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ABSTRACT

Aerospace design is increasingly incorporating design under uncertainty-based approaches to lead to more robust and reliable optimal
designs. These approaches require dependable estimates of uncertainty in simulations for their success. The key contributor of predictive
uncertainty in computational fluid dynamics (CFD) simulations of turbulent flows are the structural limitations of Reynolds-averaged
Navier–Stokes models, termed model-form uncertainty. Currently, the common procedure to estimate turbulence model-form uncertainty is
the eigenspace perturbation framework (EPF), involving perturbations to the modeled Reynolds stress tensor within physical limits. The EPF
has been applied with success in design and analysis tasks in numerous prior works from the industry and academia. Owing to its rapid suc-
cess and adoption in several commercial and open-source CFD solvers, in-depth verification and validation of the EPF is critical. In this
work, we show that under certain conditions, the perturbations in the EPF can lead to Reynolds stress dynamics that are not physically realiz-
able. This analysis enables us to propose a set of necessary physics-based constraints, leading to a realizable EPF. We apply this constrained
procedure to the illustrative test case of a converging-diverging channel, and we demonstrate that these constraints limit physically implausi-
ble dynamics of the Reynolds stress tensor, while enhancing the accuracy and stability of the uncertainty estimation procedure.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0185841

I. INTRODUCTION

As computational resources continue to advance, the aerospace
industry is experiencing a notable increase in the degree of digitization,
leading to faster design cycles with the help of computational fluid
dynamics (CFD). In order to accelerate the optimization of designs
and streamline virtual certification procedures, numerical approxima-
tions of the Reynolds-averaged Navier–Stokes (RANS) equations is a
judicious choice. This choice not only upholds an acceptable level of
fidelity but also computational efficiency for its purposes in design.
However, the RANS equations necessitate the modeling of the second-
moment Reynolds stress tensor s. Closure models, commonly referred
to as turbulence models, attempt to express quantities of interest (QoI)
that are not measured like the Reynolds stresses as a function of mea-
sured quantities like the local mean rate of strain. While turbulence
modeling offers practicality and facilitates efficient simulations, it also
imposes inherent limitations in achieving high levels of accuracy.
Moreover, the assumptions made in the functional representation of
turbulence models introduce model-form (epistemic) uncertainties as
soon as their applicability range is exceeded.1,2 This is particularly rele-
vant to complex engineering flows such as the ones encountered in

turbomachinery components. To provide a few examples, the predic-
tion accuracy of common linear eddy viscosity models (LEVM) turbu-
lence models suffers in flows characterized by adverse pressure
gradient, separation and reattachment, surface curvature and second-
ary flow. Due to the definition of the Reynolds stresses in LEVM (see
also introduction of Boussinesq approximation in Sec. II), the tensor
only carries information on the mean rate of strain, hence the model is
unable to account for rotational effects and streamline curvature.3,4

Additionally, in the isotropic eddy viscosity hypothesis, excluding rep-
resentation of any anisotropic normal Reynolds stresses hinders the
accurate consideration of secondary flow.5

Accounting for the inherent uncertainties in simulations is key
toward robust designs. That is why approaches to quantify the uncer-
tainties associated with turbulence closure models play an important
role, especially in industrial applications with turbulent flows. The only
approach capable of addressing the epistemic uncertainty inherent in
turbulence closure modeling is the eigenspace perturbation framework
(EPF) that was initially proposed by Emory.6 This methodology builds
upon the limited functional relationship of the Reynolds stresses.
Selective perturbation of the Reynolds stress tensor within physically
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bounds combined with sampling from the resulting CFD solutions is
an innovative model-form uncertainty quantification (UQ)
approach.7–10 The underlying modeling structure of the tensor pertur-
bation involves perturbations in both eigenvalues and eigenvectors,
which is comprehensively described in Sec. II. These perturbations can
be interpreted as altering the shape and the orientation of the Reynolds
stress tensor ellipsoid.10–12 Due to its unique characteristics and per-
suasive interpretability of its simulation outcomes, the EPF has been
used in various engineering applications.13–27 For this reason, the abil-
ity of perturbing the eigenspace of the Reynolds stresses has been inte-
grated into numerous CFD solvers.16,28–30 In addition to that, the
emergence of machine learning strategies guided the path toward data-
driven enhancements of the EPF.28,30–32

As there is a need for verification and validation (V&V) of novel
CFD methods, this paper addresses the underlying modeling rationale
of this framework. Recently, we have already proposed a novel
advancement in the context of the EPF, which focuses on ensuring
realizable Reynolds stresses and consistency between the envisioned
conceptual and the implemented computational model.12 While the
theoretical modeling structure and limitations of the eigenvalue pertur-
bation have been exhaustively discussed,11 the analysis of the eigenvec-
tor perturbation remains incomplete so far.

In this article, we undertake a detailed examination of the founda-
tion and ramifications of the eigenvector perturbations. This thorough
analysis of the Reynolds stress tensor’s eigenvector perturbation in the
context of RANS equations enables us to show that eigenvector pertur-
bation, as they are currently implemented, may lead to non-realizable
Reynolds stress tensor dynamics. Moreover, we highlight numerical
stability issues that may arise as a consequence, potentially preventing
broader application of this approach. Therefore, we derive and propose
a novel idea to prevent implausible Reynolds stress tensor dynamics in
the current paper.

