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Abstract—Identifying vital nodes in complex networks is piv-
otal across various research domains such as social network
analysis, epidemiology, and physics, with centrality measures
being commonly employed. Despite growing privacy concerns, its
impact on vital node identification, especially in networks with
sensitive data like Bluetooth-based contact networks, remains
underexplored. Our study assesses centrality measures’ efficacy
under constrained privacy settings, where only limited neighbor
information is accessible. Through simulations, we pinpoint
algorithms optimal for privacy-sensitive node vitality estimation,
emphasizing the influence of network characteristics and algo-
rithmic traits like multi-aggregation. This work enhances the
understanding of privacy-centric methods in complex network
analysis.

Index Terms—vital node identification, influential node rank-
ing, network centrality measures, complex networks analysis,
privacy-sensitive network analysis, epidemic modeling and anal-
ysis,

I. INTRODUCTION

Vital nodes in complex networks, crucial for network func-
tion and structure, are central to numerous domains includ-
ing information propagation [1], power grid analysis [2],
economics [3], and especially infectious disease modeling,
accentuated by the COVID-19 pandemic [4]–[6]. Determining
these nodes aids in predicting and managing disease spread
and individual infection risks.

Mobile Bluetooth-based contact tracing apps, such as the
German “Corona-Warn-App” [7], offer personal infection risk
estimates. However, privacy concerns have restricted data
scope to immediate neighborhood contacts, complicating pre-
cise risk calculations. This constraint signals the need to

understand node vitality estimations under such limited data
scopes. Our research probes the balance between precision
and privacy in node vitality estimations, evaluating recent
methodologies across diverse network datasets under different
privacy constraints. Results indicate that merely incorporating
additional edge information often diminishes estimation accu-
racy while considering second-degree neighbors can approach
the precision of full network analyses. We commence with
a background on node vitality and privacy, subsequently
detailing our experimental setup. The latter sections present
our results and their broader implications.

II. BACKGROUND

The following sections introduce the concept of node vital-
ity as well as the role of privacy in node vitality estimation
algorithms.

A. Estimating Node Vitality

In unweighted and undirected networks, the vitality of a
node is determined by the network topology and represents the
spreading potential as well as the receptive potential of a node.
This potential refers to any kind of information (infection
spreading, fake news spreading, etc.). The importance of a
node is typically described by network centrality measures.
Among the classical methods are degree and path aggregating
measures such as betweenness, closeness, eigenvector central-
ity, and its relatives [8]. Different attempts have been made
to categorize modern approaches to vital node identification
[9], [10]. Given that this work investigates data demand and
performance of node vitality estimation, we roughly follow
the categorization of [10] into local, semi-local, global, and
hybrid approaches. Section III, introduces several methods for
each category.

B. Privacy in node vitality estimation

As stated in the introduction there is a trade-off between the
accuracy of node vitality estimation and the requisite amount
of potentially sensitive network information. For instance,
social networks contain sensitive personal information, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from mailto:permissions@acm.orgpermissions@acm.org.

ASONAM ’23, November 6-9, 2023, Kusadasi, Turkey
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0409-3/23/11. . . $15.00
http://dx.doi.org/10.1145/3625007.3627513



the analysis of these networks must adhere to strict privacy
regulations. Similarly, Bluetooth-based contact networks for
fighting pandemics may, as a negative side effect, reveal large
parts of societal structures that do not comply with data
protection regulations. Thus, privacy and data protection in
such scenarios are paramount.

[11] presents a secure multiparty computation protocol for a
scenario where some individuals in the network treat their data
as private while others do not. The authors design protocols
for popular methods such as K-shell decomposition, ensuring
privacy-preserving computation. In contrast to removing nodes
from the graph globally, this work investigates the unique
challenges of vital node estimation within limited egocentric
sub-graphs. [12] proposes the secure multiparty computation
ranking (SMPC-ranking) protocol, which enables participants
in a network to collaboratively identify influential nodes while
preserving the privacy of each private network. While our
study concentrates on vitality estimation within the confines
of limited egocentric network information, whereas SMPC-
ranking explores vital node identification within a context
where multiple private sub-graphs collaboratively contribute
to the estimation.

