Eq. (4.7) does not
generally hold for excitations with multiple frequency components.
For this example, the optimal intrinsic stiffness setting σu

opt of the nonlinear system
is σu

opt = 3.7° =̂ Ku
cor,σ,opt = 148.8 Nm, while the optimal stiffness for the linear

53



0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

1.2

σ [°]

u
p
ea

k
[N

m
]

nonlinear
linear
upeak,min

52.4 71 95 124.7 159.9 199.6 243.4 292 347.7 415 498.9
Kcor,σ [Nm/rad]

ωext,1 = 2 Hz A1 = 1 Nm

Figure 4.26: Comparison between nonlinear and linear system for low excitation
amplitude

Kq = 500 Nm/rad

case is higher with Ku
opt = 171.3 Nm. Therefore, Eq. (4.8) also does not hold for

excitations with multiple frequencies.
The results for multiple frequency disturbance show that the heuristics of the linear
case are not transferable to the nonlinear case. To calculate the optimal intrinsic
stiffness setting for those disturbances, Problem 3 needs to be solved
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4.2.2 Minimization of power input for nonlinear VSAs

This section covers the results of solving Problem 4. Solving Problem 4 calculates
the optimal intrinsic stiffness settings σP

opt,glob/σP
opt (defined in Eq. (3.38) and (3.39))

which minimize the average power input Pinput,∅ of the motor while the link is
subjected to the disturbance τext,osc. To analyze the optimization results, several
plots are shown.
Figure 4.28 shows the average power input Pinput,∅ over the intrinsic stiffness setting
σ for Kq = 500 Nm/rad and varying excitation frequencies ωext between 1 Hz and
4 Hz. The amplitudes Ai of all excitations are set to 20 Nm. For all excitation
frequencies except ωext = 3 Hz, the optimal intrinsic stiffness setting σP

opt leading
to minimal Pinput,∅ lies at the highest intrinsic stiffness setting σmax = 10°. For
all curves, Pinput,∅ rises quickly below some stiffness value, especially for higher
excitation frequencies. At σP

opt = 10°, all excitations end up at a fairly low average
power input Pinput,∅ < 0.2 W. The highest average power input is reached at
the lowest stiffness setting of σmin = 0°. For the higher excitation frequencies
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Figure 4.28: Pinput,∅ over σ for different excitation frequencies
A1 = 20 Nm, Kq = 500 Nm/rad

ωext ≥ 1.5 Hz, the average power input Pinput,∅ is 45 W or higher at σmin. However,
it is not realistic to expect disturbances with such high frequencies in combination
with high amplitudes (20 Nm for this example) in practical situations.
Next, the impact of varying the amplitude on Pinput,∅ is addressed. Figure 4.29
shows Pinput,∅ for an excitation frequency of ωext = 2 Hz and amplitudes Ai between
1 Nm and 20 Nm. The controlled stiffness Kq is set to 500 Nm/rad. As in the
previous case, the optimal intrinsic stiffness σP

opt lies at σmax = 10° for all amplitudes.
Also, all curves have a local minimum at different intrinsic stiffness values σ. For
stiffness settings which are lower than that of the local minima, the Pinput,∅ rises
quickly. The variation of Pinput,∅ over σ rises with rising excitation amplitude.
Lastly, the power input and power output through the powerport Pms defined in
Eq. (3.21) is analyzed. Figure 4.30 illustrates the power input in red and the power
output in blue over 2 seconds. The dotted lines mark the average power input
Pinput,∅ and output Poutput,∅. The regarded disturbance parameters are written
in the table below Figure 4.30. The intrinsic stiffness setting leading to this
power-throughput is the optimal intrinsic stiffness setting σP

opt calculated by solving
Problem 4. Like also seen in the linear case (cf. Section 4.1.2 - Analysis of power
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Figure 4.29: Pinput,∅ over σ for different excitation amplitudes Ai

ωext = 2 Hz, Kq = 500 Nm/rad

input vs power output) the average power input Pinput,∅ is always smaller than
the average power output Poutput,∅ if the linkside damping factor ξq > 0. Also, the
ratio Rin,out between Pinput,∅ and Poutput,∅ defined in Eq. (4.4) is the lowest at σP

opt.
Unlike in the linear case, the power output is not minimal at σP

opt.
After performing multiple experiments for different external disturbances, the
results show that for the majority of the disturbances, the highest stiffness setting
σmax of the FSJ leads to the minimal average power input (σP

opt = σmax). This is
why it is questionable whether the effort of performing the optimization of the
intrinsic stiffness setting σ (cf. Problem 4) is worthwhile. In disturbance scenarios
where σP

opt does not equal the maximum stiffness setting σmax, the differences of
Pinput,∅ at σP

opt and Pinput,∅ at σmax do not prove to be significant in the performed
experiments. This also shows the low impact of solving the optimization problem
presented in Problem 4.
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4.3 Conclusion

The following summarizes the results from Chapter 4. All sections cover the
optimization of the intrinsic stiffness setting K/σ with respect to different objective
functions while the system is under sinusoidal disturbance with a singular or multiple
frequencies. Several optimization problems are formulated which minimize the
peak control effort upeak or the average power input Pinput,∅. They are summarized
in Table 3.1
First, the analysis of the linear case is addressed. For a sinusoidal disturbance with
a single frequency the experiments show that the intrinsic stiffness K can be set
to Keig in order to match the eigenfrequency of the system with the disturbance
frequency in order to minimize the control effort. If the disturbance frequency
is not known, it is more promising to set the intrinsic stiffness K to the highest
setting to ensure a low control effort. The experiments show that a low controlled
stiffness Kq mostly leads to lower control effort than higher controlled stiffness
values. The applicability of this finding is limited since the controlled stiffness
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usually cannot be chosen arbitrarily.
For disturbances with multiple frequencies in the linear case, the control effort can
be minimized by solving an optimization problem (cf. Problem 1). The experiments
show that the optimal intrinsic stiffness Ku