II. ACCOUNTING FOR TURBULENCE MODELING
UNCERTAINTY USING THE TENSOR PERTURBATION
FRAMEWORK

Despite the ongoing increase in computational resources, solving
the set of Navier–Stokes equations for turbulent flows by scale-
resolving simulations in the design phase for industrially relevant devi-
ces operating at high Reynolds numbers cannot be expected in the
near future. As engineers and system designers are rather interested in
rapid iteration cycles, the ability to make decisions based on statistical
consideration of the mean flow is still industrial practice. Hence, all
flow quantities can be split into a mean and a fluctuating part, accord-
ing to / ¼ / þ /0. To accommodate this need for compressible flows,
a density weighted average (Favre-average) is performed, whereby

/ ¼ e/ þ /00 and qe/ ¼ q/; (1)

holds for all instantaneous quantities except density q and pressure p.
In the scope of this paper, we will use the term RANS for the favre-
averaged Navier–Stokes equations, although Reynolds-averaging was
initially developed for incompressible flows. The statistically Favre-
averaged momentum equation following Einstein’s notation
convention,

@

@t
q euið Þ þ @

@xj
q euj eui� � ¼ � @p

@xi
þ @

@xj
rij � qgu0iu0j� �

; (2)

describes the change of the mean momentum in both time and
space, attributed to acting mean forces such as pressure gradients
and divergence of viscous stresses (for the sake of simplicity, gravi-
tational forces, and forces due to rotating frames of reference are
neglected).

Note that to shorten and simplify the notation, we denote the
mean velocities by a capital letter eui ! Ui and omit the overline for
density q ! q and pressure p ! p. Additionally we use x; y; z for
x1; x2; x3 in the following.

Based on Stokes’ hypothesis, the mean viscous stresses r depend

on the strain-rate tensor Sij ¼ 1
2

@Ui
@xj

þ @Uj

@xi

� �
and kinematic viscosity

denoted as �,

rij ¼ 2q� Sij � 1
3
Skkdij

� �
: (3)

In addition to these stresses, the right-hand side of the equation con-
tains unknown correlations of fluctuating velocities sij ¼ gu00i u00j , called
the turbulent stresses or Reynolds stresses.33 To close the set of equa-
tions and facilitate computational simulations, there exist numerous
approximation methods. A widely used modeling assumption is the
representation of Reynolds stresses as an isotropic function of the sca-
lar eddy viscosity �t and the mean rate of strain tensor, drawing an
analogy to the representation of viscous stresses,

sij ¼ �2�t Sij � 1
3
Skkdij

� �
þ 2
3
kdij: (4)

The equation mentioned above, also known as the Boussinesq approxi-
mation, ensures that the trace of the resulting tensor is twice the turbu-
lent kinetic energy k ¼ 1

2 skk. The state-of-the-art two-equation
turbulence models, such as Menter’s SST k� x model,34 typically
solve additional partial differential transport equations for the turbu-
lent kinetic energy and the turbulent dissipation rate and reconstruct
the eddy viscosity afterwards to close the set of equations. The assumed
linear relationship between Reynolds stresses and strain-rate tensor,
however, is not universally valid, as already discussed in Sec. I.
Consequently, any simulation using the Boussinesq assumption con-
tains inherent epistemic uncertainty. The perturbation of Reynolds
stress tensor’s eigenspace6 is the method of choice in order to account
for turbulence modeling uncertainty on QoI. The underlying method-
ology is described in the following.

The symmetric, positive semi-definite Reynolds stress tensor sij
can be decomposed into an anisotropy tensor aij and an isotropic
component,

sij ¼ k aij þ 2
3
dij

� �
: (5)

Eddy viscosity-based turbulence models assume that the tensorial
characteristics of the anisotropy tensor are solely dictated by the mean
rate of strain tensor [see Eq. (4)],

aij ¼ �2
�t
k

Sij � 1
3
Skkdij

� �
: (6)

The epistemic discrepancy in the evaluation of Reynolds stresses can
be represented by the tensor Qij, such that the true Reynolds stresses
are
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strueij ¼ smodeled
ij þ Qij

¼ �2�t Sij � 1
3
@uk
@xk

dij

� �
þ 2
3
kdij þ Qij

¼ kaij þ 2
3
kdij þ Qij : (7)

Building upon the concept of the eigenspace perturbation approach,
the structural uncertainty of the Reynolds stress tensor can be split
into contributors of shape, alignment, and amplitude of the tensor.
Therefore, the anisotropy tensor can be represented by an eigenspace
decomposition

aij ¼ vinKnlvjl: (8)

The orthonormal eigenvectors form the matrix vin while the traceless
diagonal matrix Knl contains the corresponding ordered eigenvalues
kk. When Boussinesq approximation is used, the eigenvectors of the
anisotropy tensor coincide with those of the strain-rate tensor, while
the eigenvalues kk are solely dependent on the strain-rate tensor’s
eigenvalues ck and its trace,

kk ¼ �2
�t
k

ck �
Skk
3

� �
: (9)

Evidently, the Reynolds stress tensor features identical eigenvec-
tors as well; however, the eigenvalues of the Reynolds stress ten-
sor are

wk ¼ kðkk þ 2=3Þ: (10)

Inserting Eq. (8) into Eq. (7) leads to

strueij ¼ k vinKnlvjl
� �þ 2

3
kdij þ Qij : (11)

Because of the tensorial properties, the tensor Qij can be decomposed
into

Qij ¼ Dk DvainDK
a
nlDv

a
jl

� �
þ 2
3
Dkdij; (12)

whereby D describes the error terms for turbulent kinetic energy
(amplitude), alignment (eigenvectors), and shape (eigenvalues).

As precisely quantifying the uncertainty of the turbulence
model in representing the modeled Reynolds stress tensor is a
challenging task, the developers and founders of the methodology
rather try to estimate the uncertainty by sampling from possible
solution space. Hence, it is not the aim to apply a correct
Reynolds stress tensor strueij but a perturbed, physically realizable
one, which is called s�ij.