To the best of our knowledge, comprehensive evaluations
of multiple vital node estimation algorithms within a node
egocentric network visibility context are scarce. We try to fill
this gap by examining the performance of these algorithms
under stringent privacy conditions, thereby highlighting their
strengths and limitations.

III. EXPERIMENTAL SETUP

The following section presents the setup for the simulation-
based performance evaluation of multiple vitality estimation
algorithms. Different privacy settings are defined and the
typical SIR-based evaluation method for vitality estimation is
described. Subsequently, evaluated algorithms are introduced.

A. Computing ground truth vitality

Consider a network represented by G = (V,E), where V
denotes the set of nodes, E represents the set of edges and N
is the number of nodes. Within this network, let ⟨k⟩ denote
the average degree of first-order neighboring nodes and

〈
k2

〉
is the average degree of second-degree neighbors. To obtain
ground truth for evaluating node vitality estimation under
varied privacy, we utilize the SIR spreading model [13], as it
is commonly used for vitality estimation [14]–[16]. Initially,
every network node is susceptible (S) with a sole index node
as infected (I). Neighbors of the index risk infection at rate
β, transitioning to recovered (R) post-infection. To assure
statistical stability, each node is considered an index node
1000 times. A node i’s vitality value V itality(i) is defined
as V itality(i) =

NRi

N , where NRi is the number of recovered
nodes. The transmission rate β typically aligns with or slightly
exceeds a network’s epidemic threshold βth [9], [10], [17],
computed via degree distributions as

βth ≈ ⟨k⟩
⟨k2⟩ − ⟨k⟩

.
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Fig. 1. Different configurations of a ”horizon” of ego, i.e. its neighborhood
degree.

In this research, we chose β = 1.25 × βth to ensure suffi-
cient spreading dynamics. Simulations were executed using
the Epidemics on Networks Python library [18]. Algorithm
performance was gauged by the correlation between the algo-
rithm’s rankings and the SIR-derived ground truth, employing
Kendall’s tau coefficient τ [19], with a range of −1 to +1
indicating correlation strength.

B. Vital node estimation under limited local network informa-
tion

Traditional vital node identification studies often assume full
network access. However, practical scenarios, driven by pri-
vacy concerns or platform restrictions, limit this. For instance,
many social media platforms allow viewing only up to friends
of friends. Similarly, decentralized contact tracing apps often
grant users visibility only to their immediate neighbors [20]. In
such contexts, a pressing question emerges: How does limiting
data sharing to direct and indirect neighborhoods (e.g., 2-hop,
3-hop) impact the accuracy of vital node estimation?

To address this, we tested various node vitality estimation
algorithms under different ego-centric network visibilities or
ego horizons (see Fig. 1). Scenarios ranged from observing
solely first-order neighbors (1-hop), extending to 1.5-hop, 2-
hop, 3-hop, and full graph visibility (also referred to as privacy
settings). In the 1.5 hop scenario neighbours of ego only
share their links to nodes that ego already knows, which is
acceptable in certain privacy scenarios. Even methods typically
calculated on the entire graph, like eigenvector centrality,
were adapted to these sub-graphs. Our exploration into limited
network visibility’s effects offers insights into node vitality es-
timation’s reliability under privacy constraints. These insights
are crucial for developing robust, privacy-aware contact tracing
systems during times of infectious disease outbreaks.

C. Vitality estimation algorithms

Local vitality estimation algorithms focus solely on the 1-
hop neighborhood of a node, making them efficient with low
computational costs, but they often lack accuracy due to their
limited scope. For instance, in undirected and unweighted



TABLE I
ALL EVALUATED VITALITY ESTIMATION ALGORITHMS.

Algorithm degree K-shell K-shell
iteration entropy neighb.

aggreg. others

LGC [14] ✓
NINL [21] ✓ ✓
ERM [15] ✓ ✓

CLD [25] ✓
clust.
coeff.

