
Travel Demand Models for Micro-Level Contact
Network Modeling
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Abstract. In the pursuit of accurate infectious disease forecasting, micro-
level contact modeling in contact networks emerges as a pivotal element.
This research delves into the intricacies of nuanced micro-level modeling,
presenting adaptable models tailored for specific locations, derived from
a refined travel demand model. In our experiments, we observed that
varied encounter patterns among individuals directly influence infection
dynamics. Additionally, we observe distinct trends in the spreading dy-
namics between temporal dynamic networks and their static counter-
parts for certain encounter models. The study underscores the need for a
deeper appreciation of micro-level encounter patterns in epidemiological
modeling. Such understanding is pivotal in shaping effective interven-
tions and public health strategies during pandemic scenarios.
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1 Introduction

Mobility is fundamental to epidemic research, as it leads to the formation of
complex contact networks through people’s spatial encounters at various loca-
tions. Such contact networks offer insights into epidemic dynamics and therefore
mitigation strategies, and public health policies [1–3,5].

The significance of contact networks became particularly evident during the
global COVID-19 pandemic, where researchers focused intensely on leveraging
these networks to both characterize and forecast the spread of the virus [4,15,20].
The essence of interactions was elegantly encapsulated within these networks,
providing a macroscopic view of transmission dynamics. It is noteworthy that
these networks predominantly operated at a macro scale, often dealing with
high-level representations, such as compartments or similar abstractions.

However, mobility data on a microscopic level are hard to obtain especially
because of technical difficulties and privacy reasons. Recognizing the need for
agile responses, we put forth a range of resource-efficient, adaptable, and param-
eterizable methods designed for modeling individual encounters within distinct
locations as temporal dynamic networks.
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We explore techniques for micro-level contact modeling with agent-based
simulation based on traffic demand models and conceptualize the underlying
techniques. A micro-level contact denotes the actual physical encounter between
individuals. In this context, we deploy temporal dynamic networks, grounded by
various encounter models and distinct types of locations derived from a travel
demand model. Precisely capturing low-level encounters forms a valuable part
that seamlessly integrates into comprehensive models, augmenting the precision
of epidemic forecasting and characterization. Beyond the global context, this
research also opens up promising avenues for individual infection risk approx-
imation. The incorporation of location-induced variations in infection risk into
digital contact tracing strategies holds substantial potential, advancing the way
we approach contact tracing and containment efforts. In the future, travel de-
mand models may serve as a foundational resource for rapidly generating tempo-
ral dynamic networks, enabling their versatile application in pandemic response
and related endeavors.

The subsequent sections of this paper unfold as follows: section 2 sheds light
on methodologies employed in micro-level encounter modeling. Following this,
the methodology section initially explores temporal dynamic networks, then pro-
ceeds to introduce general distinct approaches to modeling micro-level contacts.
The results section compares the outcomes of the three techniques we have em-
ployed. Finally, the conclusion section encapsulates the overarching findings and
implications that emerge from our study.

2 Background

Two large pandemic simulation models OpenABM [9] and Covasim [11] use the
concept of multi-layer networks to generate contact networks for different daily
life scenarios (school, work, household, ...). Both models were used to investigate
COVID-19 dynamics and test different intervention strategies. The multi-layer
network approach makes use of census data to build a synthetic population on
an urban scale. Contacts are generated by different models representing differ-
ent types of interactions and environments in daily life. Covasim generates fully
connected networks within households, small world networks on the community
and work level, and disconnected clique networks representing classes. Similarly,
OpenABM employs fully connected networks at the household level, random net-
works for communities, and small-world networks for occupations. Both models
understand the necessity for different micro-level approaches in different loca-
tions. However, they choose different and quite simplistic approaches in the same
scenarios, proving the need for further research on that topic.

A study conducted by [12] harnessed mobility data to construct micro-level
person encounters. This approach considers temporal intersections of individu-
als at locations, as well as the type of location. The authors differentiate three
location types with each being associated with three basic transmission proba-
bilities. A final edge transmission weight is computed by combining the location-
dependant transmission risk and a score derived from the intersection time of
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two individuals. However, for any given location, the edge weights are solely de-
pendent on intersection times, overlooking the spatial attributes of the location
and individual movement patterns.

