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Abstract—In this article, we propose a multimodal co-learning
framework for building change detection. This framework can be
adopted to jointly train a Siamese bitemporal image network and
a height difference map (HDiff) network with labeled source data
and unlabeled target data pairs. Three co-learning combinations
(vanilla co-learning, fusion co-learning, and detached fusion co-
learning) are proposed and investigated with two types of co-
learning loss functions within our framework. Our experimental
results demonstrate that the proposed methods are able to take
advantage of unlabeled target data pairs and therefore enhance
the performance of single-modal neural networks on the target
data. In addition, our synthetic-to-real experiments demonstrate
that the recently published synthetic dataset SMARS is feasible
to be used in real change detection scenarios, where the optimal
result is with the F1 score of 79.29%.

Index Terms—change detection, co-learning, multimodal learn-
ing, domain adaptation, digital surface models (DSMs)

I. INTRODUCTION

BUILDING change detection is an essential yet challeng-
ing task in the remote sensing (RS) field. It aims to

identify the differences in the condition of building objects
within defined areas from multi-temporal 2D, 2.5D, or 3D
data [1]. Detection of building changes is required in a wide
range of real-world applications, such as urban monitoring
[2], disaster assessment [3], and map updating [4]. Building
change detection methods can be categorized into two kinds
of pipelines: (1) change detection based on post-classification,
which first predicts building masks for bitemporal data and
then generates building change maps based on the difference of
predicted building masks. (2) Direct change detection, which
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directly extracts change features and converts the features to
building change maps. In this work, we concentrate on the
latter. Unless specified otherwise in the text, the follow-up
“building change detection” or “change detection” in this ar-
ticle refers to direct change detection. Direct change detection
commonly consists of two steps: feature extraction and change
detection [5].

Before utilizing machine learning methods for change detec-
tion, traditional transformation-based algorithms and image al-
gebraic operations were mainstream approaches [5]–[8]. These
methods usually first calculate the difference between bitem-
poral images and then apply threshold- or clustering-based
classification algorithms on the image difference to generate
change maps [9]. However, these pixel-based methods are lim-
ited to processing low- or medium-resolution images because
they cannot analyze contextual relationships. Although some
improved object-based methods are designed to deal with high-
and very high-resolution images, they still have obvious lim-
itations such as being sensitive to noise and computationally
expensive [5], [9]–[11]. They typically achieve low accuracy
when dealing with large-scale diversity-enriched data due to
the poor generalization ability of handcrafted features.

As change detection can be regarded as a classification prob-
lem, machine learning approaches are naturally introduced.
Similar to machine learning-based studies in other remote
sensing fields, support vector machine (SVM) and random for-
est (RF) [12]–[15] are the two most popular models for change
detection before the deep learning methods are commonplace.
Additionally, graphical models such as Markov random field
and conditional random field are widely employed for the pur-
pose of better utilizing contextual relationships and generating
fine-grained boundaries [16]–[19]. However, these machine
learning methods are still difficult to effectively apply in large-
scale datasets with obvious domain gaps. It is a huge challenge
to design effective universal change features manually.

The rapid advancement of deep neural networks in recent
years has set new standards in supervised 2D change detection
[5], [20]–[23]. Specifically, the success of convolutional neural
networks (CNNs) in other remote sensing and computer vision
tasks [24]–[27] has established CNNs as the backbone for
change detection in numerous studies. Few of them are based
on single-stream architectures [21], [28], [29], which take
as input image differencing, hand-crafted change features,
or concatenation of bitemporal images. Due to the large
variability between the pre- and post-event images, the single-
stream methods often suffer from noise and loss of information
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from the input, inhibiting a wider application in remote sensing
change detection. Consequently, the mainstream methods are
based on the Siamese architecture [21], [30], which extracts
features from bitemporal images via two parallel encoders with
the same network structure. The Siamese approaches not only
maintain the information lost in single-stream approaches but
also exhibit more robust and distinctive representations for the
object of interest [31]–[40]. More recently, vision transformer
(ViT) [41], [42] has achieved further success in deep learning-
based image processing topics and attracted attention from
the remote sensing community. Transformer-based methods
have also been introduced in several recent change detection
studies [30], [43]–[45] and achieved stunning results. With
the development of foundation models, recent studies like
[46]–[48] have successfully incorporated them into the change
detection task, paving a way for further improvement in this
area.

Despite the remarkable performance of the 2D deep learning
methods on benchmark datasets, their real-world applications
are still constrained. Myriad state-of-the-art change detection
methods are in a fully supervised fashion. While satisfactory
results on the test sets of benchmark datasets can be achieved,
the performance of the trained models on other datasets usually
displays a steep decline as a result of domain gap [34], [49].
In remote sensing data, domain gaps can be attributed to the
differences in image sensors, spatial resolutions, acquisition
conditions, etc. In RS change detection specifically, change
features can be very dissimilar depending on the location
of the data, e.g., urban and rural, Europe and Asia. domain
gap is widespread between different change detection datasets
of optical images. Yet this challenge has not been overcome
by 2D fully supervised methods [34], [50]. To make things
worse, annotating RS change detection data is not only ex-
tremely time-consuming and requires specific knowledge of
the regions, but is also error-prone as unchanged areas are
dominant. Therefore, creating the annotation of an unseen area
for fine-tuning is not practical. Another issue is the intrinsic
limits of 2D data in identifying changes. The change in height
can not be quantified with only 2D orthorectified images.
Consequently, geometric information is receiving increasing
attention.

Benefiting from the development of photogrammetric tech-
niques, 3D sensors such as LiDAR, as well as TomoSAR
techniques, 2.5D and 3D data have been becoming easier to
obtain. As 2.5D and 3D data have rich geometric information,
they can better describe regular man-made objects including
buildings and their changes, and provide more discriminative
features [1], [51]. As a result, several traditional change
detection methods employed bitemopral DSMs as the input
data for building change detection. The simplest approach
is DSMs subtraction, which is computationally cheaper, and
achieves good performance when using high-quality DSMs
from LiDAR and airborne stereo data [52], [53]. To improve
the change detection accuracy, various refinement approaches
are introduced. For instance, building indicators from images
[54], [55], shape information [56] or the existing GIS cadastral
maps [57]. In our previous study, we notice that 2.5D data
has better generalization performance than 2D images with

appropriate deep neural networks [51], [58]. Naturally, a
question (A) comes out for the building change detection
task: Do neural networks designed for DSMs also demonstrate
better generalization performance than those designed for 2D
images?

Although DSMs are good at describing geometric features,
they also have disadvantages such as inevitable outliers and
unsharpened building boundaries, which could result in incor-
rect change detection [1]. Furthermore, due to the diversity of
the data, it is impossible to ensure that the domains of the
target and source data are always consistent. Domain gap is
also one of the main problems constraining the effectiveness
of deep learning algorithms in the representation of 2.5D/3D
data [58], [59]. Desiring beyond homogeneous data, a few
learning-based studies have shifted the focus from single-
modal methods to multimodal data fusion, enriching the fea-
tures or probabilities via a fusion operation (e.g., summation,
average, concatenation, etc.). 2D-2.5D/3D data fusion utilizing
multimodal data as inputs for a fusion framework may increase
the accuracy of change detection [60]. Recently, multimodal
knowledge transfer semi-supervised learning architecture rep-
resented by co-learning utilizing multimodal data pairs only
for the training phase [61], [62] has attracted the attention
in remote sensing tasks such as building extraction [51], [58]
and semantic segmentation [63]. These methods can further
enhance the generalization performance of image networks
and DSM/point cloud-based networks, breaking the constraints
of domain gaps. Naturally, another question (B) comes to our
minds: Are there any co-learning architectures suitable for
building change detection when the source data and target data
are with large domain gaps?

With the maturity of photogrammetry techniques like struc-
ture from motion and dense matching [64], [65], it is no longer
a big challenge to obtain high-quality DSMs. Nowadays, UAV
data are widely used in local and near real-time surveil-
lance applications [66]. Almost any commercial UAV image
data processing software can produce DSMs. For large-scale
monitoring, more satellites like Pléiades-Neo [67], World-
View [68], and Gaofen [69] series are available to provide
VHR optical images and stereo-/multi-view vision products
including DSMs. At minimal cost, well-matched orthophotos
and DSMs can even be derived from a single pair of high-
resolution stereo images by photogrammetry algorithms. Such
aligned orthophotos and DSMs require low acquisition costs
and are therefore commonly used in real applications [67],
[70], [71]. However, existing learning-based 2.5D change
detection studies are very limited. Therefore, in this work, we
investigate the advantage of utilizing 2.5D imagery-derived
photogrammetric DSMs as the input for change detection,
and an effective co-learning framework with corresponding
2D optical images, to answer the above-mentioned questions
A and B. To sum up, the contributions of our work are as
follows:

1) We propose a co-learning framework for bitemporal
images and DSMs modalities, focusing on the building
change detection task. Three well-designed co-learning
combinations (vanilla co-learning, fusion co-learning,
and detached fusion co-learning) are proposed, defined,
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and investigated in this work. Furthermore, we present
a way to determine whether these co-learning combina-
tions are equivalent for different loss functions.

2) This work highlights the advantages of photogrammet-
ric DSMs in the task of building change detection.
Compared with 2D optical imagery, existing studies on
photogrammetric DSMs are limited. We propose an end-
to-end transformer-based network for change detection
from HDiff maps and investigate the difference from 2D
change detection in cross-domain scenarios.

3) This work also involves synthetic-to-real domain adap-
tation, a novel topic in remote sensing. To the best of
our knowledge, this is the first study to address this topic
specifically for the change detection task. We utilize co-
learning as a domain adaptation method and explore
the potential of using the recently published synthetic
benchmark dataset SMARS [72] to train change detec-
tion deep neural networks for a real dataset.

Our experiments demonstrate that the proposed co-learning
methods can effectively transfer mutual information across
modalities and improve the performance of the Siamese net-
work and the proposed HDiff map networks on cross-domain
target data.

The remainder of this paper is organized as follows: section
II reviews related works on multimodal deep learning with
2D images and 2.5D/3D Data, as well as multimodal change
detection. Section III introduces the methodology employed in
our work. Section IV describes the implementation of exper-
iments and results comparisons of different methods. Section
V presents the discussion on experiments and methodology.
Last but not least, section VI concludes the paper.