30 Following the line of argument above,
the EPF, considered in this work, creates a perturbed state of the
Reynolds stress tensor defined as

s�ij ¼ k a�ij þ
2
3
dij

� �

¼ k v�inK
�
nlv

�
jl þ

2
3
dij

� �
; (13)

where a�ij indicates the perturbed anisotropy tensor, K�
nl represents its

perturbed eigenvalue matrix, and v�in is the perturbed eigenvector
matrix. Adhering to the procedure established in the majority of

previously published works, there is no explicit modification of the tur-
bulent kinetic k energy. Instead, the level of turbulence is manipulated
indirectly by altering the production of turbulence due to affirmative
perturbations of eigenvalues and eigenvectors, as will be clarified in
subsequent sections.

A. Eigenvalue perturbation

As the components of the symmetric anisotropy tensor are
bounded according to the realizability constraints,35 the respective
eigenvalues can be transformed into barycentric coordinates.36 By
defining the vertices x1C; x2C; x3C of an equilateral triangle, represent-
ing the componentiality of turbulence [three-component, isotropic
limit (3C), two-component axisymmetric limit (2C), and the one-
component limit (1C)],37 the mapping from anisotropy eigenvalues to
barycentric coordinates is defined as

x ¼ 1
2
x1C k1 � k2ð Þ þ x2C k2 � k3ð Þ þ x3C

3
2
k3 þ 1

� �
;

x ¼ Bk with k1 � k2 � k3:

(14)

The envisioned perturbation of the eigenvalues of the anisotropy ten-
sor within physically permissible limits is grounded on shifting the bar-
ycentric state within the borders of the barycentric triangle.6 Using the
pseudoinverse of B, any perturbed eigenvalues are expressed through
remapping

k� ¼ Bþx� ; (15)

where the relocated position x� results from linear interpolation
between starting point x and target point xðtÞ 2 x1C; x2C; x3Cf g,

x� ¼ x þ DBðxðtÞ � xÞ: (16)

The relative distance DB 2 ½0; 1� controls the magnitude of eigenvalue
perturbation as presented in Fig. 1. Traditional eddy viscosity-based
turbulence models assume that this eddy viscosity is a scalar, known as
the isotropic eddy viscosity. Thus, turbulence behaves as an isotropic

FIG. 1. Systematic representation of the eigenvalue perturbation within the bar-
ycentric triangle and its effect on the shape of the Reynolds stress tensor
ellipsoid.
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medium. The eigenvalue perturbation modulates this to an orthotropic
medium, where turbulence behaves differently along each eigen-
direction,11 accounting for the sensitivity of the model with respect to
the anisotropic characteristics of turbulence.

B. Eigenvector perturbation

Given that LEVM rely on the Boussinesq approximation in
Eq. (4), the Reynolds stress, the anisotropy, and the strain-rate ten-
sor share identical eigendirections, as already discussed in Sec. II.
However, this relationship results in inaccuracies in predicting cer-
tain flows, e.g., involving flow separation and reattachment.
Nevertheless, even for simple turbulent boundary layer flow, there
is significant misalignment between scale-resolving simulation
[such as direct numerical simulation (DNS)] and RANS model
predicted eigenvectors of the Reynolds stress tensor.38 Hence, the
eigenspace perturbation idea adds a perturbation to the eigenvec-
tors. In contrast to the eigenvalues, there are no actual bounds for
the orientation of the Reynolds stress tensor ellipsoid. To address
this issue, Iaccarino et al.10 suggest to make use of the boundedness
of the Frobenius inner product of the Reynolds stress and the
strain-rate tensor, called the turbulent production Pk of the turbu-
lent kinetic energy transport equation. Based on the relationship of
the strain-rate and Reynolds stress tensor for LEVM [see Eq. (4)],
the bounds of the turbulent production term can be written in
terms of their eigenvalues wi and ci,

39

Pk ¼ �sij
@Ui

@xj
2 w1c3 þ w2c2 þ w3c1; w1c1 þ w2c2 þ w3c3½ �: (17)

As the Reynolds stress and the strain-rate tensor share the same eigen-
vectors for LEVM, the lower bound of the turbulent production term
can be obtained by commuting the first and third eigenvector of the
Reynolds stress tensor that manipulates the relationship between
eigenvalues and respective eigendirections. The permutation of first
and third eigenvector results in a reconstructed Reynolds stress tensor
based on Eq. (13), which is equivalent to the one obtained by rotating
the eigenvector matrix v around the second eigenvector by p=2,
see Appendix A. Whereas keeping the ordering of eigenvectors in the
case of LEVM, evidently leads to the upper limit of the turbulent pro-
duction. In the subsequent section, we outline why the eigenvector per-
turbation can lead to implausible dynamics of the Reynolds stress
tensor combined with an unrealistically derived turbulent production
term.

III. ADHERENCE TO REALIZABLE REYNOLDS STRESS
TENSORS AND REALIZABLE REYNOLDS STRESS
TENSOR DYNAMICS
A. Insights from the Reynolds stress tensor’s
eigenspace perturbation and implications
for turbulent boundary layers

The significant advantage of the EPF lies in its ability to generate
a perturbed and realizable Reynolds stress tensor from an unperturbed
one. This is accomplished by ensuring that the realizability condition,
saying that the Reynolds stress tensor must be positive semi-definite, is
met.35 To illustrate, when perturbing the eigenvalues of the modeled
Reynolds stress tensor, choosing D � 1 (see Fig. 1) inevitably leads to
fulfillment of the realizability condition as the perturbed Reynolds

stress anisotropy eigenvalues remain inside the barycentric triangle.
Recently, we addressed an appropriate way to incorporate eigenvector
perturbations in a self-consistent manner in order to obtain the desired
realizable Reynolds stresses.12 However, while the current formulation
of the realizability principle is valuable, it is not comprehensive or ade-
quate in ensuring that the evolution of the Reynolds stress, from one
physically permissible state to another, remains physically plausible.
Indeed, under certain conditions, the realizable Reynolds stress tensor,
obtained through eigenspace perturbation, may become physically
implausible leading to turbulent stress dynamics, which are rather not
realizable.