Müller et al. [16] used mobile phone data for agent-based epidemiological sim-
ulations including factors like masks and air exchange rates. To model micro-level
contact encounters, the approach divides locations into subspaces of predeter-
mined capacity, giving rise to a contact network characterized by cliques. While
this leads to a sophisticated model for location-based person-to-person encoun-
ters, it requires access to mobile phone data and does not fully account for the
diverse encounter patterns that different location types exhibit.

The dynamics of disease spreading in various indoor environments has also
been explored by several studies using sophisticated simulation techniques [7,13,
17, 22]. Notably, these investigations have aimed to provide insights into trans-
mission patterns and infection potentials in specific settings where a high amount
of information is available. However, the effectiveness of such approaches relies
on available and accurate information, e.g. layout, structure, and architecture of
the location under investigation, which limits its applicability to settings with
varying spatial configurations.

Up until now, the landscape of micro-level contact modeling has been char-
acterized by two predominant trends: network generators that mainly rely on
time spent at locations as well as the associated capacities and complex phys-
ical simulations necessitating substantial data and computational resources for
agent-based modeling. While the former overlooks important interaction dynam-
ics, the latter is resource and data-intensive and may not be feasible in many
scenarios.

In the following section, we outline approaches for capturing location-specific
encounter patterns based on traffic-demand models without the need for physical
simulations.

3 Methodology

In this section, we detail the methodologies foundational to our exploration
of micro-level encounter modeling using temporal-dynamic networks. We begin
by illuminating the essence of temporal-dynamic networks. Subsequently, we
introduce three distinct approaches for micro-level contact modeling.

3.1 Temporal-dynamic contact networks

Temporal-dynamic networks serve as a sophisticated framework that reveals the
ever-changing nature of interactions among individuals [10]. In contrast to static
networks, which offer a snapshot of connections, temporal-dynamic networks
capture the intricate evolution of relationships over time. This real-time depic-
tion introduces a higher level of realism, as interactions are not treated as fixed
entities but rather as dynamic occurrences. Temporal-dynamic networks prove
invaluable in epidemiological studies, as they grant insights into the spread of
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diseases over time [14]. By incorporating time-varying edges, these networks por-
tray the varying transmission potentials at different stages of an epidemic. This
precision empowers researchers and policymakers to devise strategies for disease
containment and control more effectively.

Temporal-dynamic networks present interactions as evolving sequences, not
mere snapshots [19]. While dynamic networks are gaining traction in pandemic
research, many studies still rely on static networks due to their computational
simplicity. Although static networks can suffice when disease dynamics align with
network changes, they can introduce biases. Such biases arise when aggregating
variable dynamic contacts, leading to misrepresentations in potential infection
paths. It is debated that static networks might intensify infection dynamics.
Contrary some cases are known where temporal correlations accelerate the dy-
namics of stochastic processes in dynamic networks compared to their static
equivalent. In [18], SIR simulations were performed on an empirical temporal
network of sexual interactions, to investigate the spreading of sexually trans-
mitted infections. Their findings suggest that especially in the early pandemic
stage, temporal correlations in the network accelerate infection dynamics lead-
ing to higher outbreak sizes, compared to different variations of static network
representations. For a deeper understanding, our study examines both dynamic
networks and their static counterparts.

In this study, we generate temporal-dynamic micro-level contact networks
from mobility data, typically presented as a collection of trajectories that depict
the movement of nodes between various locations. Within the realm of contact
networks, our focus is on trajectories that conclude at a specific location. We
also consider the time elapsed until the subsequent trajectory relocates our node
to another location. Based on this, we construct the vector

V (t) = (v1(t), v2(t), . . . , vi(t), . . . , vNV
(t))T ,

representing all nodes, where vi(t) = 1 if node i is present at our location at
time t, and vi(t) = 0 otherwise. Here, NV denotes the total number of nodes.

In the most general description of a micro-level contact model

θ : V (t) → A(t),

one takes V (t), which is modulated by mobility data, and uses the contact
network model θ to generate the edges of the dynamic network. A(t) represents
the time-dependent adjacency matrix, where ai,j(t) is set to 1 if nodes i and j
are connected at time t. The equivalent static network consists only of a single
adjacency matrix, where ai,j holds the time fraction nodes i, j where in contact
during the day.

In the following, possible realizations of the model θ are introduced. These
are based on previous work on micro-level contact networks discussed in section
2, and adapted to data resulting from travel demand models.
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3.2 Mobility data

To generate mobility data, we employ the TAPAS (Travel and Activity Patterns
Simulation) travel demand model [6]. TAPAS offers a comprehensive framework
for simulating future transportation demand scenarios. It takes into account var-
ious factors such as demographic changes, income structures, and transportation
infrastructure.