II. RELATED WORKS

A. Multimodal Deep Learning with 2D Multispectral Images
and 2.5D/3D Data

Depending on how the information from both modalities
is utilized, multimodal deep learning works with 2D images
and 2.5D DSMs/3D point clouds in the remote sensing field
can be generally classified into two categories: data fusion and
knowledge transfer.

Data fusion refers to the techniques of combining mul-
timodal data and related information during the process. It
is based on the intuition that improved accuracy could be
achieved with multimodal information compared with using
single-modal data alone [73]. Depending on the locations
where the fusion operations take place, data fusion approaches
can be categorized into early fusion (observation-level fusion),
middle fusion (feature-level fusion), late fusion (decision-level
fusion) [51], [73], and their combinations.

Early fusion is carried out at the data input stage. In remote
sensing tasks, 2D multispectral images are concatenated with
the height values of DSMs or normalized DSMs (nDSMs)
as the input channels to a single-modal network. For example,
[74] proposes the gated residual refinement network (GRRNet)
using multispectral images and LiDAR-derived nDSMs as the
input. A gated feature labeling (GFL) unit is designed in
the decoder to refine the semantic segmentation results. In

a few early fusion studies, spectral information from images
is added directly to 3D point clouds as per-point values, and
colorized point clouds are processed in a three-dimensional
domain with point cloud deep neural networks. However, till
now no consensus has been reached on whether coloring the
3D point clouds brings advantages [75]. Some earlier studies
found such fusion operations can even lead to a decline in the
performance of point cloud networks [51], [76], [77].

Middle fusion is carried out at feature embedding levels
in the middle of the model, aiming at fusing deeper features
of different modalities into a composite one. The subsequent
operations such as convolution are based on the fused fea-
tures. For instance, [70] adopts a FuseNet-like [78] semantic
segmentation architecture with feature fusion modules. Multi-
spectral images and nDSMs are processed by two individual
encoders. In addition, a third encoder, namely the virtual
encoder for fused feature maps of two modalities is introduced.
The virtual encoder takes its previous activations concatenated
with the activations from the other two encoders as the input.
A single-stream decoder is utilized to upsample the encoded
fused representation afterward. This symmetrical design can
alleviate the need to select the main modality source. [79] pro-
poses a CNN architecture with a fusion operation combining
features from three parallel networks for building extraction.
Each parallel network processes one data modality. The input
data to this architecture contain RGB images, panchromatic
images, and nDSMs. Experimental results demonstrate that
the fusion of several networks has superior generalization
performance on unseen data. [80] proposes a dual-channel
scale-aware semantic segmentation network with position and
channel attentions (DSPCANet), which uses two branches to
process multispectral images and DSM rasters individually.
Multimodal features are concatenated and further refined by a
channel attention module and an improved position attention
module. [71] presents an end-to-end cross-modal gated fusion
network (CMGFNet) for building extraction, which introduces
a gated fusion module (GFM) for fusing features from separate
multispectral image encoder and DSM encoder. Experiments
on three datasets demonstrate that GFM can produce features
that contain more discriminative information about building
objects and backgrounds than traditional summation and con-
catenation feature fusion methods.

Late fusion is carried out at the decision stage of the model,
which fuses probability maps output from deep learning mod-
els of different modalities. For instance, [70] designs a late
fusion semantic segmentation architecture for multispectral
images and nDSMs. This method first averages predictions
from two modalities to generate a smooth fused prediction.
Then a residual correction module is applied to refine the
probability with a small offset. This architecture is tested with
SegNet and ResNet as the backbone and is suited to combine
different strong deep learning models that are confident in the
predictions. To further exploit the advantages of each fusion
strategy, some works adopted multiple fusion strategies and
conducted more complex multimodal networks [81], [82].

Knowledge transfer does not directly operate on the data
or extracted features. There are two principles of knowledge
transfer methods: (1) employing different network branches
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for different data modalities. (2) Bridging the relationships
between different modalities by soft connections (usually loss
functions). Each network only influences others in the training
phase and can be utilized alone for testing single-modal data.
Compared with the data fusion strategies, knowledge transfer
is more flexible and therefore is more applicable in various
scenarios, such as in the case of missing modalities during
the testing time. In addition, another limitation of data fusion
is the inefficient utilization of the complete information of
the raw heterogeneous data and the complementary nature of
multimodalities, which may result in incorrect and irrelevant
feature representations [63], [71]. In contrast, knowledge trans-
fer always uses different network branches to process different
data modalities, effectively maintaining the completeness of
heterogeneous information and reducing noisy information
from the other modalities. In recent years, 2D/3D co-learning-
based approaches belonging to the knowledge transfer cate-
gory have been introduced in the remote sensing field. As
a pioneer, our previous work [51] presents a co-learning
framework for 2D and 3D building extraction networks with
multispectral images and photogrammetric point clouds, which
significantly improves the performance of both image and
point cloud networks with very few labeled data pairs and a
large quantity of unlabeled data pairs. In [58], we extend the
co-learning framework proposed in [51] for the cross-domain
building extraction task and the spaceborne-to-airborne ex-
periment demonstrates the power of such methodology on
an unlabeled target dataset. Recently, [63] proposes an im-
balance knowledge-driven multimodal network (IKD-Net) for
the semantic segmentation task, combining conventional data
fusion and co-learning. In its network architecture, IKD-Net
adopted a feature fusion module and a class knowledge-guided
module to refine the image feature maps with the features
from the strong LiDAR point cloud modality. A similarity
constraint is enforced as the co-learning loss function to guide
the weak image modality with mutual knowledge from the
strong LiDAR point cloud modality.

B. Change Detection with Multimodal Data

Compared with the single-modal image or DSM data,
multimodal data provide more stable and accurate change fea-
tures. Therefore, several studies have introduced multimodal
strategies for change detection. For example, in our previous
works the decision fusion method belief functions have been
proven to be an efficient fusion module for multimodal change
detection [60], [83], [84], which can effectively improve the
building change detection results compared with single-modal
change indicators. The paper [83] proposes a change detection
pipeline based on the robust height differences between DSMs
and the similarity measurement between corresponding optical
image pairs. A fusion module based on the Dempster-Shafer
theory is adopted to fuse these two change indicators, which
significantly improves the change accuracy compared with the
results of either single modality. Additionally, vegetation and
shadow classification results are introduced as extra informa-
tion to refine the initial change detection results, and a building
extraction method based on shape features is performed to get

more accurate building change maps. [84] proposes another
multimodal change detection framework. First, it uses a refined
basic belief assignments (BBAs) model to calculate the BBAs
of the change indicators from optical images and DSMs.
Then a building change detection decision fusion approach
is applied to fuse these BBAs. Finally, four decision-making
criteria are employed to convert the fused global BBAs to
building change maps. [60] extends the framework in [84] and
employs initial building probabilities extracted by the deep
neural network Deeplabv3+ for the change decision, which
shows better generalization ability than the previous version.
Also based on the Dempster–Shafer theory, [85] introduces a
complementary evidence fusion framework. In this framework,
the image change indicator is calculated with the subtraction of
the normalized difference vegetation index (NDVI) of bitem-
poral images. A complementary evidence combination rule
is employed for the decision fusion to alleviate the conflicts
between the change evidence from optical images and DSMs.
Recently, [86] utilizes the morphological building index (MBI)
as the image change feature and robust height difference
proposed in [83] as the height change feature and proposes
a co-segmentation framework for building change detection.
The changed areas and unchanged areas are distinguished by
a graph-cut-based energy minimization method.

Nevertheless, end-to-end deep learning-based multimodal
change detection methods have not been widely investigated,
which is partly due to the lack of sufficient public datasets
[72], [87]. Although [60] involves deep learning, it only
uses the network for building extraction rather than change
detection. The lack of sufficient multimodal change detection
data impedes the development of robust end-to-end methods
with strong cross-domain generalizability. The flexible require-
ment for data of the co-learning framework could have huge
implications for multi-modal change detection research.

III. METHODOLOGY

A. Overview

We aim to develop a generic image-DSM co-learning frame-
work for the building change detection task. This framework
is based on two individual CNN-transformer-fused networks
for the modalities images and DSMs, respectively. Fig. 1
illustrates the overview of the framework. In this framework,
two networks can be trained jointly with labeled training data
and partially unlabeled multimodal data pairs. The DSMs are
processed in the format of height difference. This is because
height difference can play a better generalization ability with
explicit geometric features, while bitemporal DSMs can not
be well utilized by the Siamese image network. Related com-
parisons are presented in section IV. To generate HDiff maps,
different methods can be used. In our framework, two height
difference operations are designed: direct height difference and
robust height difference [83].

The following subsections give detailed introductions and
descriptions of the methods used in this framework.
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Fig. 1. Our proposed co-learning change detection framework.

B. Problem Statement: Co-learning for Cross-Domain Change
Detection

Assume that there are two datasets in a cross-domain
scenario, the source dataset Ds and the target dataset Dt. Each
dataset includes bitemporal data. In the following text, we
use subscripts 1 and 2 to denote pre- and post-event data,
respectively. Ds consists of labeled source samples {{Is1 , Is2},
{Hs

1 , Hs
2}, Gs}, including pre-images Is1 , post-images Is2 , pre-

DSMs Hs
1 , post-DSMs Hs

2 , and the change detection ground
truths Gs. Dt consists of unlabeled target samples {{It1, It2},
{Ht

1, Ht
2}}, including pre-images It1, post-images It2, pre-

DSMs Ht
1, and post-DSMs Ht

2.
fI is the image branch operation (i.e., the image change

detection network) for pre-/post-image pairs {Is1 , Is2} and {It1,
It2}. The building change probabilities P s

I and P t
I predicted

by the image branch operation are calculated as follows:

P s
I = fI(I

s
1 , I

s
2) , (1)

P t
I = fI(I

t
1, I

t
2) , (2)

fH is the DSM branch operation (including a height dif-
ference preprocessing operation and HDiff map network) for
pre-/post-DSM pairs. The probabilities P s

H and P t
H for DSM

pairs{Hs
1 , Hs

2} and {Ht
1, Ht

2} predicted by the DSM branch
are calculated as the follows:

P s
H = fH(Hs

1 , H
s
2) , (3)

P t
H = fH(Ht

1, H
t
2) , (4)

1) Supervised Change Detection with Labeled Source Data:
To supervise the pixel-wise change detection, a generic loss
function LS measuring the difference between the source
building change probability P s

I /P s
H and ground truth Gs is

needed:
LI
S = LS(G

s||P s
I ) , (5)

LH
S = LS(G

s||P s
H) , (6)

where LI
S and LH

S denote the supervised change detection loss
function for image modality and DSM modality, respectively.