An exemplary case to illustrate these conditions is the turbulent
boundary layer, whereby we consider the flow to be steady, 1D and
fully developed. This is equivalent to analyzing half of a symmetric
infinite channel flow, as sketched in Fig. 2. Hence, by setting
@
@t ¼ 0; U2 ¼ U3 ¼ 0; @

@x ¼ @
@z ¼ 0 (except @p

@x 6¼ 0), Eq. (2) simplifies
to

@p
@x

¼ @

@y
r12 � qs12ð Þ: (18)

The diffusion based on viscous stresses has to be balanced by a source
term, associated with a streamwise pressure gradient. Applying the iso-
tropic eddy viscosity assumption [see Eq. (4)], the Reynolds stress ten-
sor for 1D boundary layer flow becomes

s ¼

2
3
k ��t

@U1

@y
0

��t
@U1

@y
2
3
k 0

0 0
2
3
k

0
BBBBBB@

1
CCCCCCA: (19)

The eigenvalues w1 ¼ 2
3 kþ �t

@U1
@y ; w2 ¼ 2

3 k; w3 ¼ 2
3 k� �t

@U1
@y come

along with the respective eigenvectors v1 ¼ �1ffiffi
2

p ; 1ffiffi
2

p ; 0
� �T

; v2 ¼ ð0;

0; 1ÞT and v3 ¼ 1ffiffi
2

p ; 1ffiffi
2

p ; 0
� �T

. By means of the eigenspace decompo-

sition sij ¼ vinWnlvjl and employing the eigenvector matrix
v ¼ ðv1; v2; v3Þ, the shear stress component of the Reynolds stress
tensor can be reformulated,

s12 ¼ v11v12w1 þ v21v22w2 þ v31v32w3 : (20)

FIG. 2. Schematics of steady, fully developed 1D boundary layer flow.
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Inserting the unperturbed eigenvectors and eigenvalues of the
Reynolds stress tensor, as outlined above, into Eq. (20) results in a
strictly negative Reynolds shear stress component s12 ¼ 1

2 ðw3 � w1Þ
as w1 � w3. However, when perturbing the eigenspace orientation
according to the approach of Iaccarino et al.,10 we obtain s�12 ¼ 1

2 ðw1
�w3Þ � 0 as w1 � w3. In conclusion, the simple permutation of first
and third eigenvector leads to different sign of the relevant shear stress
shaping the boundary layer profile. At first glance, this already seems
to violate obvious flow physics.

Nevertheless, we aim to present a conceptual explanation for this
phenomenon. In order to qualitatively assess the physical relationships
related to a change in sign of the Reynolds shear stress, we insert
Stokes’ hypothesis [see Eq. (3)] and the eddy viscosity hypothesis [see
Eq. (4)] into Eq. (18),

@p
@x

¼ @

@y
q � þ �tð Þ @U1

@y

� �
: (21)

Consequently, a change in sign of Reynolds stress component s12
would equate to an effective negative turbulent eddy viscosity �t.
Negative eddy viscosity means that momentum flux from regions of
higher momentum is transported to regions of lower momentum. This
implies a countergradient transport that is physically implausible.
Additionally, this phenomenon is associated with positively correlated
Reynolds stresses and mean velocity gradients. Following the example
of steady, fully developed 1D boundary layer, the turbulent production
term Pk ¼ �sij

@Ui
@xj

¼ �s12
@U1
@y will be negative, if s12 becomes positive

because of eigenvector permutation. Such negative turbulent produc-
tion denotes transferring energy from the turbulent scales to the mean
kinetic energy, a process that is deemed physically implausible as
well.40

In contrast to the eigenvector perturbation, a pure eigenvalue per-
turbation is incapable of inducing a change in the sign of s12 for fully
developed boundary layer flow. Indeed, Fig. 3(b) additionally serves to
illustrate the observation, that applying eigenvector perturbation lead
to negative turbulent production and, consequently, negative effective
eddy viscosity for any eigenvalue perturbation that falls within the
bounds of the barycentric triangle. As depicted in Fig. 3, the absolute
value of the turbulent production reaches its maximum at the
one-component limiting state of turbulence, whereas it becomes zero

for an isotropic Reynolds stress tensor, which is in accordance with the
finding of Gorl�e et al.16 This illustrative example demonstrates that, in
the context of wall-bounded, boundary layer like flows, the suggested
eigenvector permutation of first and third eigenvector can give rise to
non-realizable Reynolds stress tensor dynamics in the set of RANS
equations. Therefore, there is the need for a physics-based constraint
that ensures not only realizable Reynolds stresses but also plausible
Reynolds stress tensor dynamics. Subsequently, we derive this con-
straint, verify its validity, and suggest its future usage within the EPF.

B. Simplified derivation of realizable eigenvector
perturbation dynamics for wall-bounded flows

As the second eigenvector of the Reynolds stress tensor in Eq.

(19), is v2 ¼ ð0; 0; 1ÞT , the rotation matrix for any rotation around
this eigenvector simplifies to

Rz ¼
cos að Þ �sin að Þ 0
sin að Þ cos að Þ 0
0 0 1

0
@

1
A ; (22)

(choosing a ¼ p=2 results in Iaccarino’s permutation of first and third
eigenvector10 see Appendix A). The general rotation of the Reynolds
stress tensor ellipsoid around its second eigenvector is sketched in
Fig. 4(a).

