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Abstract. This work introduces a sample-efficient algorithm to optimize the control parameters 
of an aim point controller for solar power tower plants. Optimizing the control parameters in-
creases the performance of the aim point controller, and thus the efficiency of the plant. How-
ever, optimizing the parameters in simulation will not yield the true optimal parameters at the 
real plant due to mismatches between simulation and reality. Thus, optimization must be done 
at the real tower to find a true optimum. As this can be time consuming and costly, the optimizer 
should require a minimum number of steps. Hence, a sample-efficient optimization strategy is 
needed. This work introduces a new algorithm based on Bayesian Optimization (BO), which 
leverages multiple sets of simulation data to accelerate the optimization. The algorithm is 
tested on a six-dimensional test function representing an arbitrary aim point controller. The 
proposed algorithm outperformed standard Bayesian Optimization by reaching near optimal 
parameter configurations of 95% accuracy within 33% less optimization steps. In a second 
test, the proposed algorithm is used to optimize a simulated Vant-Hull aim point controller with 
two hyperparameters. Here, the algorithm also needs 33% less optimization iterations than the 
standard BO.  

Keywords: Aim Point Control, Solar Tower, Bayesian Optimization 

1. Introduction

To increase the efficiency of solar tower power plants, aim point control is used to maximize 
the power on the receiver and simultaneously meet allowable flux conditions to prevent dam-
ages through overheating. While an optimal aim point control algorithm is still a research ques-
tion, it is well known that controllers come with a hyperparameter optimization problem when 
there are complex dependencies between the controller’s tuning parameters and its perfor-
mance. Usually, simulations can be used to find an optimal parameter configuration. However, 
deviations from expected performance occur when there is a mismatch between simulation 
and reality due to modeling errors. To ensure optimal control behavior, hyperparameters have 
to be readjusted on the real plant which takes numerous trials and thus is a costly procedure. 
A more sophisticated approach is using a sample efficient optimization algorithm. Bayesian 
Optimization (BO) outperforms other common optimization algorithms in terms of sample effi-
ciency [1], which can be further increased using simulation data [2]. However, former ap-
proaches employ only one set of simulation data to the optimization. Since some simulation 
variables of solar tower plants, like mirror errors, rely on possibly inaccurate estimations, it 
would be advantageous to generate multiple simulation data sets for different values of the 
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simulation variable in question. This paper introduces a hyperparameter optimization approach 
to an arbitrary aim point controller based on BO that uses multiple sets of simulation data to 
enhance sample efficiency while still reaching near optimal parameter configurations in case 
of simulation to reality mismatches. 

2. Sample-Efficient Hyperparameter Optimization 

2.1 Bayesian Optimization 

Bayesian Optimization is an iterative algorithm that optimizes an unknown objective function f 
with respect to its input x. The objective function f can be defined as any function indicating 
the performance of an aim point controller, such as a weighted sum of separate performance 
metrics like power and violation of allowable flux conditions. x denotes the decision variable 
which is the vector of relevant controller parameters. In BO, Gaussian Process Regression is 
used to fit a surrogate model of the objective function f, based on previous function evaluations. 
A Gaussian Process (GP) is a distribution over functions, specified by its mean function m and 
covariance function k. 

 f(x) ~ GP �m(x), k(x, x')� (1) 

The mean function is usually chosen to be 0 [2]. However, within this work the mean function 
is set to a constant c, which is fitted on previously gathered observation data, because it may 
enhance the GP Regression [3]. A common kernel function is the squared exponential (SE) 
kernel, which is defined as  

 kSE�x,x'�=σk
2exp�- �x-x'�

2

2l2
�, (2) 

where σk
2 denotes the output variance and l the length-scale parameter, which determines 

the smoothness of the function. The function in Eq. (2) is called the prior distribution. Given 
some observation data with inputs X and outputs y a posterior distribution can be derived 

 f(x*)∣y, X∼N �μn(x*),σn
2(x*)�, (3) 

where x* is an unevaluated parameter vector. This posterior distribution acts like a regression. 

In every optimization step, an acquisition function is used to select the next parameter 
configuration 𝒙𝒙𝒊𝒊 to evaluate, based on the posterior distribution. A common acquisition function 
is the Expected Improvement (EI) acquisition function aEI, which estimates the expected mag-
nitude of improvement. The next parameter configuration to evaluate is then chosen by finding 
the maximum of the acquisition function  

 xn+1=argmax
x∈A

  aEI(x) (4) 

where 𝐴𝐴 denotes the set of possible parameter configurations. The maximum is usually located 
where either the expected value and/or uncertainty of the posterior distribution is high. Hence, 
the acquisition function tries to find a trade-off between exploration and exploitation. The pa-
rameter configuration is then applied to the actual system and the observed target value y(xi) 
is used to update the posterior distribution. During the update of the posterior distribution, the 
hyperparameters θ of the Gaussian Process e.g. c, l, σk are estimated by maximizing the mar-
ginal likelihood pML(y∣X,θ). Then, the next iteration starts by finding the maximum of aEI again.  