2) Co-learning with Unlabeled Target Data: In this subsec-
tion, we propose three co-learning combinations: vanilla co-
learning, fusion co-learning, and detached fusion co-learning.

Vanilla Co-learning: This is the co-learning implementation
following the idea presented in [51], which is based on the
intuition that if both the image branch and DSM branch can
produce good predictions, their building change probabilities
P t
I and P t

H should be consistent with each other. Hence,
the target co-learning problem is formulated as a generic
consistency loss function LC to minimize the distributions of
P t
I and P t

H . The vanilla co-learning loss functions for image
modality LI

CL−V and DSM modality LH
CL−V are calculated

as follows:
LI
CL−V = LC(P

t
H,d||P t

I ) , (7)
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LH
CL−V = LC(P

t
I,d||P t

H) , (8)

where P t
H,d and P t

I,d refer to detached P t
H and P t

I , respec-
tively. Detached probabilities mean they are variables removed
from the gradient computational graph so they do not affect the
update of the weights for the corresponding networks. They
can be named shadow reference probability, utilized by the
main modality network as the reference in the co-learning loss
function [51].

Fusion Co-learning: This co-learning method is based on
the intuition that if both the image branch and DSM branch can
produce good predictions, their building change probabilities
P t
I and P t

H should be consistent with the average fusion
probability P t

I+P t
H

2 . Hence, the target co-learning problem
is formulated as a generic consistency loss function LC to
minimize the predicted probability distributions of P t

I /P t
H and

shadow reference probability P t
I+P t

H

2 . The fusion co-learning
loss functions for image modality LI

CL−F and DSM modality
LH
CL−F are calculated as follows:

LI
CL−F = LC(

P t
I + P t

H,d

2
||P t

I ) , (9)

LH
CL−F = LC(

P t
I,d + P t

H

2
||P t

H) , (10)

where P t
H,d and P t

I,d refer to detached P t
H and P t

I , respec-
tively.

Detached Fusion Co-learning: If the average probability
P t

I+P t
H

2 is fully detached from the computational graph and
as a constant, another co-learning format is obtained. We
name it detached fusion co-learning. The detached fusion co-
learning loss functions for image modality LI

CL−DF and DSM
modality LH

CL−DF are calculated as follows:

LI
CL−DF = LC(

P t
I,d + P t

H,d

2
||P t

I ) , (11)

LH
CL−DF = LC(

P t
I,d + P t

H,d

2
||P t

H) , (12)

where LC denotes a generic consistency loss function. P t
H,d

and P t
I,d refer to detached P t

H and P t
I , respectively.

In some cases, LC may result in the situation that two or
even all of LCL−V , LCL−F , and LCL−DF are equivalent.
Appendix A gives a way to evaluate whether three co-learning
combinations are inequivalent.

3) Total loss function: The total loss function is a weighted
sum of the above-mentioned individual losses calculated dur-
ing the training iteration. In our framework, combining the
supervised change detection loss function LI

S /LH
S and the co-

learning loss function LI
CL/LH

CL, the total loss function of the
training phase can be obtained:

LI
total = λ1LI

S + λ2LI
CL , (13)

LH
total = λ1LH

S + λ2LH
CL , (14)

where LI
CL ∈ {LI

CL−V ,LI
CL−F ,LI

CL−DF } and LH
CL ∈

{LH
CL−V ,LH

CL−F ,LH
CL−DF }. LI

total, LI
S , and LI

CL are the

total loss function, the supervised loss function, and the co-
learning loss function for the image modality, respectively.
LH
total, LH

S , and LH
CL are the total loss function, the supervised

loss function, and the co-learning loss function for the DSM
modality, respectively. λ1 and λ2 are the hyperparameters to
weigh the supervised loss function and the co-learning loss
function.

Algorithm 1 Training Phase of the Proposed Change Detec-
tion Co-learning Method
Input: Ds, Dt

Output: WI , WH

1: Initialize WI , WH

2: while n < N do
3: Part 1: Learning with labeled source samples
4: (1) Randomly sample B labeled source data samples
{{Is1 , Is2}, {Hs

1 , Hs
2}, Gs} from the source dataset Ds.

5: (2) Forward pass:
6: P s

I ← fI(I
s
1 , I

s
2)

7: P s
H ← fH(Hs

1 , H
s
2)

8: (3) Calculate supervised loss:
9: LI

S ← LS(G
s||P s

I )
10: LH

S ← LS(G
s||P s

H)
11:
12: Part 2: Learning with unlabeled target samples
13: (1) Randomly sample B unlabeled target data samples
{{It1, It2}, {Ht

1, Ht
2}} from the target dataset Dt.

14: (2) Forward pass:
15: P t

I ← fI(I
t
1, I

t
2)

16: P t
H ← fH(Ht

1, H
t
2)

17: (3) Calculate co-learning loss:
18: LI

CL ← LC(P
t
I , P

t
H,d)

19: LH
CL ← LC(P

t
H , P t

I,d)
20:
21: Part 3: Backward propagation and updating network

parameters
22: (1) Calculate total loss:
23: LI

total ← λ1LI
S + λ2LI

CL

24: LH
total ← λ1LH

S + λ2LH
CL

25: (2) Backward pass:
26: Calculate the backward pass for the image change

detection network.
27: Calculate the backward pass for the DSM change

detection network.
28: (3) Update: WI , WH

29: end while
30: Return WI , WH

Algorithm 1 presents how the proposed framework is im-
plemented. During the training phase, each iteration consists
of two groups of forward pass operations, with separate
operations for the image and DSM networks. The first group
of forward pass uses the labeled source samples, contributing
to the supervised loss functions. The second group employs
unlabeled target samples and contributes to the co-learning
loss functions. The backward pass operations employ the total
loss functions. At the end of each iteration, the parameters of
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the image network WI and the DSM network WH are updated
with the help of the optimizer.

C. Siamese ResNet with Bitemporal Image Transformer Layer

Considering the balance between the network depth and
GPU memory, we employ the ResNet-50 convolutional net-
work [88] in a Siamese structure as the encoder and a bitem-
poral image transformer (BIT) module [30] at the bottleneck to
refine the original bitemporal image features. In general, this
architecture consists of three steps. (1) Employ a ResNet-50
backbone as the encoder, extracting initial features from pre-
event and post-event images. (2) Use a BIT module to refine
the initial features. (3) Fuse refined features by the subtraction
operation and utilize an elegant change classifier to convert
fused features to change maps. Fig. 2 presents the architecture
of the Siamese image network ResNet-50-BIT. We use the
ResNet-50 encoder to replace the ResNet-18 implemented by
[30], so the image encoder can extract more robust features
with the help of deeper structure [88]. In addition, we apply
a small change classifier to control the size of the model and
make sure it can be successfully run on an 11 GB RTX 2080
Ti GPU.

D. Transformer-based UNet for HDiff Maps

In this method, fH contains two steps: (1) generate HDiff
maps and (2) apply the HDiff network to process HDiff maps.
As HDiff rasters have 3D information of coordinates X , Y ,
and △Z, there are two main approaches to processing them.
One is to process them as point clouds [51], [58] with 3D
neural networks, while the other is to process them as 2D
rasters and the height difference values △Z are utilized as
input channels to a 2D network. Considering that the height
difference values in different cities typically fall within a
certain range and 2D networks are usually more efficient
than point cloud networks with the same scales [89], in this
study we employed a 2D SwinTransformer-based [42] U-shape
network (SwinTransUNet) as the processing branch for the
HDiff maps. Fig. 3 presents the architecture of our HDiff
map network SwinTransUNet. As it shows, the encoder is
conducted with Swin Transformer and patch merging blocks,
generating multiscale features with a hierarchical structure,
which has a good capability to capture global features. A U-
Net structure is utilized as the decoder, so different scales of
features can be utilized more efficiently. To control the com-
putational cost and GPU memory usage, the dimensionality
reduction blocks and upsampling blocks of the decoder are
based on convolution and transposed convolution operations,
respectively. Therefore, our HDiff network can also be trained
and tested on a relatively cheaper GPU with lower memory
such as an 11 GB RTX 2080 Ti.

E. Robust Height Difference

Due to limited resolution, illumination distortion, and cloud
cover, the matching quality of spaceborne images is often
limited, resulting in unsatisfactory quality of DSMs [83],
[90]. These DSMs, along with generated HDiff maps obtained

through direct pixel-wise subtraction, tend to contain numer-
ous unexpected outlier pixels. Such outliers can adversely
affect the performance of classification algorithms, such as
building extraction or change detection. To address the noise
issue and improve the quality of the HDiff map, a robust
difference method is proposed by [83].

The robust difference between bitemporal DSM H1 and
DSM H2 for the pixel (i, j) is defined as the minimum of
differences calculated with the pixel (i, j) in the post-DSM
and a certain neighborhood (with windows size 2 × w + 1)
of the pixel H1(i, j) in the pre-DSM. The robust positive
and negative differences DiffH

P (i, j) and DiffH
N (i, j) with

respect to the pixel (i, j) are defined in following equations:

DiffH
P (i, j) =

{
min
p,q
{H2(i, j)−H1(p, q)}, x2(i, j)− x1(p, q) > 0

0, x2(i, j)− x1(p, q) ≤ 0
(15)

DiffH
N (i, j) =

{
0, x2(i, j)− x1(p, q) ≥ 0

max
p,q
{H2(i, j)−H1(p, q)}, x2(i, j)− x1(p, q) < 0

(16)
where p ∈ [i− w, i+ w] and q ∈ [j − w, j + w] in a squared
window around the pixel (i, j). This operation only takes the
minimum value (greater than zero) of the positive change, or
the maximum value of the negative change within the defined
window region. Noisy outliers can be effectively eliminated
from the original height difference map.