The objective is to derive a condition that evidently causes a
change of sign for the shear Reynolds stress component s12, ultimately
resulting in non-realizable Reynolds stress tensor dynamics. Therefore,
we formulate the rotated eigenvector matrix based on the unperturbed
eigenvector matrix v,

v� ¼ Rzv

¼ 1ffiffiffi
2

p
�sin að Þ � cos að Þ 0 cos að Þ � sin að Þ
�sin að Þ þ cos að Þ 0 cos að Þ þ sin að Þ

0
ffiffiffi
2

p
0

0
B@

1
CA: (23)

Hence, the resulting Reynolds shear stress based on Eq. (20) becomes

s�12 ¼
1
2

w3 � w1ð Þcos 2að Þ¼! 0: (24)

Consequently, Eq. (24) holds true for isotropic turbulence, as w1 ¼ w3
and any rotation angle a ¼ p

2 n� p
4 with n 2 N. The relationship of

the rotation angle and the shear stress component is verified by a step-
by-step analysis presented in Fig. 4(b). The resulting dependency of
the Reynolds shear stress component is exactly the analytically derived
one in Eq. (24).

Note that the rotation of the Reynolds stress tensor is symmetric
to p=2, which means that any rotation around p=2� d results in the
same tensor as any rotation around p=2þ d. Therefore, a ¼ p=4 is
the appropriate choice as the smallest angle at which a sign change
occurs.

The mean of the cosine in Fig. 4(b) has to be zero in order to
obtain zero crossing of the turbulent production at exactly a ¼ p=4. In
other words, it is required that the maximum and the minimum value
of the turbulent production have equal absolute magnitude but oppo-
site signs. Equating the lower and upper bound of the inner Frobenius
product Eq. (17) leads to

FIG. 3. Comparison of the effect of eigenspace perturbation on the turbulent pro-
duction term Pk in the case of fully developed boundary layer flow. Effect of pure
eigenvalue perturbation is shown in (a), while (b) presents the effect, when combin-
ing the permutation of the eigenvectors v1 and v3 and eigenvalue perturbation
within the barycentric triangle.
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�Pkmin ¼ Pkmax ;
�w1c3 � w2c2 � w3c1 ¼ w1c1 þ w2c2 þ w3c3;

w1 c1 þ c3ð Þ þ 2w2c2 þ w3 c1 þ c3ð Þ ¼ 0 :
(25)

Thus, rotating the orthogonal eigenvectors around the second eigen-
vector by an angle of p=4 results in zero turbulent production if
c1 ¼ �c3 and c2 ¼ 0. This condition always holds true for fully devel-
oped 1D boundary layers, as there is only a single velocity gradient pre-
sent in the flow. However, any 2D flow featuring vanishing divergence
of the velocity field does also satisfy Eq. (25). This means that
@U1
@x ¼ � @U2

@y , given that U3 is the vanishing velocity component.

C. A posteriori validation of the suggested constraint
on the eigenvector perturbation

To corroborate our findings, we analyze another generic flow sce-
nario, which is the 2D converging-diverging channel flow.41 This test
case consists of viscous walls with and without curvature as sketched
in Fig. 12(a). Our numerical setup uses inlet boundary conditions
extracted from a fully developed turbulent boundary layer at
Res ¼ 617. The derived mass flow rate is forced using a boundary con-
troller, which adjusts the static pressure at the outlet of the computa-
tional domain. We conducted a RANS grid independence study using
a low-Reynolds resolution (yþ � 1) at solid walls and by applying
Menter SST k� x LEVM.34 Based on this, we conduct analysis in
post processing for the finest mesh featuring a resolution of 242 � 242
� 1 grid points [see Fig. 12(b)]. The resulting velocity gradients, the
eddy viscosity and the turbulent kinetic energy are used to determine
the Reynolds stress tensor following Boussinesq’s approximation [see
Eq. (4)]. According to our derivation above, the eigenvectors of these
Reynolds stress tensors are rotated around the second eigenvector by
a ¼ p=4 in the entire domain as a first step. The rotated Reynolds
stress tensors are composed using Eq. (13). Subsequently, we can com-
pare the resulting turbulent production term [see Eq. (17)] after rotat-
ing the eigenvectors with the one based on the initial Reynolds stress
tensor. The comparison, presented in Fig. 5, reveals a reduction in the
effective turbulent production due to the rotation as expected. This
observation confirms the exemplarily derived relationship of the

turbulent production term with respect to eigenvector rotation of the
Reynolds stress tensor. As a second step, we further validate the deriva-
tions by solving an optimization problem for achieving zero turbulent
production by an eigenvector rotation of the Reynolds stress tensor
given the velocity gradients of the previously performed RANS simula-
tion of the 2D converging-diverging channel. Figure 6 shows the
appropriate rotation angle a0 relative to p=4 that would lead to zero
turbulent production term. The deviations from to the derived a under
idealized conditions of a 1D boundary layer flow, can be ascribed to
the fact, that the flow is not fully divergence-free in the outer parts of
the boundary layers. However, as the optimized a0 differs by only 10%
at maximum from p=4, we believe, that restricting the eigenvector
rotation of the Reynolds stress tensor to p=4 is a reasonable choice also
for more complex flows.

To sum up, we have shown through mathematical analysis that a
simple eigenvector perturbation involving permuting the first and
third eigenvectors may lead to implausible, not realizable Reynolds
stress tensor dynamics. Based on that, a constraint that facilitates phys-
ically meaningful Reynolds stress tensor perturbations with respect to
rotation of the eigenspace has been derived for wall-bounded, bound-
ary layer like flows. Additionally, we have substantiated the derivations
by presenting illustrative proofs. In the next section, we apply the pro-
posed eigenvector rotations in the EPF.