The foundation for TAPAS is empirical spatial and structural data, details
related to how individuals allocate their time, and specifics regarding trans-
portation mode preferences. This data is drawn from the ”Mobility in Germany”
(MiD)1 survey, which collected detailed information from over 316,000 individu-
als across 156,000 households. This data encompasses activity types, durations,
socio-demographic attributes, and household transportation resources. The syn-
thesized data produced by TAPAS results in 24h of data. At each location,
individuals are identified along with their arrival and departure times. For our
experimental purposes, we selected four specific locations. Two of these loca-
tions, A and B, are associated with leisure activities, while location C represents
a workplace and location D stands for a school.

To conduct a comprehensive SIR simulation across several days, we address
the challenge posed by the availability of accurate mobility data for just one day.
Our approach involves stacking the temporal contact network data from this sin-
gle day to simulate a continuous span of 20 days. While this method doesn’t fully
capture the stronger fluctuations and long-term spreading potentials that may
emerge among communities and individuals over time, it serves our primary
purpose effectively. Our main interest lies in uncovering general topological dif-
ferences exposed by SIR simulations across various modeling approaches. By
extending the available data in this manner, we can gain valuable insights into
the impact of micro-level encounter modeling on the broader epidemic dynamics.

3.3 Micro-level contact modeling

Baseline approach θbaseline: Our baseline approach builds upon the work of
Klise et al. [12]. In essence, this method leverages mobility data and individual-
specific time allocations at specific locations to compute intersecting time frames
between individuals, subsequently constructing contact networks.

In this approach, individuals present at the same location are linked by edges
in a contact network, with edge weights determined by the shared duration of
their presence. Transforming this concept into a temporal dynamic network, we
establish edges connecting pairs of individuals who coincide at a given point
in time within the same location (see 3.1). Under this premise, our approach
assumes an equal likelihood of infection for any pair of individuals who share
the same duration of stay at a location. In other words θbaseline constructs a fully
connected network between all nodes active at time t. This simplified framework

1 https://bmdv.bund.de/EN/Services/Statistics/Mobility-in-Germany/mobility-in-
germany.html
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forms the foundation of our exploration, serving as a reference point against
which we compare our more intricate modeling techniques.

Random graph-based approach θrandom: In our random graph-based ap-
proach, similar to [9], every possible edge, meaning that node i, j are present at
the location at time t, is selected with probability prandom. Additionally, a con-
tact duration is drawn from an exponential distribution with mean β. Contacts,
therefore, have a minimum duration of one time step and, in the case of non-
consecutive contacts, a mean duration of 1 + β time steps. This distribution
accounts for the variable nature of interaction durations, resulting in a dynamic
and realistic representation of human encounters. A possible application would
be in locations where interactions are mainly random and short, like in super-
markets, where the case of two individuals being in close proximity for the entire
shopping trip is rather unlikely, however frequent but short contacts are to be
expected.

Clique-based approach θclique: This approach capitalizes on the concept
of forming cliques to model micro-level encounters, advancing the clique-based
strategy of [16]. By grouping individuals into these compact clusters, we cre-
ate an efficient representation of contact networks within specific environments.
This approach is particularly useful for capturing interactions in places with
constrained capacity, like offices or classrooms. First, individuals are assigned
to spaces within the location, with fixed size NPeoplePerSpace. Nodes enter the
location and their respective space according to V (t), forming tightly bounded
cliques. For contacts between different spaces at every time step, a node changes
its space with probability pclique for a duration that is drawn from a normal
distribution N (µ, σ). Afterwards, the node goes back to its default space.

By modeling and tracing movements within these spaces over time, we iden-
tify instances of shared occupancy. These instances lead to the formation of
cliques, where individuals have pronounced edges connecting them within the
clique, reflecting intensive interactions like in shared offices or classrooms. In
contrast, connections outside the clique are rare, mirroring more sporadic or
distant interactions. The underlying idea of this approach is to encapsulate the
nuanced interplay between spatial arrangements and interpersonal encounters.
This modeling technique ensures a more comprehensive understanding of how in-
dividuals’ interactions are influenced by their physical proximity within specific
locations.