In this work, we only consider building change or non-
change. Therefore, we utilize a combined binary robust differ-
ence map DiffH

R (i, j) including both positive and negative
differences, which is computed as follows:

DiffH
R (i, j) = DiffH

P (i, j) +DiffH
N (i, j) , (17)

F. Loss Functions

Our framework employs two categories of loss functions in
each training phase. First, a pixel-wise supervised loss function
is used in the labeled source data for the purpose of change
detection. Second, an unsupervised loss function is applied to
the unlabeled target data.

1) The loss function for supervised change detection:
Change detection is a pixel-wise classification task. Therefore,
we employ cross-entropy as the supervised loss function,
denoted as:

LS(G
s||P s

I ) = CE(Gs||P s
I )

=
∑
x∈X

Gs(x) logP s
I (x) ,

(18)

where Gs and P s
I are defined on the same probability space

X . Gs is the distribution of the source domain’s ground
truths. P s

I is the predicted probability distribution of the image
modality from the source domain. This is the supervised
change detection loss applied for the image modality.
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Fig. 2. (a) The architecture of the Siamese image network ResNet-50-BIT. (b) The classifier block. The modules of the tokenizer, transformer encoder, and
transformer decoder are forked from the official implementation of [30] https://github.com/justchenhao/BIT CD.

Fig. 3. (a) The architecture of the proposed HDiff network SwinTransUNet. (b) Convolution Embedding Block. (c) Transposed Convolution Block. The swin
transformer encoder modules are forked from the official implementation of [42] https://github.com/microsoft/Swin-Transformer.

https://github.com/justchenhao/BIT_CD
https://github.com/microsoft/Swin-Transformer
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In the same way, the supervised loss function for the DSM
modality is

LS(G
s||P s

H) = CE(Gs||P s
H)

=
∑
x̂∈X

Gs(x̂) logP t
H(x̂) , (19)

where P s
H is the predicted probability distribution of the DSM

modality from the source domain.
2) Loss functions for unsupervised multimodal co-learning:

In this work, two kinds of loss functions, KL divergence and
mean square error (MSE), are adopted as the co-learning loss
function.

As presented in section III-B, each loss function can be
integrated into our framework and generate three co-learning
combinations. It is possible for certain loss functions to result
in equivalent combinations, which have identical effects during
backpropagation and updating parameters. Appendix A out-
lines a method for determining whether LCL−V , LCL−F , and
LCL−DF are equivalent. Appendix B presents the derivation
for KL divergence and MSE loss functions. According to its
conclusion, when KL divergence is employed as LC , LCL−V ,
LCL−F , and LCL−DF are inequivalent. So they are three
different methods. When MSE is employed as LC , LCL−V

and LCL−F are equivalent. Therefore, only Vanilla co-learning
and detached fusion co-learning are reported for the MSE-
based experimental results in the following text.

IV. EXPERIMENTS

A. Datasets

1) Simulated Multimodal Aerial Remote Sensing (SMARS)
dataset: SMARS1 is a recently published synthetic aerial
remote sensing dataset by the German Aerospace Center
(DLR) and the International Society for Photogrammetry and
Remote Sensing (ISPRS) [72]. This dataset is designed for
multimodal urban semantic segmentation, building extraction,
and building change detection tasks. Its feasibility of be-
ing employed as a benchmark for algorithm training and
evaluation has been proven [72]. It consists of two sub-
datasets with distinct urban styles. One simulated city is
named Synthetic Paris (SParis). The other is named Synthetic
Venice (SVenice). Each sub-dataset includes bitemporal or-
thophotos, bitemporal photogrammetric DSMs, corresponding
semantic maps, and corresponding building change maps.
SMARS provides two versions, with resolutions of 30cm and
50cm, respectively. In this work, we employ the version of
50cm to evaluate the co-learning-based cross-domain change
detection experiments. The training, validation, and testing
raster sizes of the 50cm-SParis dataset are 1518×3560 pixels,
1008×3560 pixels, and 1974×3560 pixels, respectively. The
training, validation, and testing raster sizes of the 50cm-
SVenice dataset are 2800×5600, 2800×2128, and 2800×3472,
respectively. Based on SParis and SVenice data, two groups
of cross-domain experiments are conducted in this work: (1)
SParis→SVenice: SParis used for training, SVenice for testing,
and (2) SVenice→SParis: SVenice used for training, SParis for
testing.

1https://www2.isprs.org/commissions/comm1/wg8/benchmark smars/

2) Istanbul WorldView-2 dataset: The Istanbul WorldView-
2 dataset is a building change detection dataset covering two
areas of Istanbul, Türkiye with a GSD of 50 cm. This dataset
consists of 100 pairs of bitemporal orthophotos with RGB
channels and photogrammetric DSMs from 2011 and 2012
and the corresponding building change ground truth annotated
by hand. The orthophotos and photogrammetric DSMs are
generated from stereo WorldView-2 satellite images using
the improved semi-global matching approach [90], [91]. Each
patch has a pixel size of 400×400. In this work, the Istanbul
WorldView-2 dataset is used as the testing data in a series of
synthetic→real experiments, of which the training set is the
SMARS dataset.

Fig. 4 presents samples of the SMARS dataset and Istanbul
WorldView-2 dataset.

B. Experiment Setup

Our experiments are carried out based on the PyTorch
framework [92]. Single-modal baseline models are trained and
tested on a Geforce RTX 2080 Ti GPU with 11 GB RAM.
The co-learning experiments are performed on two Geforce
RTX 2080 Ti GPUs, one of which is used for training the
Siamese network for bitemporal images, while the other is
used for training the HDiff map network. In implementing the
ResNet-50-BIT network, the token length, decoder depth, and
dimension of heads are set to 4, 8, and 16, respectively. In the
settings of HDiff SwinTransUNet, the depths of 4 layers in
the encoder are 2, 2, 18, and 2, and the number of attention
heads of each layer is 3, 6, 12, and 24 respectively. The token
size of each patch is 4. The size of the windows is set to
12. In the training phase, we adopt the Adam optimizer with
a learning rate of 0.001. The training batch size is 3. All
models are trained for 30 epochs, which indicates a complete
pass through the labeled source training dataset. Considering
different methods may rely on different weights for the co-
learning functions, we report the best results from cases with
experience values λ2 = 0.1 and 1.0. λ1 remains equal to 1.0.
Considering the 400×400 size of the Istanbul WorldView-2
patches, the training data of SMARS dataset are cropped to
the patches with the same size and an overlap of 200 pixels.
SParis and SVenice training sets consist of 96 and 351 training
patches, respectively.

We test two co-learning loss functions and three types
of co-learning combinations in our experiments. To quanti-
tatively evaluate the performance of different methods, we
employed F1 and intersection over union (IoU) scores as the
primary evaluation metrics. In order to better demonstrate the
confusion between changed and unchanged pixels, precision
and recall are also reported in our work. These metrics are
calculated according to the following equations:

F1 =
2TP

2TP + FP + FN
, (20)

IoU =
TP

TP + FP + FN
, (21)

Precision =
TP

TP + FP
, (22)

https://www2.isprs.org/commissions/comm1/wg8/benchmark_smars/
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Fig. 4. Samples of SParis dataset and SVenice dataset of SMARS, as well as the Istanbul WorldView-2 dataset.

Recall =
TP

TP + FN
, (23)

where TP denotes the number of true positives, TN the true
negatives, FP the false positives, and FN the false negatives.

C. Experiment I: Domain Adaptation with Synthetic Data
As mentioned in section IV-A1, this experiment includes

two parts: SParis→SVenice and SVenice→SParis.
Table I presents the qualitative results of SParis→SVenice.

All co-learning combinations with either KL divergence or
MSE loss functions can achieve significant improvement in
the image network compared with the baseline. The network
trained using co-learning with detached fusion strategy and
the MSE loss function achieves the highest IoU and F1
scores, with an improvement of 62.19% on IoU and 63.97%
on F1, compared with the baseline method by single-modal
learning. In the results achieved by the HDiff network, the best
quantitative results are obtained by the co-learning-enhanced
network optimized by the MSE-based CL-V loss, of which the
IoU is 71.71% and the F1 score is 83.52%.

Among the results of SVenice→SParis experiments in Table
II, the single-modal image network with bitemporal images
has the poorest performance, with the IoU of 38.08% and
the F1 of 55.16%. All reported co-learning combinations with
two types of loss functions are able to improve the results.
The best image modality result is achieved when applying
detached fusion co-learning and using the MSE as the co-
learning loss, leading to an IoU of 88.04% and F1 of 93.64%.
The HDiff network SwinTransUNet can also benefit from co-
learning in this case. The method detached fusion co-learning

(KL divergence as the loss) achieves an increase of 2.71% on
IoU and 1.52% on F1.

Fig. 5 shows the qualitative results of SParis→SVenice.
From the given examples, the baseline bitemporal method
employing ResNet-50-BIT struggles to effectively identify
building changes in both images and DSMs. In fact, no single
changed building is fully detected. When using the baseline
method to process HDiff maps, reasonable results can be
achieved. However, numerous false positive pixels still exist
as highlighted with green color. With the help of co-learning,
the performance of the bitemporal network ResNet-50-BIT
is significantly better on the target domain images. At the
same time, the performance of the HDiff network is also
enhanced on the HDiff maps. Compared with the baseline
single-modal method, the HDiff network trained with co-
learning approaches generates fewer false negatives.

The results of SVenice→SParis shown in Fig. 6 are similar
to what happens in SParis→SVenice, which also demonstrates
the effectiveness of the proposed co-learning approaches.
All methods (co-learning or single-modal learning) in the
case of SVenice→SParis yield better results than in the
SParis→SVenice case. It can be explained by the higher
building diversities (sizes and shapes) of SVenice, which are
conducive to the robustness and generalizability of models
[72].