FIG. 4. Rotation of the eigenvector matrix of the Reynolds stress tensor around second eigenvector v2 by a. The schematical impact of the rotation on the Reynolds stress ten-
sor ellipsoid is shown in (a). (b) shows the effect of eigenvector rotation on the Reynolds shear stress component and the turbulent production. This plot is created based on
assuming 1D boundary layer flow, as sketched in Fig. 2. The eigenvectors of sij presented in Eq. (19) are rotated by a. The resulting s12 and Pk [see Eq. (17)] are evaluated
subsequently.

FIG. 5. Distribution of turbulent production term Pkrotated , when rotating the eigenvec-
tors of the Reynolds stress tensor around second eigenvector by a ¼ p=4. For bet-
ter interpretability, the resulting production is scaled by the unperturbed turbulent
production Pk. The magenta line indicates U1 ¼ 0.
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IV. APPLICATION OF PHYSICALLY CONSTRAINED
EIGENVECTOR PERTURBATION

The idea of the EPF is to sample from possible solution space for
certain QoI attributed to perturbing the Reynolds stress tensor within
the discussed physical bounds. The entire framework was imple-
mented in German Aerospace Center (DLR)’s in-house CFD solver
TRACE.42 TRACE is a parallel Navier–Stokes flow solver that has been
developed at DLR’s Institute of Propulsion Technology in close coop-
eration with MTU Aero Engines AG. In the present work, we use the
finite-volume method to discretize the compressible RANS equations.
The EPF and can be subdivided in several steps within each pseudo-
time step of steady simulations:

1. determine anisotropy tensor [see Eq. (5)]
2. perturb eigenvalues of anisotropy tensor by choosing the relative

perturbation strength DB [cf. Eqs. (15) and (16)]
3. perturb eigenvectors of anisotropy (Reynolds stress) tensor by

choosing the rotation angle a. The rotation is done by rotating
the eigenvector matrix around the second eigenvector v� ¼ Rv
with R according to Eq. (A1).

4. reconstruct perturbed Reynolds stress tensor s�ij according to Eq.
(13)

5. update of the viscous fluxes using s�ij
6. update of the turbulent production term Pk ¼ �s�ij

@ui
@xj

The simulations of the flow within a converging-diverging chan-
nel serve to exemplify the application of the EPF and further validate
the proposed constraint on the eigenvector perturbation. We compare
against DNS data by Laval et al.41 The two-equation, Menter SST
k� x34 LEVM is chosen to be the baseline model in the present inves-
tigation. Hence, the uncertainty estimates presented subsequently
based on the EPF can be attributed to the structural uncertainties
within this particular turbulence model. As the amount of considered
structural uncertainty increases with increasing eigenvalue perturba-
tion, the most conservative estimation of the modeling uncertainty is
obtained by choosing DB ¼ 1:0. Nevertheless, according to latest pub-
lications,30 intense Reynolds stress tensor perturbations may cause
numerical convergence issues.

Following the approach proposed in our previous work,12 the rel-
ative perturbation magnitude with respect to the relative shift in bary-
centric coordinates DB has to be adjusted as a consequence of the
convergence issues. In the present study, we seek to apply a DB as large
as possible by steps of 0.1. Consequently, while the full Reynolds stress
tensor perturbation could be used for the 2C and 1C corners, the per-
turbation toward the isotropic corner had to be adjusted by DB < 1, as
approaching the isotropic state results in a reduction of turbulent
kinetic energy production.

Although we have just derived that the maximum eigenvector
rotation angle has to be a � p=4, this constraint is necessary but not
sufficient for practical applications. The eigenvector modification by
applying a � p=4 may result in states of the Reynolds stress tensor
that are indeed realizable and physically plausible but still lead to

FIG. 6. Rotation around second eigenvector of the Reynolds stress tensor by a0
leads to zero turbulent production. In order to better classify the discrepancy from
p=4, the determined angle a0 is presented as a fraction of p=4. The magenta line
indicates U1 ¼ 0.

TABLE I. Selected turbulent target state (componentiality), DB for eigenvalue and a
for eigenvector perturbation of Reynolds stress tensor perturbation of flow within
converging-diverging channel.

Simulation #1 #2 #3 #4 #5 #6
Target turbulent state 1C 1C 2C 2C 3C 3C
DB 1.0 1.0 1.0 1.0 0.2 0.2
a 0.0 p=10 0.0 p=8 0.0 p=20

FIG. 7. Estimated turbulence model uncertainty for the streamwise velocity inside of the converging-diverging channel based on the EPF. U10;max is the maximum streamwise
velocity of the baseline simulation at x/H¼ 0. The settings for every eigenspace perturbation of the Reynolds stress tensor can be found in Table I.
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numerical stability issues. Therefore, we iteratively decrease the rota-
tion angle by fractions of 10% with respect to the maximum value of
p=4. In addition to examining the overall residuals and convergence of
the static outlet pressure (controlled to maintain the prescribed mass
flow outlet boundary condition) of each simulation, we evaluate the
evolution of the streamwise velocity. Therefore, we record iterative
data at x=H 2 ½0:5; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12� every 1000 itera-
tions and evaluate the relative error (standard deviation divided by the
mean) over the last 100 snapshots. In order to distinguish between an
unacceptable unstable and an acceptable converged solution, we use a
maximum tolerable relative error of 1.5% in each considered location.
The numerically achievable perturbations leading to converged RANS

results for this study of the convergence-divergence channel flow are
summarized in Table I. In order to verify, that the eigenvector pertur-
bation proposed by Iaccarino et al.10 leads to unstable CFD simula-
tions as a result of non-realizable Reynolds stress tensor dynamics, we
have conducted one exemplary simulation, presented in Appendix C,
applying eigenvector permutation without any eigenvalue
perturbation.

