
QUANTUM OPTIMIZATION FOR PHASE UNWRAPPING IN SAR INTERFEROMETRY

Kay Glatting∗, Jan Meyer∗, Sigurd Huber∗, Gerhard Krieger∗

∗German Aerospace Center (DLR)
Oberpfaffenhofen Germany

kay.glatting@dlr.de

ABSTRACT

Phase unwrapping is the reconstruction of a phase given its
values mod 2π. It is an important image processing tech-
nique used in synthetic aperture radar interferometry, e.g., in
the context of topography and ground deformation. In light
of recent quantum algorithm developments for mathematical
optimization problems, we explore the usage of gate-based
quantum computers and hybrid quantum algorithms to create
novel phase unwrapping approaches.

Index Terms— Phase Unwrapping, InSAR, QAOA, Quan-
tum Computing

1. INTRODUCTION

Interferometric synthetic aperture radar (InSAR) is a well-
known and powerful remote sensing technique used to mea-
sure geophysical features such as ground deformation and
topography. By combining two radar images of the same
scenery, acquired with a spatial or temporal baseline, used
for topography or ground deformation models, respectively,
phase interferograms are formed. However, due to the phys-
ical limitations of practical SAR system parameters, the ac-
quisition system can only measure the absolute phase ϕ ∈

Fig. 1. Simulated Wrapped Phase, Ammersee, Germany.

Fig. 2. Unwrapped Phase of Fig.1, Graph Cut Approach.

[−π,∞)
n×m modulo 2π. Here n×m refers to the image di-

mensions in azimuth and range. This limitation also arises in
interferometric synthetic aperture sonar, magnetic resonance
imaging and optical interference. Formally, we have

ϕ = ψ + 2πk,

where ψ ∈ [−π, π)n×m is the measured wrapped phase and
k ∈ Nn×m

0 is the ambiguity correction. Phase unwrapping
is the process of recovering the absolute phase ϕ from the
wrapped phase ψ. Mathematically, this is a highly ambigu-
ous problem. Therefore, virtually all phase unwrapping al-
gorithms are based on the hypothesis that the phase surface
is smooth enough to produce phase differences less than π
for neighbouring pixels, as this allows the absolute phase to
be easily determined. However, if the true phase surface is
highly noisy or the ground resolution is too low, the above
hypothesis will be violated, giving rise to the need for sophis-
ticated algorithms to compensate for these errors. Lp-norm
phase unwrapping algorithms, compare Ghiglia et al. [1],
commonly used in InSAR applications, minimize differences
of neighbouring pixels in ϕ through k

min
k∈Nn×m

0

∑
(s,t)∈Ω

∥∥∥ks − kt − ψ̂s,t

∥∥∥
p
, (1)
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where Ω is a list containing all combinations of two differ-
ent neighbouring image pixels and ψ̂ depends on the wrapped
phase.
Least-squares methods (p = 2) deal with large images ef-
ficiently, but tend to flatten discontinuities, spreading errors
and thereby creating low-accuracy images. Graph-Cut meth-
ods (p = 1), such as outlined in Constantani [2], improve
the unwrapping quality significantly, however, scale worse,
and represent certain topologies wrongly. Lowering p below
1 further improves the image quality and increases computa-
tion complexity. Particularly the L0-norm is accepted to pro-
duce the highest quality images, compare Bioucas-Dias et al.
[3], however, its calculation poses an NP-hard problem and is
therefore currently infeasible for practical grid sizes.

2. QUANTUM APPROXIMATE OPTIMIZATION
ALGORITHM

In principle, quantum computers have been shown to speed
up certain algorithms, scale well with large data sets and even
calculate some NP problems in polynomial time. In this work
we analysed the challenges, potential advantages and imple-
mentation of L0-minimum norm methods utilizing the hybrid
quantum approximate optimization algorithm (QAOA) intro-
duced by Farhi et al.[4][5].

QAOA consists of two principle components: Deriving op-
timal classical parameters α ∈ [−π, π)q and β ∈ [0, π)

q and
executing a circuit on a quantum computer based on these pa-
rameters. The value q determines the depth of the quantum
circuit.
We chose the operator C to be the amount of fulfilled clauses,
so the 0-contributions, in (1), where p = 0. Inspired by [4]
we treat the phase differences between neighbouring pixels as
regular 4-graphs while q determines the distance up to which
qubits of neighbouring pixels interact. We construct a corre-
sponding subgraph of interaction for every two neighbouring
pixels. Due to symmetry, these subgraphs can be categorized
into different subgraph isomorphy classes g. Subgraphs of the
same isomorphy class have the same influence on the follow-
ing calculation, therefore we only need to count the respective
amount, denoted ωg , and multiply with the contribution asso-
ciated with this isomorphy type. By classically calculating
the maximum expected value of

⟨α, β|C |α, β⟩ =
∑
g

ωg

2O(q)∑
s=0

∣∣ηsg(α, β)∣∣2,
for measuring the operator C of the quantum state

|α, β⟩ =
1∏

i=q

U(βi, X)U(αi, C) |+⟩ ,

we find optimal values of α and β. Here |+⟩ denotes the
equal superposition state and U the exponential operation.

Fig. 3. 5×6×1: Effect of the QAOA operation on the number
of fulfilled clauses C.