Single-modal HDiff baseline method achieves much bet-
ter results than the single-modal bitemporal image baseline
method. Yet, image networks possess greater improvement
potential when co-learning is applied. HDiff network is more
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prone to generate more false positive pixels, as shown in
example A in Fig. 5 and example B in Fig. 6. Since the
HDiff network is designed to detect the shapes with certain
height differences in the HDiff map, some non-man-made
object changes have similar geometric features with changes
in buildings and are therefore wrongly recognized. In Fig. 5
A, a noticeable false positive object of round shape at the
left border of all results by the HDiff network is the change
of a tree rather than a building. In the results of image-based
methods, however, only the network trained with the KL-CL-F
strategy makes the same mistake.

TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE EXPERIMENT

SPARIS→SVENICE. THE BEST SCORE IS SHOWN IN BOLD.

Modality Methods Precision Recall F1 IoU

Image

Baseline 40.92 14.19 21.07 11.78

KL
CL-V 91.97 65.17 76.29 61.66
CL-F 83.49 66.11 73.79 58.47

CL-DF 86.59 76.49 81.23 68.39

MSE CL-V 86.46 83.14 84.77 73.56
CL-DF 86.15 83.96 85.04 73.97

DSM

Baseline (Siamese) 55.95 30.51 24.60 39.48
Baseline (HDiff) 84.37 75.44 79.66 66.20

KL
CL-V 78.88 88.15 83.26 71.32
CL-F 81.35 85.02 83.15 71.16

CL-DF 74.90 90.96 82.16 69.71

MSE CL-V 81.04 86.17 83.52 71.71
CL-DF 84.11 82.07 83.08 71.05

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE EXPERIMENT

SVENICE→SPARIS. THE BEST SCORE IS SHOWN IN BOLD.

Modality Methods Precision Recall F1 IoU

Image

Baseline 82.97 41.31 55.16 38.08

KL
CL-V 95.99 89.35 92.55 86.13
CL-F 99.19 83.21 90.50 82.64

CL-DF 97.91 89.64 93.59 87.96

MSE CL-V 97.35 89.41 93.21 87.29
CL-DF 98.63 89.13 93.64 88.04

DSM

Baseline (Siamese) 54.64 35.25 42.85 27.27
Baseline (HDiff) 94.10 92.26 93.17 87.21

KL
CL-V 93.53 92.70 94.10 88.85
CL-F 97.28 90.32 93.66 87.86

CL-DF 95.55 93.85 94.69 89.92

MSE CL-V 96.03 93.08 94.53 89.62
CL-DF 97.65 91.79 94.63 89.81

D. Experiment II: SMARS→stanbul WorldView-2

In this experimental case, we adopt the full 50cm-SMARS
training data (including both SParis and SVenice) as the source
data and Istanbul WorldView-2 patches as the target data.
Additionally, to verify whether robust height difference can
improve building change detection results, two groups of
comparison experiments are presented. One group utilizes the
direct height difference operation to generate the HDiff maps
for Istanbul data, marked with a red D in Table III and the
following text. The other employs the robust height difference
method to calculate optimized HDiff maps for Istanbul data,
marked with a blue R in Table III and the following text.

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE EXPERIMENT

SMARS→ISTANBUL.

Modality Methods Precision Recall F1 IoU

Image

Baseline 7.95 3.21 4.57 2.34

KL

CL-V (D) 89.67 65.09 75.43 60.55
CL-F (D) 83.80 57.33 68.08 51.61

CL-DF (D) 85.03 64.04 73.06 57.55
CL-V (R) 92.27 63.03 74.90 59.87
CL-F (R) 80.43 59.79 68.59 52.20

CL-DF (R) 86.61 70.11 77.49 63.25

MSE

CL-V (D) 86.89 69.08 76.97 62.56
CL-DF (D) 87.32 68.27 76.63 62.11
CL-V (R) 84.71 74.51 79.29 65.68

CL-DF (R) 87.34 72.32 79.12 65.46

DSM

Baseline (Siamese) 40.33 27.83 32.94 19.71
Baseline (D) 66.12 78.43 71.76 55.95
Baseline (R) 74.41 72.93 73.67 58.31

KL

CL-V (D) 81.09 70.93 75.67 60.86
CL-F (D) 79.86 70.81 75.06 60.08

CL-DF (D) 80.97 70.07 75.13 60.16
CL-V (R) 77.11 76.55 76.83 62.38
CL-F (R) 75.76 76.55 76.16 61.49

CL-DF (R) 80.37 73.60 76.84 62.38

MSE

CL-V (D) 78.64 74.59 76.56 62.02
CL-DF (D) 78.37 76.64 77.49 63.26
CL-V (R) 81.42 73.33 77.17 62.82

CL-DF (R) 82.93 72.94 77.62 63.42

1) Co-learning with direct HDiff maps: As presented in
Table III, the Siamese image baseline network ResNet-50-
BIT trained with SMARS has abysmal performance on the
unseen Istanbul dataset, in which only 4.57% of the F1 score
and 2.34% of the IoU score are obtained. This performance
can be attributed to the significant spectral domain gap be-
tween the synthetic images and real WorldView-2 images. The
Siamese DSM baseline method also produces poor results,
again demonstrating that the Siamese DSM approach has a
poor generalization ability. By contrast, the baseline HDiff
network can achieve reasonable results with either R or D.

With the help of co-learning, the performance of the image
network is greatly improved. The best result by the Siamese
image network is achieved with the MSE-CL-V co-learning
variety, bringing up the F1 to 76.97% and the Iou to 62.56%.
The HDiff network SwinTransUNet can also be enhanced by
co-learning methods. All the results from different co-learning
combinations are superior to the baseline change detection
result of the HDiff map. Among them, the best result is
achieved with the co-learning variety MSE-CL-DF, leading to
a 12.25% higher precision, a 5.73% higher F1, and a 7.31%
higher IoU compared with the baseline method.

2) Co-learning with robust HDiff maps: According to
our past experience processing spaceborne DSMs [83], the
window size for robust height difference is set to 5 (i.e.
w = 2). The baseline results of R in Table III demonstrate
the advantage of robust height difference in single-modal
learning. In comparison to the baseline (D) using direct HDiff
maps, baseline (R) employing robust HDiff maps achieves an
increase of 1.91% and 2.36% on F1 and IoU, respectively.

With robust HDiff maps, all co-learning methods can also
improve the performance of both the ResNet-50-BIT image
network and the SwinTransUNet HDiff network. The MSE-
CL-V co-learning variety achieves the best image modality
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Fig. 5. Building change detection results of SParis→SVenice. Color legend: TP TN FN FP.

result, with an F1 score of 79.29% and an IoU score of
65.68%. For the DSM modality, the best result is achieved
by MSE-CL-DF, with the F1 score of 77.62% and the IoU of
63.42%. In addition, each co-learning-enhanced HDiff network
with robust HDiff maps yields better results compared with
the same method utilizing direct HDiff maps. For the image
modality, the best result achieved by MSE-CL-V (R) has a
2.32% higher F1 and a 3.12% higher IoU compared with MSE-
CL-V (D). For the DSM modality the best result achieved by
MSE-CL-DF (R) has a 0.13% higher F1 and a 0.16% higher
IoU compared with MSE-CL-DF (D).

According to the visualization results presented in Fig. 7,
Baseline (D) is more prone to generate obvious false positives
due to the outlier values in direct HDiff maps, especially as
exemplified by the green clusters in A and B. As the robust
height difference approach can filter out a portion of such
outliers, Baseline (R) (using the same model with Baseline
(D)) results contain fewer false positive pixels. Whether using
Direct HDiff maps or Robust HDiff maps, the co-learning
training approaches lead to significant improvements in image

results by ResNet-50-BIT and HDiff results by SwinTran-
sUNet. In Fig. 7 A, the results of robust HDiff maps with
co-learning varieties are superior to those of direct HDiff
maps with the same approach. In the results of direct HDiff
maps, more building change pixels are wrongly recognized
as unchanged pixels. In the image results, similar phenomena
can be observed. MSE-CL-V (D/image), which achieves the
highest score among all co-learning varieties with direct HDiff
maps, cannot recognize the change of a small building at the
bottom border of A, while MSE-CL-V (R/image) is capable.

Nevertheless, applying robust HDiff maps may have nega-
tive effects in a few cases. For instance, in Fig. 7 C, the left
building is an extension and only the extended part is defined
as a building change in the ground truth. In the robust HDiff
map, the height difference values of the narrow rectangular
area are processed to the same values of its connected extended
part. Therefore, the narrow rectangular area is completely
recognized as a building change by SwinTransUNet. Even
co-learning cannot correct this error. In this case, the image
network trained with co-learning performs better, and MSE-
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Fig. 6. Building change detection results of SVenice→SParis. Color legend: TP TN FN FP.

CL-V(R/image) correctly recognizes this area as a non-change
area.

V. DISCUSSION

A. Domain Gaps in Different Modalities

Due to the differences in imaging sensors, capturing con-
ditions, and preprocessing operations for the raw data, the
domain gaps of spectral distribution widely exist between
different source and target datasets in remote sensing tasks
[93]. Therefore, domain adaptation is becoming an essential
topic.

This study presented the building change detection results of
three baseline networks across three variants of two modalities:
Siamese optical images, Siamese DSMs, and HDiff maps.
Among the three paradigms, the HDiff maps demonstrate
the most remarkable generalization ability in cross-domain
scenarios. On the contrary, Siamese images and Siamese
DSMs fail to produce reasonable results in our experiments.
This phenomenon underscores the domain gap issues in
these Siamese modalities, including synthetic→synthetic and

synthetic→real cases, which is less pronounced in the HDiff
maps for building change detection tasks. The superior cross-
domain generalizability of HDiff maps can be attributed to
its explicit geometric features, which excel in representing
building changes. As a result, SwinTransUNet can learn robust
knowledge and yield reasonable results in HDiff map single-
modal learning mode. Nevertheless, the domain gaps of HDiff
maps between different synthetic data and those between
synthetic and real data are different. Since the two sub-datasets
of SMARS focus on urban scenes and have similar building
geometry, the domain gaps in HDiff maps between them
are not significant. The baseline method for HDiff maps can
yield commendable results, with the F1 score of 79.66% in
SParis→SVenice and 93.17% in SVenice→SParis. As men-
tioned in section IV-C SVenice has a higher building diversity
than SParis, which causes the main difference in building
changes between these two sub-datasets. Larger domain gaps
exist between SMARS and Istanbul datasets. First, Istanbul
data are derived from space borne WorldView-2 data that are
under the influence of real-world capturing conditions, which
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Fig. 7. Building change detection results of SMARS→Istanbul. Color legend: TP TN FN FP.
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could also lead to variation in the quality of DSMs. Second, the
Istanbul dataset encompasses not only urban scenes but also
suburban industrial areas, where the building and the building
change characteristics differ from those in the urban scenes
of SMARS. The aforementioned points present the challenge
for cross-domain experiments as exemplified by the case C in
Fig. 7.