In the subsequent section, we discuss the resulting estimated
uncertainty intervals based on the eigenspace perturbation. The analy-
sis refers to the presented QoI in Figs. 7–10. The estimated uncertainty
for the streamwise velocity field is shown in Fig. 7. Perturbing the
eigenspace of the Reynolds stress tensor has minor effect upstream of

FIG. 8. Turbulence model uncertainty based on the EPF for the friction coefficient cf ¼ sw=ð12q0U2
10;max

Þ at upper wall (a) and bottom wall (b) of the converging-diverging chan-
nel. The quantities with subscript 0 indicate that they are extracted at x=H ¼ 0. The settings for every eigenspace perturbation of the Reynolds stress tensor can be found in
Table I.

FIG. 9. Turbulence model uncertainty based on the EPF for the pressure coefficient cp ¼ ðp� p0Þ=ð12q0U2
10;max

Þ at upper wall (a) and bottom wall (b) of the converging-
diverging channel. The quantities with subscript 0 indicate, that they are extracted at x=H ¼ 0. The settings for every eigenspace perturbation of the Reynolds stress tensor
can be found in Table I.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 025153 (2024); doi: 10.1063/5.0185841 36, 025153-8

VC Author(s) 2024

 27 February 2024 06:34:35

pubs.aip.org/aip/phf


the diverging section (x=H � 5), where the baseline RANS simulation
closely aligns with the DNS data. Due to the increased turbulent pro-
duction at the one- and two-component limiting state of turbulence
(as can be observed in the turbulent kinetic energy distributions in
Fig. 10), the velocity profiles become sharper with an increased gradi-
ent at the wall. This is also reflected in higher friction coefficients in
Fig. 8 at the bottom and top wall compared with the baseline simula-
tion. Conversely, the simulations featuring more isotropic Reynolds
stresses (simulation #5 and #6 with DB ¼ 0:2), lead to rounder velocity
profiles and reduced friction coefficients. Larger deviations between
RANS and DNS results arise, when the flow experiences the adverse
pressure gradient in the diffusor section. This is further reflected in an
increased sensitivity of the velocity field with respect to the shape and
orientation of the Reynolds stress tensor. Due to the indirectly manip-
ulated turbulent production behavior, the turbulent kinetic energy

evolves differently in the simulation domain for every perturbation
(see Fig. 10). This is also in accordance with the described dependency
of the turbulent production term on the eigenvalues in the front sec-
tion of the diffusor (see also Sec. II A). The turbulent kinetic energy
production significantly affects the size of the separation bubble due to
the adverse pressure gradient. While the simulations aiming for the
one- and two-component turbulence state completely suppress the
separation zone at the lower wall, the simulations #5 and #6, featuring
more isotropic turbulence both separate early and over-predict the
reattachment length (see Fig. 8). While the static wall pressure reduc-
tion in the converging section is not affected by the eigenspace pertur-
bation, the pressure recovery in the diffusor section shows growing
turbulence model uncertainty (see Fig. 9). These uncertainty intervals
on the pressure coefficient, underline the increased model-form uncer-
tainty when it comes to adverse pressure gradient flows. The reduced

FIG. 10. Evolution and comparison of turbulent kinetic energy within the converging-diverging channel between DNS41 data (a), RANS baseline (b), and EPF simulations,
applying perturbed Reynolds stress tensors (c)–(h) (see Table I).
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turbulent production of the simulations #5 and #6 in the converging
section x � 5 results in increased turbulent kinetic energy in the mas-
sively separated section (see Fig. 10). As already described in the theo-
retical parts of this paper (see Secs. II B and III), the rotation of the
eigenvector matrix mainly affects the turbulent production process
indirectly. This is especially highlighted by decreased turbulent kinetic
energy patterns in the upstream section of the domain.

It is noticeable that the simulations aiming for the two-
component limiting state of the Reynolds stress tensor show the best
agreement with the DNS data in the diffusor section for the considered
QoI. Additionally, the DNS data are included in the turbulence model
uncertainty estimates in most of the plots, which also validates the EPF
to a certain extent, although the authors are aware of the fact, that this
is not the main goal of the perturbation methodology. The interested
reader is referred to the discussion on the restrictions and capabilities
of the framework in Matha et al.30 Regarding the potentially large
uncertainty intervals concerning the considered QoI, we must note
that the eigenspace perturbations of the Reynolds stress tensor were
chosen to be sufficiently large, allowing the CFD solver to handle it
just well enough to produce a convergent solution. On the one hand,
this enables exploring the capabilities of the considered EPF, and on
the other hand, it represents the most conservative estimate of turbu-
lence model uncertainty. For upcoming design decisions considering
this framework, design engineers would likely aim for a non-overly
conservative estimate of turbulence model uncertainty, as they may
introduce expert knowledge into the analysis.

V. CONCLUSION AND OUTLOOK

Uncertainty estimation in the context of RANS turbulence
modeling is crucial in industrial applications as it provides a quantifi-
able measure of the reliability of CFD simulations. Accurate assess-
ment of physically plausible uncertainties ensures the credibility of
simulation results, allowing engineers and designers to make informed
decisions under uncertainty. The Eigenspace Perturbation Framework
has established itself as the only physics-based uncertainty quantifica-
tion approach for turbulence model uncertainty. It has been applied to
problems in aerospace, civil, environmental, and mechanical engineer-
ing. It is widely used in leading CFD software. This underscores the
need to ensure verification and validation of this framework. However,
due to its newness, in-depth verification of the rationale and applica-
tion of this framework have not been conducted. This need is
addressed by our investigation.