LH-Index [26] ✓ ✓
GC [16] ✓
GC+ [16] ✓ ✓
IGC [27] ✓ ✓
IGC+ [27] ✓ ✓ ✓
DKGC [22] ✓ ✓ ✓
DKGC+ [17], [22] ✓ ✓ ✓ ✓
MCGC [17] ✓ ✓ eigenvec.
IC [28] ✓ ✓ ✓ ✓

GLSC [29] ✓ ✓ ✓
neighb.
set

GLI [30] ✓ ✓ ✓
MCDE [31] ✓ ✓ ✓
MCDWE [31] ✓ ✓ ✓
ECRM [23] ✓ ✓ ✓ ✓

LS [32] ✓ ✓
neighb.
set

networks, the node degree becomes the sole metric. Semi-
local algorithms, on the other hand, utilize a predefined
truncation threshold to determine the number of considered
nodes. An exemplar is the NINL [21] approach, which in-
corporates additive neighbor layer information, aggregating
nodes’ influence iteratively, and offering a representation of the
network’s spreading dynamics. Global approaches encompass
the full network, deriving vitality from its entire structure.
This can increase computational costs, especially for expansive
networks. A notable example is the improved K-shell decom-
position [22], [23], which builds upon the well-known K-shell
method [24] by including the iteration number of removement.
Lastly, hybrid methodologies merge both global and local
perspectives. They assimilate data from the entire network and
from immediate surroundings. The Gravity Centrality (GC) is
a hybrid approach, factoring in the K-shell value to compute
node importance within a specified truncation radius. Table
I displays all algorithms utilized in this study, along with the
network measures and principles upon which they are founded.
As explained in III-B, all algorithm types will be evaluated
with limited neighborhood information to verify their ability
to determine node vitality without full network access.

IV. RESULTS

To ensure a thorough assessment, we used diverse datasets
of 12 networks, namely Jazz, Email, Power, USAir, Router,
Dolphin [33], French-school [34], Network science, Infectious,
Contiguous [35], Celegans [36] and Sfhh [37]) to evaluate
the performance of the 19 state-of-the-art vitality estimation
algorithms shown in Table I under different privacy conditions.

A. Overall ranking of algorithms

The average rankings of the evaluated algorithms for each
privacy setting across all networks are depicted in Table II.

TABLE II
AVERAGE RANKS OF ALGORITHMS ACCORDING TO KENDALLS τ WITH
GROUND TRUTH VITALITY OVER ALL NETWORKS. TOP 3 IN BOLD; ’-’

DENOTES INFEASIBILITY OF EXECUTION.

Method 1-hop 1.5-hop 2-hop 3-hop full-graph
IGC+ 9.0 8.0 4.0 1.0 1.0
ERM - 17.0 2.0 3.0 2.0
NINL 9.0 3.0 1.0 2.0 3.0
GC+ 9.0 13.0 7.0 5.0 4.0
ECRM 9.0 10.0 6.0 6.0 5.0
DKGC+ 9.0 9.0 3.0 4.0 6.0
MCGC 9.0 19.0 19.0 19.0 7.0
IGC 9.0 12.0 5.0 7.0 8.0
DKGC 9.0 4.0 9.0 8.0 9.0
GC 9.0 14.0 8.0 9.0 10.0
LGC 9.0 16.0 11.0 12.0 11.0
LH-Index 9.0 6.0 13.0 10.0 12.0
CLD 9.0 15.0 10.0 11.0 13.0
GLI 9.0 5.0 12.0 13.0 14.0
GLSC 9.0 7.0 18.0 16.0 15.0
IC 9.0 11.0 14.0 18.0 16.0
MCDE 9.0 2.0 16.0 15.0 17.0
MCDWE 9.0 1.0 15.0 14.0 18.0
LS - 18.0 17.0 17.0 19.0

A pattern emerges under the full-graph and 3-hop conditions,
with IGC+, ERM, and NINL consistently appearing in the
top three algorithmic positions. When the privacy setting
shifts to 2-hop, the rankings adjust, showcasing NINL, ERM,
and DKGC+ as the dominant three algorithms. This means
that NINL seems to achieve the best balance between the
amount of network information needed and performance. As
all algorithms solely rely on degree information in the 1-hop
setting, they produce identical estimations. When examining
the transition from a full-graph to a 3-hop setting, the al-
gorithmic rankings show minor fluctuations in the produced
rankings. Surprisingly in the 1.5 setting, no method performs
better than simple node degree. This will be discussed in more
detail below.