B. Co-learning-Enhanced Siamese Image Modality and HDiff
Map Modality

As HDiff maps demonstrate superior generalization ability
to Siamese DSMs, our co-learning experiments are conducted
with the strong modality HDiff map and weaker modality
Siamese images. An intuition is that the strong modality can
assist the weaker modality’s hidden feature map refinement
with cross-modal learning [63]. Our experiments demonstrate
that the performance of the Siamese image change detection
branch ResNet-50-BIT can be significantly improved on the
target data. In addition, the performance of the HDiff map
network can be further boosted with the help of hidden
knowledge from the Siamese image modality, which has very
poor performance with single-modal learning. However, the
Siamese image modality sometimes outperforms the HDiff
map modality in the co-learning mode. As described in section
IV, the co-learning-enhanced Siamese image network can
accurately differentiate building changes and tree changes. It
can even achieve higher evaluation metrics in experiments
SParis→SVenice and SMARS→Istanbul. These promising
results demonstrate that the proposed co-learning building
change detection framework can boost the performance of each
modality.

C. Multimodal Co-learning

Co-learning is a concept first proposed in the multimodal
learning field [61], [62]. We follow the definition in papers
[61] and [62]. Its main idea is to transfer mutual informa-
tion/knowledge between different modalities with a consis-
tency constraint, based on the intuition that the predictions
from different modalities should be consistent when they are
correct. In other words, the co-learning concept is based on
maximizing the mutual information between the representa-
tions of the networks of different modalities.

Paper [51] classifies multimodal co-learning methods into
standard and enhanced versions, depending on whether un-
labeled training data are employed. Since the enhanced co-
learning utilizes the mutual information of unlabeled multi-
modal target data, it is suitable for cross-domain tasks. In
this work, the proposed co-learning framework is an enhanced
variant. Due to its ability to mutually enhance the feature
representation of the other modality, we do not employ any
co-learning loss function between the two modalities of the
labeled source data. Instead, the co-learning loss functions
are only applied between the unlabeled target modalities.
By doing so, overfitting on the source data is avoided and
the performance on the target data is prioritized, which is
conducive to cross-domain results. Self-training is another
common method used for domain adaptation that exploits

the pseudo-label of the unlabeled data, which is produced
by the model trained with the labeled source data. Compared
to one-off enhanced co-learning, self-training relies on extra
operations [51]. Specifically, extra algorithms are needed to
select proper samples with pseudo labels, and repeating train-
ing procedures is required [94], [95].

The co-learning framework is versatile and easily extend-
able, allowing for integration with other multimodal learning
methodologies. Two recent studies have blended traditional
data fusion with co-learning, specifically for multimodal se-
mantic segmentation [63] and building extraction [96], respec-
tively. Augmenting the co-learning framework with a variety
of modules may well be a future trend.

D. Efficiency and Computational Complexity

Co-learning requires training the networks of two modalities
in parallel. Compared with single-modal learning, it introduces
more loss functions and corresponding data transfer (e.g.,
detached probabilities when calculating the co-learning loss
functions) operations, increasing the time for training two net-
works. Table IV records the training time, the number of train-
able parameters (#Params), and the floating point operations
(FLOPs) of each variant for the experiment SMARS→Istanbul
with robust HDiff operation. All models are trained for 30
epochs. The total time of training two baseline networks is
39 min 47 s. The training time for the co-learning method
is between 55 min and 57 min, which is about 1.4× of
the baseline training. According to Algorithm 1, the image
network and HDiff (DSM) network are trained individually
without adding extra layers and introducing more computa-
tional complexity. Consequently, the total number of trainable
parameters and FLOPs in our proposed co-learning framework
remains unchanged and is equivalent to the sum of those when
training the individual networks.

In this work, we adopt a 2D rather than a 3D network to
process HDiff maps, which is also due to efficiency consid-
erations. 3D networks calculate deep features in a way that
traverses in 3D space, which incurs more computing costs
and longer training time than the corresponding 2D version.
Furthermore, more 2D image networks are available compared
to point cloud networks. The framework based on 2D networks
has better extensibility for further applications.

TABLE IV
TRAINING TIME, THE NUMBER OF TRAINABLE PARAMETERS, AND

GFLOPS OF DIFFERENT METHODS IN THE EXPERIMENT
SMARS→ISTANBUL (R).

Methods Training time #Params FLOPs
Baseline (image) 20 min 43.22M 61.86G
Baseline (HDiff) 19 min 47 s 57.85M 57.93G

KL
CL-V 55 min 41 s 43.22M + 57.9M 61.86G + 57.93G
CL-F 55 min 49 s 43.22M + 57.9M 61.86G + 57.93G

CL-DF 56 min 37 s 43.22M + 57.9M 61.86G + 57.93G

MSE CL-V 55 min 21 s 43.22M + 57.9M 61.86G + 57.93G
CL-DF 56 min 15 s 43.22M + 57.9M 61.86G + 57.93G
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E. The Potential of Co-learning Framework in Real-world
Applications

Utilizing the co-learning framework with bitemporal image
and HDiff map modalities, four distinct models can be ac-
quired: a single-modal Siamese image network, a single-modal
HDiff map network, a co-learning-enhanced Siamese image
network, and a co-learning-enhanced HDiff map network. This
is especially useful when the training data and test data do
not have the same modalities, which poses great constraints
for the Siamese methods. In addition, the co-learning change
detection framework is flexible to extend. As depicted in Fig.
1, besides the change detection backbones for images and
HDiff maps (comprising encoders and decoders), modules
like the fusion operation in the Siamese network, the height
difference operation for DSMs, and co-learning loss functions
can be tailored for specific scenarios.

Nowadays, multisource and crowdsourced data from other
fields, like social media [97] and web-retrieved images [98],
can provide additional information not available in remote
sensing data. The co-learning framework also holds the po-
tential for utilizing such data and enhancing the performance
beyond the limitations of 2D/2.5D/3D remote sensing data.
However, a main issue with this concept lies in the accurate
alignment of these varied data sources [62].

Our proposed co-learning framework can be considered a
form of semi-supervised learning. Semi-supervised learning is
a branch of machine learning methods involving both labeled
and unlabeled data [99], which is suitable for real scenarios of
the remote sensing field with a large amount of unlabeled data.
A key challenge existing in semi-supervised learning methods
is that not all unlabeled data can achieve improvement in the
neural network models. Unlabeled data is only useful if it
provides information benefiting label prediction that is not
contained in the labeled data alone [99]. As another way to
employ unlabeled data, self-supervised learning pre-trains a
model on a pretext task using unlabeled data, thereby provid-
ing a foundation for subsequent fine-tuning on downstream
tasks [100]. This could be a strategy to enhance the utilization
efficiency of unlabeled data and offer a contribution different
from semi-supervised learning. Integrating a self-supervised
learning phase is another potential direction to improve our
framework, making it more applicable to real-world scenarios.

VI. CONCLUSION

In this paper, we proposed a multimodal co-learning frame-
work for building change detection with cross-domain data.
This framework effectively utilizes the labeled source data and
unlabeled target data pairs, presenting a promising solution to
improve the Siamese image and HDiff map building change
detection networks when bitemporal orthophotos and corre-
sponding DSMs are available. We designed three co-learning
combinations within the framework: vanilla co-learning, fusion
co-learning, and detached fusion co-learning. They all present
improved performance compared with single-modal baselines
with two loss functions: KL divergence and MSE. The exper-
iments demonstrate that the proposed co-learning method can
enhance the ability of a single-modal change detection network

on target data, with the help of mutual knowledge from
another modality. We also explore the potential of the newly
published synthetic benchmark dataset SMARS by conducting
two groups of experiments. Our investigations indicate that
SMARS data especially DSMs can be adapted to train deep
learning models for realistic datasets. Compared with direct
height difference, robust height difference can reduce the gap
between synthetic data and realistic WorldView-2 data and
improve the cross-domain results.

In the future, we would like to investigate more multi-
modal learning methods for remote sensing tasks. Specifically
speaking, we will make efforts in the following aspects:
(1) explore more co-learning variants and more knowledge
transfer approaches employing unlabeled data such as self-
supervised learning [100], [101]. As a huge amount of ex-
isting remote sensing data are unlabeled, they are currently
far from being effectively utilized [102]. (2) Involve more
types of multimodal combinations with co-learning methods,
e.g., hyperspectral images and DSMs. Hyperspectral data
are popular in multimodal applications [49] but suffer from
spectral variability [93], which could be alleviated by the
geometric information from DSMs [103]. (3) Investigate more
complex and specific types of domain gaps. For instance,
resolution gaps widely exist in remote sensing tasks, limiting
the interactions between lower- and higher-resolution data. To
address this problem, we would like to integrate additional
modules such as super resolution [104] into the co-learning
framework.

APPENDIX A

Assume P t
I is the change probability of the target image

modality, P t
H is the change probability of the target DSM

modality. P t
I and P t

Hare calculated by the forward propagation
of the image network and DSM network, respectively:

P t
I = WT

I Xt
I + bI , (24)

P t
H = WT

HXt
H + bH , (25)

Where Xt
I and Xt

H are the original input target data of images
and DSMs, respectively. WT

I and WT
H are the weights. bI and

bH are the bias.
Here we take the image modality as an example. As

introduced in III-B, there are three types of co-learning com-
binations for modality image LI

CL−V , LI
CL−F , and LI

CL−DF .
If LC is a generic co-learning loss function, three co-learning
combinations for modality image are calculated as follows.