3.4 Unveiling topological properties with SIR model

To assess the topological differences introduced by our various micro-level con-
tact network modeling approaches, we employ the Susceptible-Infectious-Recovered
(SIR) model [8]. The SIR model is a well-established compartmental model used
to analyze the spread of infectious diseases within a population. It divides in-
dividuals into three compartments: susceptible (S), infectious (I), and recovered
(R). The SIR model tracks the transitions of individuals between these compart-
ments based on their interactions and the disease’s transmission dynamics. For
our evaluation, we utilize a temporal dynamic SIR model implemented using the
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Tacoma framework2. Tacoma provides a versatile platform for studying epidemic
spreading and other dynamical processes on networks utilizing the Gillepsie algo-
rithm [21]. We let the epidemic spreading simulations run for a simulated period
of 20 artificial days. During this time, we monitor the progression of the infection
within the population and observe how different modeling approaches influence
the spread of the disease. This SIR-based evaluation allows us to gain insights
into the impact of micro-level encounter modeling on the topological proper-
ties of contact networks and the resulting epidemic dynamics. By analyzing the
simulated disease propagation under different scenarios, we can draw conclu-
sions about the importance of accurately representing individual interactions for
understanding and managing the spread of infections.

In our research, it is crucial to recognize that the distinctive nature of our
various approaches inherently results in networks from the same location hav-
ing varied edge counts but identical node counts. The baseline approach, as
described in 3.3, exhibits a markedly higher mean degree. To ensure a valid and
unbiased comparison using a SIR model, we assume that the interaction strength
is constant across all networks, i.e.

∑
t,i,j∈Ebaseline

wi,j(t) =
∑

t,i,j∈Erandom

wi,j(t) =
∑

t,i,j∈Eclique

wi,j(t) = 1

where E is the respective set of edges generated by the contact network

model. This is achieved by normalizing the adjacency matrix wi,j(t) =
ai,j(t)
NE

with the total number of edges NE during the day creating weighted edges. The
experimentation involved adjusting the transmission probability parameter to
show sufficient infection dynamics across all networks. SIR runs were performed
with this transmission probability and with respect to the edge weights. This
methodology guarantees a meaningful assessment of the impact of different net-
work topologies on the dynamics of disease propagation, even when the networks
exhibit varying edge counts by definition.

4 Results

In this section, we present our results on micro-level contact network modeling
using mobility data. We first describe the mobility data utilized and then discuss
our experimental results. For all experiments, we selected NPeoplePerSpace =
15, pclique = 0.01, µ = 10, σ = 5. These parameter choices were informed by
preliminary experiments and explored in Section 4.2.

4.1 SIR-based evaluation

The outcomes of the SIR simulation conducted over a span of 20 days are pre-
sented in Figure 1. The vertical axis on the graph represents the number of indi-
viduals infected per day. Evidently, the baseline approach exhibited the highest

2 https://github.com/benmaier/tacoma
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infection count, followed sequentially by the random and clique approaches. This
consistent trend was observed across all examined locations. Importantly, the dis-
tinctions among the approaches go beyond just the highest infection count, also
encompassing differences in the rate of spread. For both, locations A and B, it
becomes evident that the peak of the clique approach occurred around days 7-8,
whereas the baseline approach reached its highest point at approximately day
5. The work/school locations C and D show similar trends but the difference in
infections and speed between the approaches is less emphasized.
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(a) Location A.
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(b) Location B.
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(c) Location C.
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(d) Location D.

Fig. 1: Comparison of infection dynamics in SIR simulation across multiple loca-
tions and contact modeling approaches. Number of infected nodes on the y-axis,
number of days on the x-axis. NPeoplePerSpace = 15, pclique = 0.01, µ = 10,
σ = 5.

Essentially, we find variations in the extent and speed of infection dynamics
across the selected locations, which can be tied to the nature of each location.
For instance, individuals tend to spend less time at locations A and B, which
are associated with leisure activities, compared to those representing a school
or a workplace. Crucially, the distinct contact models shaping encounter pat-
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terns play a significant role in influencing the spreading dynamics within the
constructed contact networks.

The difference between dynamic and their respective static networks depends
on the chosen model. For our baseline, as well as the random approach, we see
that both networks behave similarly in terms of infection dynamics. The clique
approach instead shows a significant acceleration of the infection dynamic in
dynamic networks, resulting in a higher and earlier infection peak as well as a
higher outbreak size. This further supports the findings from [18]. Their sexual
encounter network is described as a network with many cycles and compact
weekly connected cliques, resulting from spatial constraints. This network could
be modeled with our clique approach.