B. Results on Single Networks

Fig. 2 shows Kendall’s τ correlations with the SIR-based
ground truth for the top five methods for each network, with
privacy settings displayed on the x-axis. As already shown
above overall ECRM and IGC+ perform best when the 3-hop
neighborhood or full graph is visible to the ego node, while
the differences become more subtle in the more restrictive
settings with NINL at the top rank in most 2-hop cases.
The performance of all methods increases only marginally
when transitioning from the 2-hop to the 3-hop and full-graph
settings. In specific cases such as the French-school, Celegans,
and USAir networks, this is due to their small network diam-
eters, where the network diameter is 3 or smaller. However,
for networks with larger path lengths, considering the 2-
hop neighborhood of an ego node already provides enough
information for robust vitality estimation. NINL performs best
in 7 out of the 12 networks in the 2-hop setting. Interestingly,
although ECRM emerges as a high-performing algorithm in
numerous instances, it isn’t featured in the top four rankings
under any of the privacy conditions as seen in Table II. This
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Fig. 2. Rank correlations of the top 5 vitality estimation algorithms across different networks. For each privacy setting (x-axis), the best-performing approach
is annotated. The transmission rate is given by β = βth × 1.25.

underscores the observation that an algorithm’s effectiveness
can be highly dependent on the specific network, implying that
what works well in one network may not necessarily replicate
its performance in another. Another notable observation is that
the rank correlations drop in almost all cases from the 1-hop
to the 1.5-hop setting. This means that in the scenario where
the edges between the neighbors of a node are known (which
might be acceptable regarding privacy), these additional edges
rather introduce less reliable information for node vitality
estimation.

C. Impact of algorithm properties

When applying privacy constraints to networks, the avail-
able information for vitality estimation algorithms diminishes.
The K-shell decomposition, when used in an algorithm within
these constraints, sees a notable reduction in the K-shells
assigned to nodes. In contrast, K-shell iteration retains more
distinct values under privacy constraints. This affects algorithm
rankings: while GC+ sees a drop as privacy settings tighten,
DKGC+, using both K-shell values and iteration numbers,
climbs from the 6th in full-graph to the 3rd position in 2-hop.
Top algorithms in the 2-hop to full-graph settings generally
adopt aggregation steps in a message-passing manner. For

instance, NINL determines influence values by aggregating
neighboring degrees iteratively, facilitating continuous infor-
mation exchange between nodes. Given that frontrunners ERM
and ECRM also use multi-aggregation, this method is effec-
tive across various networks and privacy conditions. Lastly,
algorithms like ERM, ECRM, MCDE, and MCDWE utilize
entropy principles for vitality estimation. While ECRM excels
in specific networks, ERM typically surpasses others in an
average context across all networks.

D. Implications for privacy-sensitive node vitality estimation

Our analysis reveals several critical findings with implica-
tions for privacy-sensitive node vitality estimation. For most
networks, the supplementary edges provided in the 1.5-hop set-
ting do not offer a significant advantage over the 1-hop setting.
This suggests that in contexts such as estimating node vitality
in contact networks, like in contact tracing applications, em-
ploying mechanisms that reveal edges between common con-
tacts would not provide any notable advantages. Interestingly,
access to just the 2-hop neighborhood produces results almost
on par with having access to the entire graph. This balance
between privacy and efficacy is essential, especially during
scenarios demanding swift interventions like pandemics. Our



research also highlights the importance of neighbor aggrega-
tion, emphasizing the role of message-passing in estimating
spreading dynamics, especially with restricted network visibil-
ity. Overall, our research illuminates a new and privacy-aware
perspective on node vitality estimation, providing important
insights for both academics and practitioners in the field.

V. CONCLUSION

Our investigation of privacy-sensitive node vitality estima-
tion has revealed key insights for the domain. Notably, while
extending to a 1.5-hop setting might not be as effective,
the 2-hop neighborhood provides results almost equivalent to
full graph access. This suggests a feasible balance between
preserving privacy and ensuring accurate network analysis.
Emphasizing the role of neighbor aggregation, our findings
underscore the significance of the message-passing approach,
particularly with limited network data. In conclusion, our
research provides a valuable basis for future studies aiming to
bridge the gap between efficient node vitality estimation and
privacy preservation. The insights drawn can inform the design
of applications that are both conscious of privacy concerns
and capable of pinpointing vital nodes. Future research should
delve deeper into understanding the interplay between network
attributes and the required information for trustworthy vitality
predictions, especially within privacy-focused algorithms.
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