(1) Vanilla co-learning, which is calculated as:

LI
CL−V = LC(P

t
H,d||P t

I ) , (26)

(2) Fusion co-learning, which is calculated as:

LI
CL−F = LC(

P t
I + P t

H,d

2
||P t

I ) , (27)

(3) Detached fusion co-learning, which is calculated as:

LI
CL−DF = LC(

P t
I,d + P t

H,d

2
||P t

I ) , (28)
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The derivatives of LI
CL−V , LI

CL−F , and LI
CL−DF with

respect to XI are:

∂LI
CL−V

∂Xt
I

=
∂LI

CL−V

∂P t
I

∂P t
I

∂Xt
I

, (29)

∂LI
CL−F

∂Xt
I

=
∂LI

CL−F

∂P t
I

∂P t
I

∂Xt
I

, (30)

∂LI
CL−DF

∂Xt
I

=
∂LI

CL−DF

∂P t
I

∂P t
I

∂Xt
I

, (31)

If ∂LI
CL−V

∂P t
I

̸= α
∂LI

CL−F

∂P t
I

, ∂LI
CL−V

∂P t
I

̸= β
∂LI

CL−DF

∂P t
I

, and
∂LI

CL−F

∂P t
I
̸= γ

∂LDI
CL−F

∂P t
I

(α, β, γ ̸= 0), above three co-learning
loss combinations are different respect to Xt

I . They can be
regarded as three inequivalent methods. The co-learning loss
combinations of DSM modality can be evaluated in the same
way.

APPENDIX B

We use the case of image modality as an example. The
situation of DSM modality can be calculated in the same way.‘

A. KL-divergence

When KL-divergence is employed as the co-learning loss
function, LI

C for image modality is as follows:

LI
C = P I

S ln
P I
S

P t
I

, (32)

where P I
S is the shadow reference probability of the image

modality. P I
S ∈ {P t

H,d,
P t

I+P t
H,d

2 ,
P t

I,d+P t
H,d

2 }, depending on
which co-learning combination is employed.

We use the rule in A to evaluate the equivalence of three
co-learning combinations, LI

CL−V , LI
CL−F , and LI

CL−DF :
(1) Vanilla co-learning:

LI
CL−V = P t

H,d ln
P t
H,d

P t
I

, (33)

so,

∂LI
CL−V

∂Xt
I

=
∂LI

CL−V

∂PI

∂P t
I

∂Xt
I

=
∂P t

H,d ln
P t

H,d

P t
I

∂P t
I

∂P t
I

∂Xt
I

= −
P t
H,d

P t
I

∂P t
I

∂Xt
I

,

(34)

(2) Fusion co-learning

LI
CL−F =

P t
I + P t

H,d

2
ln

P t
I + P t

H,d

2P t
I

, (35)

so,

∂LI
CL−F

∂Xt
I

=
∂LI

CL−F

∂P t
I

∂P t
I

∂Xt
I

=
∂

P t
I+P t

H,d

2 ln
P t

I+P t
H,d

2P t
I

∂P t
I

∂P t
I

∂Xt
I

=
1

2
[ln (P t

H,d + P t
I )− lnP t

H,d

−
P t
H,d

P t
I

− ln 2]
∂P t

I

∂Xt
I

,

(36)

(3) Detached fusion co-learning

LI
CL−DF =

P t
I,d + P t

H,d

2
ln

P t
I,d + P t

H,d

2P t
I

, (37)

so,

∂LI
CL−DF

∂XI
=

∂LI
CL−DF

∂PI

∂PI

∂XI

=
∂

P t
I,d+P t

H,d

2 ln
P t

I,d+P t
H,d

2P t
I

∂P t
I

∂P t
I

∂Xt
I

= −
P t
I,d + P t

H,d

2P t
I

∂P t
I

∂Xt
I

,

(38)

As ∂LI
CL−V

∂P t
I

̸= α
∂LI

CL−F

∂P t
I

, ∂LI
CL−V

∂P t
I

̸= β
∂LI

CL−DF

∂P t
I

, and
∂LI

CL−F

∂P t
I
̸= γ

∂LI
CL−DF

∂P t
I

(α, β, γ ̸= 0), KL divergence-based
LI
CL−V , LI

CL−F , and LI
CL−DF are inequivalent and they are

three different co-learning methods.

B. MSE

When MSE is employed as the co-learning loss function,
LI
C for image modality is as follows:

LI
C = |P t

I − P I
S |2 , (39)

where P I
S is the shadow reference probability of the image

modality. P I
S ∈ {P t

H,d,
P t

I+P t
H,d

2 ,
P t

I,d+P t
H,d

2 }, depending on
which co-learning combination is employed.

We use the rule in A to evaluate the equivalence of three
co-learning combinations, LI

CL−V , LI
CL−F , and LI

CL−DF :
(1) Vanilla co-learning:

LI
CL−V = |P t

I − P t
H,d|2 , (40)

so,

∂LI
CL−V

∂Xt
I

=
∂LI

CL−V

∂PI

∂P t
I

∂Xt
I

=
∂|P t

I − P t
H,d|2

∂P t
I

∂P t
I

∂Xt
I

= 2(P t
I − P t

H,d)
∂P t

I

∂Xt
I

,

(41)

(2) Fusion co-learning

LI
CL−F = |P t

I −
P t
I + P t

H,d

2
|2

=
|P t

I − P t
H,d|2

4
,

(42)
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so,

∂LI
CL−F

∂Xt
I

=
∂LI

CL−F

∂P t
I

∂P t
I

∂Xt
I

=
∂

|P t
I−P t

H,d|
2

4

∂P t
I

∂P t
I

∂Xt
I

=
P t
I − P t

H,d

4

∂P t
I

∂Xt
I

,

(43)

(3) Detached fusion co-learning

LI
CL−DF = |P t

I −
P t
I,d + P t

H,d

2
|2 , (44)

so,

∂LI
CL−DF

∂XI
=

∂LI
CL−DF

∂PI

∂PI

∂XI

=
∂|P t

I −
P t

I,d+P t
H,d

2 |2

∂P t
I

∂P t
I

∂Xt
I

= (2P t
I − P t

I,d − P t
H,d)

∂P t
I

∂Xt
I

,

(45)

As ∂LI
CL−V

∂P t
I

= 4 · ∂LI
CL−F

∂P t
I

, ∂LI
CL−V

∂P t
I
̸= β

∂LI
CL−DF

∂P t
I

, and
∂LI

CL−F

∂P t
I
̸= γ

∂LI
CL−DF

∂P t
I

(β, γ ̸= 0), MSE-based LI
CL−V and

LI
CL−F are equivalent. MSE-based LI

CL−V and LI
CL−DF , as

well as LI
CL−F and LI

CL−DF are inequivalent.

ACKNOWLEDGMENT

The authors thank Prof. Dr. Peter Reinartz for providing the
necessary data and hardware.

REFERENCES

[1] R. Qin, J. Tian, and P. Reinartz, “3d change detection–approaches and
applications,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 122, pp. 41–56, 2016.

[2] I. R. Hegazy and M. R. Kaloop, “Monitoring urban growth and
land use change detection with gis and remote sensing techniques in
daqahlia governorate egypt,” International Journal of Sustainable Built
Environment, vol. 4, no. 1, pp. 117–124, 2015.

[3] Z. Zheng, Y. Zhong, J. Wang, A. Ma, and L. Zhang, “Building
damage assessment for rapid disaster response with a deep object-based
semantic change detection framework: From natural disasters to man-
made disasters,” Remote Sensing of Environment, vol. 265, p. 112636,
2021.

[4] Z. Ali, A. Tuladhar, and J. Zevenbergen, “An integrated approach for
updating cadastral maps in pakistan using satellite remote sensing data,”
International Journal of Applied Earth Observation and Geoinforma-
tion, vol. 18, pp. 386–398, 2012.

[5] D. Wen, X. Huang, F. Bovolo, J. Li, X. Ke, A. Zhang, and J. A.
Benediktsson, “Change detection from very-high-spatial-resolution op-
tical remote sensing images: Methods, applications, and future direc-
tions,” IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 4,
pp. 68–101, 2021.

[6] A. A. Nielsen, K. Conradsen, and J. J. Simpson, “Multivariate alteration
detection (mad) and maf postprocessing in multispectral, bitemporal
image data: New approaches to change detection studies,” Remote
Sensing of Environment, vol. 64, no. 1, pp. 1–19, 1998.

[7] J. Deng, K. Wang, Y. Deng, and G. Qi, “Pca-based land-use change
detection and analysis using multitemporal and multisensor satellite
data,” International Journal of Remote Sensing, vol. 29, no. 16, pp.
4823–4838, 2008.

[8] L. Bruzzone and D. F. Prieto, “An adaptive semiparametric and context-
based approach to unsupervised change detection in multitemporal
remote-sensing images,” IEEE Transactions on image processing,
vol. 11, no. 4, pp. 452–466, 2002.

[9] T. Lei, J. Wang, H. Ning, X. Wang, D. Xue, Q. Wang, and A. K.
Nandi, “Difference enhancement and spatial–spectral nonlocal network
for change detection in vhr remote sensing images,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2021.

[10] L. Bruzzone and F. Bovolo, “A novel framework for the design
of change-detection systems for very-high-resolution remote sensing
images,” Proceedings of the IEEE, vol. 101, no. 3, pp. 609–630, 2012.

[11] Z. Lei, T. Fang, H. Huo, and D. Li, “Bi-temporal texton forest for
land cover transition detection on remotely sensed imagery,” IEEE
Transactions on Geoscience and remote sensing, vol. 52, no. 2, pp.
1227–1237, 2013.

[12] F. Bovolo, L. Bruzzone, and M. Marconcini, “A novel approach to
unsupervised change detection based on a semisupervised svm and
a similarity measure,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 46, no. 7, pp. 2070–2082, 2008.

[13] C. Wu, L. Zhang, and L. Zhang, “A scene change detection framework
for multi-temporal very high resolution remote sensing images,” Signal
Processing, vol. 124, pp. 184–197, 2016.

[14] K. J. Wessels, F. Van den Bergh, D. P. Roy, B. P. Salmon, K. C.
Steenkamp, B. MacAlister, D. Swanepoel, and D. Jewitt, “Rapid land
cover map updates using change detection and robust random forest
classifiers,” Remote sensing, vol. 8, no. 11, p. 888, 2016.