The actual efficacy and adaptability of these models necessitate further val-
idation, either through empirical data or simulation studies. Nevertheless, these
models serve as starting point and aim to lay the groundwork for fast and adapt-
able generation of micro-level contact models.

4.2 Effect of hyperparameter settings

Figure 2 demonstrates the effects of various hyperparameters associated with the
clique-based approach on the SIR results for location B. Except for the parame-
ter under investigation, we maintain consistency with the experiments detailed in
section 4.1. Figure 2a reveals the influence of the mean parameter µ. Elevated µ
values correlate with a rise in total infections and a decelerated infection spread.
The same trend surfaces when observing the number of individuals per space,
NPeoplePerSpace. Infections peak around 50 for NPeoplePerSpace = 5 and approx-
imately 170 for NPeoplePerSpace = 50. Likewise, figure 2b shows that alterations
in the probability of space change pclique lead to varying infection outcomes.
As expected, larger probability values result in higher infection counts, while
minimal space changes yield minimal infections. The absence of space changes
restricts inter-clique infections, resulting in substantially lower infection dynam-
ics. Conversely, fluctuations in the σ parameter exhibit minimal impact on in-
fection dynamics, as figure 2d shows. Since this parameter influences the time
individuals spend in other spaces without directly affecting encounter numbers,
it appears to play a less pronounced role in driving infection dynamics. Upon
inspecting the network resulting from θrandom, the hyperparameters showcased
minimal perturbation on the outcomes. Our experiments revealed negligible ef-
fects for β and only minor variations observed in the infection dynamics for
prandom. When exploring values for prandom spanning from 0.001 to 0.5, a no-
table reduction in infection rate was evident at 0.001, while the remaining values
demonstrated relatively comparable results. Notably, prandom = 0.02 exhibited
the highest infection rate, closely followed by 0.3. Neither the contact duration
nor the number of edges (under the normalizing factor) appeared to exert a
significant impact on the network’s topology.

In essence, the results indicate that constrained spaces and diminished inter-
actions among occupants lead to reduced infection propagation. This observation
is independent of the sheer edge count since the transmission probability between
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nodes is normalized as explained above. The deviation in outcomes stems from
the unique topological traits of the temporal contact network, reflecting varying
encounter dynamics. Our research accentuates the pivotal role of assumptions
surrounding encounter patterns and consequent transmission dynamics in dic-
tating infection trajectories. Utilizing contact networks constructed from com-
prehensive data sources, like mobility data, reveals the importance of real-world
contact patterns in epidemiological modeling.
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(a) Varying µ
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(b) Varying NPeoplePerSpace
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(c) Varying pclique
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(d) Varying σ

Fig. 2: Parameter exploration for temporal contact network resulting from θclique

While our study has provided insights into the behavior and characteristics
of temporal contact networks, limitations need to be acknowledged. Our cur-
rent method of stacking these networks doesn’t capture long-term dynamics of
infection spread. While our choice of an SIR-based evaluation provides a foun-
dation, the process of normalizing temporal networks introduces complexities,
as the ”overall infection potential” is differently interpreted. Distinct character-
istics between temporal and static networks are subject to future investigations
and underpin the relevance of temporal dynamic network modeling. While our
approach offers promising avenues for future research, its broader applicability
needs cautious consideration and further refinement.
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5 Conclusion

In this study, we explored micro-level contact network modeling and its impli-
cations for understanding disease spread. The goal was to showcase how the
choice of micro-level contact models within specific locations influences infection
dynamics. Our findings highlight the significance of tailored contact models for
different locations and the crucial role of encounter patterns in shaping infection
dynamics. Employing travel demand models in understanding infection dynamics
paves the way for flexible and modifiable contact models. This research under-
scores the complexity of real-world contact patterns in epidemiological modeling,
emphasizing the need for nuanced approaches to inform public health strate-
gies. The orchestration of multi-tiered contact networks necessitates authentic
portrayals of human mobility on both macro and micro scales, enriching our
competence in offering precise infection risk assessments to individuals.

Future research directions include refining transmission probability modeling
by considering contact distance through human mobility models that emulate
actual human movement patterns. Furthermore, analyzing long-term data span-
ning more than 24 hours can reveal longer-term effects and pave the way for the
generation of even more accurate temporal contact networks. Additionally, we
aim to develop a versatile, parameterizable model applicable to various location
types to enhance its adaptability and usefulness in epidemiological investigations.
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