In this work, our primary focus centers on the eigenvector pertur-
bation of the Reynolds stress tensor that has received limited attention
in the literature. We systematically analyze that the eigenvector pertur-
bation may violate Reynolds stress tensor dynamics under specific con-
ditions. The present study derives and introduces physics-based
constraints for eigenvector perturbations, adhering to the realizability
and stability of the uncertainty estimation procedure. The application

of these constraints to the flow within a converging-diverging channel
illustrates improved stability and accuracy in capturing the turbulent
behavior. The flow characteristics of this case encompass turbulent
boundary layer, separation, and reattachment regions, revealing devia-
tions of RANS and DNS results. Applying the EPF unveils significant
sensitivity of the considered QoI based on Reynolds stress anisotropy
and its eigenvector alignment with the strain-rate tensor. Based on the
present paper and our previous research,12 we have successfully identi-
fied challenges in the application and interpretability and proposed
potential solutions. Our future investigations will focus on implications
of the physics-constrained Reynolds stress tensor perturbation method
for more complex engineering flows, such as those encountered in tur-
bomachinery components. This will provide valuable insights into the
method’s practical utility.
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APPENDIX A: ROTATION PROPERTIES OF
EIGENVECTOR PERMUTATION10

In this section, we show that the eigenvector permutation (first
and third eigenvector) is identical to rotation around second eigen-
vector with p=2. Any rotation around an arbitrary vector
v ¼ ðv1; v2; v3ÞT by a can be described via the rotation matrix,

R ¼
cosðaÞ þ v21ð1� cosðaÞÞ v1v2ð1� cosðaÞÞ � v3 sinðaÞ v1v3ð1� cosðaÞÞ þ v2 sinðaÞ

v1v2ð1� cosðaÞÞ þ v3 sinðaÞ cosðaÞ þ v22ð1� cosðaÞÞ v2v3ð1� cosðaÞÞ � v1 sinðaÞ
v1v3ð1� cosðaÞÞ � v2 sinðaÞ v2v3ð1� cosðaÞÞ þ v1 sinðaÞ cosðaÞ þ v23ð1� cosðaÞÞ

0
B@

1
CA: (A1)

The eigenvector matrix contains column-wise orthogonal, normalized eigenvectors v1; v2; v3,
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v ¼
v11 v21 v31
v12 v22 v32
v13 v23 v33

0
@

1
A: (A2)

The eigenvectors are ordered with respect to the respective eigenval-
ues in descending order. Rotating v around v2 with a ¼ p=2 leads
to

FIG. 11. Comparison of modifying eigen-
vectors of the Reynolds stress tensor: (a)
Rotating eigenvector matrix around sec-
ond eigenvector v2 by a ¼ p=4 and (b)
schematic representation of eigenvector
perturbation by permuting first and third
eigenvector.10

FIG. 12. Introduction of converging-diverging setup: (a) Relative dimensions and sketch of the flow DNS data41 based; (b) mesh consisting of 242 � 242 � 1 grid points (every
fourth line in streamwise direction and every 20th line in wall normal direction shown) and boundary conditions; slip conditions/inviscid walls are applied in spanwise direction;
and (c) streamwise velocity based on the RANS baseline computation using Menter SST and the mesh presented in (b).
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v� ¼ Rv

¼
v221 v21v22 � v23 v21v23 þ v22

v21v22 þ v23 v222 v22v23 � v21
v21v23 � v22 v22v23 þ v21 v223

0
B@

1
CA

v11 v21 v31
v12 v22 v32
v13 v23 v33

0
B@

1
CA

¼
v21 v2 	 v1ð Þ � v1 � v2ð Þ1
� �

v21jv2j2
� �

v21 v2 	 v3ð Þ þ v2 � v3ð Þ1
� �

v22 v2 	 v1ð Þ þ v1 � v2ð Þ2
� �

v22jv2j2
� �

v22 v2 	 v3ð Þ � v2 � v3ð Þ2
� �

v23 v2 	 v1ð Þ � v1 � v2ð Þ3
� �

v23jv2j2
� �

v23 v2 	 v3ð Þ þ v2 � v3ð Þ3
� �

0
BBB@

1
CCCA

¼
�v31 v21 v11
�v32 v22 v12
�v33 v23 v13

0
B@

1
CA: (A3)

As it can be seen in Eq. (A3), the rotation result in permuting
v�1 ¼ �v3 and v�3 ¼ v1. This is illustrated in Fig. 11 and compared
with the formerly proposed eigenvector permutation. Note that in con-
trast to rotating the eigenvectors, simple permutation of v1 and v3 evi-
dently leads to a left-handed oriented eigenvector matrix. The resulting
Reynolds stress tensor, when reconstructed based on Eq. (13), is identi-
cal due to the characteristic of the spectral decomposition.

APPENDIX B: SCHEMATICS OF
CONVERGING-DIVERGING FLOW EXAMPLE

Figure 12 introduces the converging-diverging flow setup.

APPENDIX C: INSTABILITY INTRODUCED BY FORMER
EIGENVECTOR PERMUTATION

We apply the eigenvector permutation10 in the former imple-
mentation of the EPF without any eigenvalue perturbation
(DB ¼ 0). When checking the evolution of the outlet pressure in
Fig. 13 (specified mass flow rate is specified as outlet boundary con-
dition), it becomes evident, that the simulation is unstable. As a
consequence, the streamwise velocity reveals significant variations
at each snapshot in Fig. 14. Additionally, the application of non-
realizable Reynolds stress tensor dynamics, creates nonphysical
countergradient transport (see Sec. III), which results in the zigzag
like velocity profiles.

FIG. 13. Evolution of the area averaged
outlet pressure over iteration count for the
simulation using eigenvector permutation
without any eigenvalue perturbation.

FIG. 14. Streamwise velocity inside of the
converging-diverging channel based on
pure eigenvector permutation without any
eigenvalue perturbation. The snapshots
are taken every 1000 iteration, while the
mean U1 and the standard deviation std
(U1) are determined between iterations
400.000 and 500.000.
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In contrast, the streamwise velocity snapshots of the perturbed
simulations, used in Sec. IV, converge over runtime of the simula-
tions (Fig. 15 presents one example).
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