Afterwards, we use X- and rotation-gates to build the corre-
sponding quantum state |α, β⟩ on either a quantum computer
or simulator. Subsequent measurements yield maximum esti-
mates of the operator C. QAOA is an approximate algorithm,
i.e. the results improve with the circuit depth q as long as
the parameters can be optimized, however for specific prob-
lems, smaller values of q can in principle yield the optimal
unwrapped phase.

3. EXPERIMENTS AND DISCUSSION

We conducted two sets of experiments for validation pur-
poses. For both real and simulated quantum computers, the
number of accessible qubits is limited. At the time of writ-
ing, around 32 logical qubits can be accessed with reasonable
effort on simulated machines. Therefore we designed our val-
idation experiments with these restrictions in mind, limiting
the grid sizes, bitrate bk of the ambiguity correction k (with
higher bitrates resulting in higher accuracy) and setting q = 1.
For experiment 1 the following wrapped phase grid of size
5× 6 and bitrate of bk = 1 was chosen:

ψ1 = π ·


−0.8 −1 −0.2 0.6 −0.6
−0.8 −1 −0.2 0.6 −0.6
−0.3 0.1 0.9 −0.3 0.1
−0.3 0.1 0.9 −0.3 0.1
0.6 −0.6 0.2 0.8 0.4
0.6 −0.6 0.2 0.8 0.6


The parameter optimization yielded α ≈ 0.1747, β ≈
0.6290. 5× 6× 1 = 30 qubits were simulated. Measurement
of a quantum mechanical state is a statistical process, math-
ematically equivalent to sampling from a probability distri-
bution. Therefore repeated sampling is necessary to achieve
statistical significance. For both experiments, 100000 sam-
ples were generated.

Fig. 3 shows the corresponding statistics, where results of
equal satisfied clauses are accumulated once for the QAOA
(red bars) and with sampling the equal superposition state
(blue bars) as a reference, to visualize improvements. The



Fig. 4. 5 × 3 × 2: The Phase Unwrapping Procces: Observing the terrain on the left yields the wrapped phase values in the
centre. Unwrapping the phase with the best ambiguity correction in Fig. 5 creates the reconstruction on the right.

figure shows an upwards shift of the probability distribution
with the mean improving by roughly 6.3, similar variance and
a maximum returned value of 43 fulfilled clauses. This is
equivalent to the maximum amount possible. QAOA with the
above parameters and 100000 samples was able to find an op-
timal ambiguity correction k.

For experiment 2 the terrain model on the left, in Fig. 4,
was chosen due to Lp methods with p ̸= 0 having trouble
recreating this shape. This resulted in the following wrapped
phase grid of size 5× 3:

ψ2 = π ·


−0.45 −0.9 0.65
−0.2 −0.9 0.2
0.6 −0.2 0
0 0.9 −0.2

0.45 0.9 −0.65


Choosing a bitrate bk = 2, the parameter optimization yielded
α ≈ 0.2029, β ≈ 0.7098. 5 × 3 × 2 = 30 qubits were sim-
ulated. Fig. 5 shows the corresponding statistics where re-
sults of equal satisfied clauses are accumulated once for the

Fig. 5. 5 × 3 × 2: Effect of the QAOA Operation on the
Number of Fulfilled Clauses C. Logarithmic Scale.

QAOA (red bars) and with sampling the equal superposition
state (blue bars) as a reference. The figure shows only a slight
upwards shift in the probability distribution. However, the
maximum returned number of fulfilled clauses increased sig-
nificantly to 19. The corresponding ambiguity correction k
allows for a perfect reconstruction of the original topography,
as seen in Fig. 4.

4. CONCLUSION AND OUTLOOK

The potential of using quantum algorithms in the context of
phase unwrapping applications was recognized previously:
Kelany et al. [6][7] and Otgonbaatar et al.[8] have explored
possibilities of implementing least-squares and network ap-
proaches on quantum annealers respectively. In this work, we
studied the L0-norm phase unwrapping approach by utilizing
the QAOA algorithm. We were successful in reconstructing
validation samples of small grid sizes in simulation.
Two major limitations became apparent: The amount of
qubits currently available is not sufficient to unwrap relevant
image sizes. However, since the demand of qubits needed to
hold the phase values grows efficiently with size and bitrate,
L0-Phase unwrapping should be feasible for larger fields if
quantum computers improve accordingly.
The second limitation comes in the form of the parameter q.
The classical optimizations scale badly with increasing q and
experiment 2 suggests that for higher bitrates larger q pro-
duce better results. To implement L0 phase unwrapping with
QAOA for more complex fields, a reasonable upper bound
for q needs to be set. The significant positive shift of the dis-
tributions in experiment 1 and the local nature of the phase
unwrapping problem suggest that such a bound may still re-
sult in optimal solutions.
Due to the increasing complexity induced by implementing
higher q the classical optimization becomes difficult. Us-



ing machine learning frameworks such as Jax [9] allows for
automatic differentiation with linear algebra acceleration on
GPUs. This enables gradient descent methods facultatively
with the integration of arbitrary neural networks. Future
work, focussing on implementing larger q through the use of
neural networks’ ability to approximate the effects of the dif-
ferent subgraph isomorphy classes is planned.
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