[15] H. Nemmour and Y. Chibani, “Multiple support vector machines
for land cover change detection: An application for mapping urban
extensions,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 61, no. 2, pp. 125–133, 2006.

[16] L. Zhou, G. Cao, Y. Li, and Y. Shang, “Change detection based on
conditional random field with region connection constraints in high-
resolution remote sensing images,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 9, no. 8, pp.
3478–3488, 2016.

[17] T. Kasetkasem and P. K. Varshney, “An image change detection
algorithm based on markov random field models,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 40, no. 8, pp. 1815–1823,
2002.

[18] W. Gu, Z. Lv, and M. Hao, “Change detection method for remote sens-
ing images based on an improved markov random field,” Multimedia
Tools and Applications, vol. 76, pp. 17 719–17 734, 2017.

[19] G. Cao, L. Zhou, and Y. Li, “A new change-detection method in high-
resolution remote sensing images based on a conditional random field
model,” International Journal of Remote Sensing, vol. 37, no. 5, pp.
1173–1189, 2016.

[20] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and
F. Fraundorfer, “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE geoscience and remote sensing
magazine, vol. 5, no. 4, pp. 8–36, 2017.

[21] W. Shi, M. Zhang, R. Zhang, S. Chen, and Z. Zhan, “Change detection
based on artificial intelligence: State-of-the-art and challenges,” Remote
Sensing, vol. 12, no. 10, p. 1688, 2020.

[22] A. Shafique, G. Cao, Z. Khan, M. Asad, and M. Aslam, “Deep learning-
based change detection in remote sensing images: A review,” Remote
Sensing, vol. 14, no. 4, p. 871, 2022.

[23] H. Jiang, M. Peng, Y. Zhong, H. Xie, Z. Hao, J. Lin, X. Ma, and
X. Hu, “A survey on deep learning-based change detection from high-
resolution remote sensing images,” Remote Sensing, vol. 14, no. 7, p.
1552, 2022.

[24] X. Wu, D. Hong, and J. Chanussot, “Uiu-net: U-net in u-net for infrared
small object detection,” IEEE Transactions on Image Processing,
vol. 32, pp. 364–376, 2022.

[25] C. Li, B. Zhang, D. Hong, J. Yao, and J. Chanussot, “Lrr-net:
An interpretable deep unfolding network for hyperspectral anomaly
detection,” IEEE Transactions on Geoscience and Remote Sensing,
2023.

[26] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep
learning in remote sensing applications: A meta-analysis and review,”
ISPRS journal of photogrammetry and remote sensing, vol. 152, pp.
166–177, 2019.

[27] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamarı́a, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: Concepts, cnn architectures, challenges,
applications, future directions,” Journal of big Data, vol. 8, pp. 1–74,
2021.

[28] J. Zhao, M. Gong, J. Liu, and L. Jiao, “Deep learning to classify
difference image for image change detection,” in 2014 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2014, pp. 411–
417.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, IN PRESS 19

[29] N. Lv, C. Chen, T. Qiu, and A. K. Sangaiah, “Deep learning and
superpixel feature extraction based on contractive autoencoder for
change detection in sar images,” IEEE transactions on industrial
informatics, vol. 14, no. 12, pp. 5530–5538, 2018.

[30] H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection
with transformers,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 60, pp. 1–14, 2021.

[31] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, “Change
detection based on deep siamese convolutional network for optical
aerial images,” IEEE Geoscience and Remote Sensing Letters, vol. 14,
no. 10, pp. 1845–1849, 2017.

[32] R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese
networks for change detection,” in 2018 25th IEEE International
Conference on Image Processing (ICIP). IEEE, 2018, pp. 4063–4067.

[33] C. Zhang, P. Yue, D. Tapete, L. Jiang, B. Shangguan, L. Huang,
and G. Liu, “A deeply supervised image fusion network for change
detection in high resolution bi-temporal remote sensing images,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 166, pp. 183–
200, 2020.

[34] H. Chen, C. Wu, B. Du, and L. Zhang, “Dsdanet: Deep siamese
domain adaptation convolutional neural network for cross-domain
change detection,” arXiv preprint arXiv:2006.09225, 2020.

[35] Q. Shi, M. Liu, S. Li, X. Liu, F. Wang, and L. Zhang, “A deeply
supervised attention metric-based network and an open aerial image
dataset for remote sensing change detection,” IEEE transactions on
geoscience and remote sensing, vol. 60, pp. 1–16, 2021.

[36] S. Fang, K. Li, J. Shao, and Z. Li, “Snunet-cd: A densely connected
siamese network for change detection of vhr images,” IEEE Geoscience
and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.

[37] G. Cheng, G. Wang, and J. Han, “Isnet: Towards improving separability
for remote sensing image change detection,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 60, pp. 1–11, 2022.

[38] Z. Chen, Y. Zhou, B. Wang, X. Xu, N. He, S. Jin, and S. Jin, “Egde-net:
A building change detection method for high-resolution remote sensing
imagery based on edge guidance and differential enhancement,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 191, pp. 203–
222, 2022.

[39] Z. Li, C. Yan, Y. Sun, and Q. Xin, “A densely attentive refinement
network for change detection based on very-high-resolution bitemporal
remote sensing images,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 60, pp. 1–18, 2022.

[40] R. Zhang, H. Zhang, X. Ning, X. Huang, J. Wang, and W. Cui,
“Global-aware siamese network for change detection on remote sensing
images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.
199, pp. 61–72, 2023.

[41] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[42] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted win-
dows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10 012–10 022.

[43] W. G. C. Bandara and V. M. Patel, “A transformer-based siamese net-
work for change detection,” in IGARSS 2022-2022 IEEE International
Geoscience and Remote Sensing Symposium. IEEE, 2022, pp. 207–
210.

[44] C. Zhang, L. Wang, S. Cheng, and Y. Li, “Swinsunet: Pure transformer
network for remote sensing image change detection,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.

[45] Q. Li, R. Zhong, X. Du, and Y. Du, “Transunetcd: A hybrid transformer
network for change detection in optical remote-sensing images,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–19,
2022.

[46] D. Hong, B. Zhang, X. Li, Y. Li, C. Li, J. Yao, N. Yokoya, H. Li,
X. Jia, A. Plaza et al., “Spectralgpt: Spectral foundation model,” arXiv
preprint arXiv:2311.07113, 2023.

[47] K. Li, X. Cao, and D. Meng, “A new learning paradigm for foun-
dation model-based remote sensing change detection,” arXiv preprint
arXiv:2312.01163, 2023.

[48] X. Guo, J. Lao, B. Dang, Y. Zhang, L. Yu, L. Ru, L. Zhong, Z. Huang,
K. Wu, D. Hu et al., “Skysense: A multi-modal remote sensing
foundation model towards universal interpretation for earth observation
imagery,” arXiv preprint arXiv:2312.10115, 2023.

[49] D. Hong, B. Zhang, H. Li, Y. Li, J. Yao, C. Li, M. Werner, J. Chanussot,
A. Zipf, and X. X. Zhu, “Cross-city matters: A multimodal remote
sensing benchmark dataset for cross-city semantic segmentation using

high-resolution domain adaptation networks,” Remote Sensing of En-
vironment, vol. 299, p. 113856, 2023.

[50] P. J. S. Vega, G. A. O. P. da Costa, R. Q. Feitosa, M. X. O.
Adarme, C. A. de Almeida, C. Heipke, and F. Rottensteiner, “An
unsupervised domain adaptation approach for change detection and
its application to deforestation mapping in tropical biomes,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 181, pp. 113–
128, 2021.

[51] Y. Xie, J. Tian, and X. X. Zhu, “A co-learning method to utilize optical
images and photogrammetric point clouds for building extraction,” In-
ternational Journal of Applied Earth Observation and Geoinformation,
vol. 116, p. 103165, 2023.

[52] M. Turker and B. Cetinkaya, “Automatic detection of earthquake-
damaged buildings using dems created from pre-and post-earthquake
stereo aerial photographs,” International Journal of Remote Sensing,
vol. 26, no. 4, pp. 823–832, 2005.

[53] L. Zhu, H. Shimamura, K. Tachibana, Y. Li, and P. Gong, “Building
change detection based on object extraction in dense urban areas,”
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 2008.

[54] F. Jung, “Detecting building changes from multitemporal aerial stere-
opairs,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 58, no. 3-4, pp. 187–201, 2004.

[55] A. Sasagawa, E. Baltsavias, S. Kocaman-Aksakal, and J. D. Wegner,
“Investigation on automatic change detection using pixel-changes and
dsm-changes with alos-prism triplet images,” International archives of
the photogrammetry, remote sensing and spatial information sciences,
vol. 40, no. 7/W2, pp. 213–217, 2013.

[56] J. Tian, H. Chaabouni-Chouayakh, and P. Reinartz, “3d building
change detection from high resolution spaceborne stereo imagery,” in
2011 International Workshop on Multi-Platform/Multi-Sensor Remote
Sensing and Mapping. IEEE, 2011, pp. 1–7.

[57] G. Dini, K. Jacobsen, F. Rottensteiner, M. Al Rajhi, and C. Heipke,
“3d building change detection using high resolution stereo images and
a gis database,” The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences; XXXIX-B7, vol. 39,
pp. 299–304, 2012.

[58] Y. Xie and J. Tian, “Multimodal co-learning: A domain adaptation
method for building extraction from optical remote sensing imagery,”
in 2023 Joint Urban Remote Sensing Event (JURSE). IEEE, 2023,
pp. 1–4.

[59] Y. Xie, K. Schindler, J. Tian, and X. X. Zhu, “Exploring cross-city
semantic segmentation of als point clouds,” International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 43, pp. 247–254, 2021.

[60] X. Yuan, J. Tian, and P. Reinartz, “Building change detection based
on deep learning and belief function,” in 2019 Joint Urban Remote
Sensing Event (JURSE). IEEE, 2019, pp. 1–4.

[61] A. Rahate, R. Walambe, S. Ramanna, and K. Kotecha, “Multimodal co-
learning: Challenges, applications with datasets, recent advances and
future directions,” Information Fusion, vol. 81, pp. 203–239, 2022.
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