opt always lies in between the stiffness
values Keig,i of the individual excitation frequencies. This enables the enhancement
of the optimization algorithm by reducing the number of starting points (see
Section 4.1.1 - Efficient solution of optimization problem). If no optimization is
performed, setting the intrinsic stiffness to the value Keig which is corresponding to
the highest excitation frequency is expected to lead to a low control effort, provided
that the amplitudes of the individual excitations are the same. If the amplitude of
an excitation frequency is higher than that of the other excitation frequencies, the
optimal intrinsic stiffness value Ku

opt shifts in the direction of the respective Keig.
The next section covered the minimization of the power input of the motor in the
linear case for the disturbance with a single frequency. Analog to the minimization
of the control effort, setting the intrinsic stiffness to Keig leads to the lowest power
input.
The optimal intrinsic stiffness KP

opt which reduces the average power input of the
motor Pinput,∅ can be calculated by solving an optimization problem (Problem 2).
If no optimization is performed, some heuristics can serve as a hint on how to set
the intrinsic stiffness: For excitations with multiple frequencies, Keig cannot be
used as an orientation to set the optimal intrinsic stiffness. However, the analysis
of plots shows that above a certain controlled stiffness Kq, the optimal stiffness
values lie on a diagonal defined by Kq,diag = Kdiag + b. Under certain circumstances,
this allows the calculation of the optimal intrinsic stiffness KP

opt (see Section 4.1.2).
Finally, the experiments show that the minimization of the power input also leads
to minimal power output.
For VSAs with a nonlinear elastic element, two more optimization problems which
minimize the peak control effort upeak and the average power input Pinput,∅ are
formulated (cf. Problem 3 and 4). For solving the optimization problems of
the nonlinear case, performing Simulink simulations is needed. For disturbance
with a single frequency, some characteristics are identified for setting the intrinsic
stiffness in order to minimize the peak control effort upeak without performing an
optimization:

• The optimal intrinsic stiffness setting σu
opt rises with the excitation frequency
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ωext.
• The optimal intrinsic stiffness setting σu

opt rises the with excitation amplitude
Ai.

• The lower the amplitude of the disturbance, the higher the benefit of opti-
mization. For high amplitudes the optimized stiffness setting σu

opt does not
reduce the peak control effort upeak significantly compared to the highest
stiffness setting.

• The optimal intrinsic stiffness setting σu
opt in the nonlinear case leads to higher

minimal peak control effort upeak,min than the optimal intrinsic stiffness Ku
opt

in the linear case for equal external disturbances.
These characteristics did not prove to be applicable for disturbances with multiple
frequencies. In this case solving Problem 3 is needed to derive the optimal intrinsic
stiffness setting σu

opt.
Finally, the minimization of the power input for the nonlinear case is analyzed.
Even though σP

opt can be calculated by solving Problem 4, it is questionable whether
the optimization results justify the effort of performing an optimization. For the
majority of the disturbance scenarios, the highest possible stiffness setting σmax leads
to the minimal average power input Pinput,∅ meaning that σP

opt = σmax.
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5 Discussion and outlook

This thesis analyzes the impact of the adjustable intrinsic stiffness of VSAs on the
control effort and the power input of the motor during external disturbances. The
ESπ control concept presented in [16] which is used for the control of VSAs serves
as the basis of the analyses performed in this thesis. The focus lies on sinusoidal
disturbances with single and multiple frequencies. The analysis covers VSAs with
both linear and nonlinear spring characteristics.
For the linear case, transfer functions are derived that allow the calculation of the
control effort and the power input resulting from the disturbance. Additionally,
optimization problems are formulated to determine the intrinsic stiffness which
minimizes the control effort or power input under disturbance using the derived
transfer functions. The optimization is improved for efficiency, which may enable
real-time optimization for linear VSAs. However, this needs to be investigated
further. For applications where the disturbances cannot be measured or no opti-
mization is feasible, heuristics are derived which help choosing the intrinsic stiffness
setting in those situations.
For VSAs with nonlinear spring characteristics, no analysis via transfer functions
is possible. Thus, a Simulink model of a single DoF VSA is created, based on
the FSJ used in the DLR David robot. The Simulink model is used for another
optimization problem in order to find the optimal intrinsic stiffness setting which
minimize the control effort or the power input. Optimizing the stiffness setting via
the Simulink model is computationally expensive, which is problematic for real
time applications. Consequently, more heuristics are derived, which help choosing
the intrinsic stiffness of a VSA with respect to external disturbances.
In general, it can be stated that the adjustability of the intrinsic stiffness allows
for a reduction in control effort when the VSA is under disturbance. The optimal
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intrinsic stiffness, which results in minimal control effort, is strongly dependent
on the external disturbance and other control parameters of the ESπ controller.
Therefore, it is necessary to measure the external disturbances and perform an
optimization to find the optimal intrinsic stiffness value.
Although adjusting the optimal intrinsic stiffness has potential to minimize the
control effort, its impact on the power input of the motor is comparably low. The
reason for this is that the ESπ control concept is designed to change the original
system dynamics to a minimal extent, i.e. that the controller introduces as little
energy as possible into the system [1].
This thesis demonstrates the potential of using the adjustability of the intrinsic
stiffness of VSAs to minimize control effort in disturbance scenarios. However,
further research is necessary. While this thesis concentrated on sinusoidal dis-
turbances, it may be worthwhile to explore other disturbance scenarios such as
collisions. Furthermore, additional research could explore the effect of intrinsic
stiffness on control effort in tracking scenarios.
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