HYDROGEN REFUELING PROCESS FOR RAILWAY VEHICLES SIMULATION AND MODEL DEVELOPMENT

<u>Steffen Wieser</u>, Mathias Böhm | German Aerospace Center (DLR), Institute of Vehicle Concepts Parallel Session 1 | Hydrogen Infrastructure for Transport, Distribution & Dispensing 06.03.2024 | 16:10 – 16:30

6 - 8 March 2024 Bilbao Exhibition Centre Bilbao, Spain

German Aerospace Center (DLR)

Institute of Vehicle Concepts

- 5 fields of innovation
 - Vehicle architecture
 - Energy concepts
 - Drive trains
 - System analyses
 - Materials & process engineering
- 3 principles
 - Protecting the climate
 - Securing mobility
 - Shaping transformation
- System, concept and technology research for road and rail vehicles

DLR: Deutsches Zentrum für Luft- und Raumfahrt (engl.: German Aerospace Center)

6 - 8 March 2024 Bilbao Exhibition Centre Bilbao, Spain

1 Motivation & Targets in Hydrogen Refueling of Railway Vehicles

2 Heidekrautbahn-Project

3 Norms and Standards for Hydrogen Refueling

4 Modeling of Refueling Process

Simulation Results for Pre-Cooling Temperatures

Hydrogen Refueling Process for Railway Vehicles Motivation and Targets

39% of German / 46% of EU rail network without overhead lines

- Diesel as a fuel is state-of-the-art
- H₂ one possible solution to reduce greenhouse gas emissions
 Hydrogen in railway vehicles:
 - Storage pressure at 350 bar CGH₂
 - Capacity of 160 320 kg hydrogen in regional trains
 - Target refueling time: 15 min

Problem:

- Competitiveness of the technology concerning refueling time
- Refueling with gaseous H₂ technically more challenging than with liquid diesel
 - → **Temperature increase** of the H_2 due to compression and Joule-Thomson effect
 - \rightarrow Conflict: Refueling time and H₂ temperature

Share of electrified line sections in 2017/19 Source: <u>BMDV</u>

4

Heidekrautbahn-Project

Project overview and accompanying research

- Green hydrogen is produced by electrolysis from regionally generated, renewable wind and solar energy
- 1 hydrogen refueling station in Basdorf, Germany
- 7 fuel cell hydrogen multiple units
 Siemens Mireo Plus H replace
 existing diesel multiple units
- Start of operation in December 2024
- Scientific research accompanying the industrial project

Diesel vs. Hydrogen Refueling

Refueling stations in Basdorf, Germany

Diesel refueling station in operation

- Current diesel train refueling: 75 l/min
 - 2 x 750 I diesel on-board tank volume
- Refueling time with diesel :
 - 1,500 I / 75 I/min = 20 min
 - Calorific value of 1,500 I : 15,000 kWh
- Hydrogen refueling station starting operation 12/2024
 - Maximum mass flow according to SAE J2601-2: 120 g/s
 - Refueling time with hydrogen:
 - 180 kg / 120 g/s = 25 min
 - Calorific value of 180 kg H₂: 6,000 kWh
 - Hydrogen refueling requires more process effort than diesel refueling
 - Use of two dispensers for parallel filling of several on-board tank modules shortens the refueling time

Top: Components of Diesel refueling station in Basdorf Bottom: Location of current Diesel and future H2 refueling station

6

Norms & Standards for Hydrogen Refueling

Parameters & Specifications

General conditions for refueling according to SAE J2601-2

Validity	 35 MPa H₂ capacity > 10 kg
Temperature	 -40°C to 85°C
Pressure	 0.5 MPa to 43.8 MPa
Ambient temperature	 -40°C to 50°C
State of Charge (SoC)	 ≤ 100 %
Hydrogen mass flow	■ ≤ 120 g/s

General conditions for refueling according to SAE J2601-5 for H35

Validity	•	35 MPa H ₂ capacity 5.97 – 180 kg
Single Tank Size	-	50 to 1,000 L
Fuel Delivery Temperature	•	-40°C to 20°C
Hydrogen mass flow		≤ 120 g/s
Pouros, Class Energy Derthestabie (C		

Source: Clean Energy Partnership (CEP)

- Refueling protocol
 - Specifies the pressure for the refueling of the vehicle depending on various ambient conditions
- SAE J2601-1 defines refueling protocols for passenger cars up to 10 kg hydrogen capacity
- SAE J2601-2 (heavy-duty) defines limits for refueling process but no ramp rate specifications
- No specific standard available for refueling protocols in rail vehicles → Project specific development and validation
- SAE J2601-5 (02/24) & ISO 19885-1 (04/24) under development addressing higher H₂-capacities

Modeling of Refueling Process

Simulation model in Dymola/Modelica

- Input: Validated refueling model for H₂ passenger cars according to SAE J2601-1
- Target: Adapt model for usage in H₂ trains to derive optimization potential for refueling process in vehicle operation
- Model Setup:
 - Models in Dymola/Modelica
 - Merging of the flow resistances of the individual components
 - Modeling hydrogen as a real gas

Modeling of Refueling Process

Simulation model in Dymola/Modelica

Used Dymola Libraries

Modelica Standard & Buildings Library

Hydrogen Refueling Model

- Termination conditions for simulation
- Refueling Station: Pressure ramp rate, pre-cooling, valves
- Vehicle: Valves, storage tanks

Heat Transfer model

- Convective heat transfer
- Heat radiation
- Heat conduction

Lumped parameter model instead of CFD model for **fast simulation time**

Simulation Results for Refueling Process

Pre-cooling for fast refueling

Worst case: Refueling at 40 °C in summer

Evaluate different pre-cooling temperatures

- 2 x 90 kg hydrogen capacity
- Over 40 minutes of refueling time without pre-cooling
- Reduced refueling time by 57% with pre-cooling to 0 °C

Energy demand for pre-cooling

- Pre-cooling is energy and cost intensive
- Thermal energy demand based on c_{P, H2} = 14.4 J/gK
- Electrical energy demand dependent on system COP
 - COP depends on ambient and pre-cooling temperature

Next step: Model validation with measurement data

Fast refueling times must be weighed against energy and cost savings due to less pre-cooling effort to ensure **time and cost-optimized operation** with hydrogen trains

10

6 - 8 March 2024 Bilbao Exhibition Centre Bilbao, Spain

Thank you for your attention!

ACCOMPANYING RESEARCH

VEHICLES AND REFUELING STATION

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

German Aerospace Center

Institut of Vehicle Concepts | Vehicle Energy Concepts | Pfaffenwaldring 38-40 | 70569 Stuttgart

Steffen Wieser, M.Sc. | Research Associate | Phone +49 711 6862 8267 | Steffen.Wieser@dlr.de

wassersto

schiene

HEIDEKRAUTBAHN