2.2 Enhancing Sample Efficiency in Bayesian Optimization 

Bayesian Optimization is already considered as a sample efficient algorithm. In this context, 
sample efficiency denotes the amount of information an algorithm can use from previous ob-
served samples. Ideally, an increase in sample efficiency decreases the number of iterations 
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to find the optimum of the objective function. The sample efficiency can further be enhanced 
by incorporating simulation data into the BO framework. In literature, prior information is either 
incorporated into the mean or the kernel function. Regarding the mean function there exist 
different approaches. For example, Cully et al. [4] include a metric based on preselected sim-
ulation points into the mean function. Other approaches are described in [5] and [1]. The other 
possibility is to define a custom kernel function. Here, also different approaches in literature 
exist. For example, Marco et al. [6] use a kernel composed of the addition of two kernels. 
There, one kernel is optimized for simulation data and the other models the difference between 
the simulation and the real system. Wilson et al. [5] define a new kernel function by using the 
so-called Kullback-Leibler divergence. Another approach is introduced by Antonova et al. [7], 
who deploy neural networks (NN) into the kernel. Furthermore, Rai et al. [8] introduce an ex-
tension to a kernel function by deploying an additional GP which models the mismatch between 
the simulation and the real system. Preliminary considerations and tests have shown that the 
approach using NNs by Antonova et. al in combination with the mismatch correction by Rai et 
al. is the most suitable approach in the context of using simulation data for optimizing an aim 
point controller. Thus, these approaches are further explained. 

2.3 Deploying Neural Networks into the Kernel Function 

The kernel function with NN is based on the SE kernel. But, instead of using the distance in 
parameter space ��x-x'��

2
 they use the distance in the space of objective function values 

��y(x)-y(x')��
2
. However, as the true objective function is not known, they approximate the objec-

tive function by an NN, i.e. 

 y�(x)=fNN(x) (5) 
The NN is trained on one simulation data set. By determining the correlation between two 
parameter configurations from the objective values, the true objective function may be better 
approximated. Furthermore, it biases the BO towards promising regions within the simulation 
data. Using the NN function yields the following kernel function  

 kNN�x,x'�=σk
2exp�-

�fNN(x)-fNN�x'��
2

2l2
� (6) 

2.4 Mismatch Correction 

The mismatch correction by Rai et al. introduces an additional GP, which models the deviation 
between simulation y�  and reality y. This mismatch is defined as  

 d=y�-y=fNN-y (7) 
Here, the simulation data is again interpolated by an NN. The GP to model the deviation is 
chosen to have a zero mean function and an SE kernel, and thus results to 

 d(x)∼GP �0,kSE�x,x'�� (8) 

Based on the previous observed deviations the predictive posterior mean μmis of the GP can 
be calculated. This predicted mismatch is then incorporated into the kernel function by extend-
ing the kernel with an additional dimension. This results in the following kernel function 

 
g(x)= �

fNN(x)
μmis(x)�

kNN,mis�x,x'�=σk
2exp�- 1

2
�g(x)-g�x'��

T
diag ��l1l2

��
-2
�g(x)-g�x'���

 (9) 

with two independent length scale parameters l1 and l2. The mismatch correction has the effect 
that two parameter configurations are considered only strongly correlated if they have a similar 
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simulated objective function value and a similar predicted mismatch. The influence of the mis-
match correction on the BO can be illustrated by an example. Assume a parameter configura-
tion which yielded bad performance. Due to the fact that the objective function values are used 
for correlation, every parameter configuration which yields a similar simulated objective func-
tion value will be considered to yield bad performance. This also holds true for parameter con-
figurations which lie in completely different areas of the parameter space. However, assuming 
mismatches between simulation data and reality, these parameter configurations could still 
yield promising results on the real system. The mismatch term enables these parameter con-
figurations to be tested as well, as usually the mismatch between parameter configurations 
which are far away from each other in parameter space are not strongly correlated due to the 
properties of the mismatch kernel. 

2.5 Using Multiple Sets of Simulation Data 

So far, the approaches to enhance the sample-efficiency only considered one set of simulation 
data. However, as explained in the introduction the algorithm should be able to incorporate 
multiple i.e. 𝑛𝑛 sets of simulation data. This can be achieved by either using a composed kernel 
function or by combining different GPs within the acquisition function. A composed kernel could 
be constructed by adding multiple kernels for different simulation data sets. The addition would 
act like an OR operation as described in [9]. Therefore, two parameter configurations would 
yield a high covariance if at least one kernel yields a high covariance. Because it also may not 
reasonable to use the information from every kernel as they may have a too strong mismatch, 
they can further be weighted individually. To consider multiple GPs within the acquisition func-
tion, there exist a few approaches in literature. Namely, the Most Likely Expected Improvement 
(MLEI) [10] and the Weighted Mixture Expected Improvement (WMEI) [11]. The MLEI deter-
mines the EI score and its respective parameter configuration for every GP model and weights 
the EI score by its marginal likelihood. Then, it chooses the next parameter configuration from 
the GP with the highest weighted EI score. In contrast, the WMEI acquisition function deter-
mines not an individual parameter configuration with its EI score for each individual GP. In-
stead, it directly determines one parameter configuration by maximizing the weighted EI ac-
quisition functions of the considered GP’s. This can be expressed mathematically by   

 xn+1=argmax 
x∈A

 aWMEI�x∣GP1,…,n�=argmax 
x∈A

  �1
n
∑  n

i=1 wiaEI(x∣GPi)� (10) 

 with 𝑤𝑤𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑀𝑀𝑀𝑀(𝒚𝒚∣𝑋𝑋,𝒢𝒢𝒫𝒫𝑖𝑖)
∑  𝑛𝑛
𝑗𝑗=1 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑀𝑀𝑀𝑀�𝒚𝒚∣𝑋𝑋,𝒢𝒢𝒫𝒫𝑗𝑗�

. (11) 

Again, preliminary tests showed that the WMEI acquisition function is the best performing ap-
proach to consider multiple sets of simulation data and is thus used within this work. 

2.6 Further Modifications 

In order to further enhance the sample-efficiency of the algorithm some additional modifica-
tions to the algorithm are introduced. Firstly, the criterion used to weight the models in the 
WMEI acquisition function is changed to a Monte Carlo (MC) Cross Validation (CV) criterion 
with the predictive posterior probability as a scoring function. This showed to be more suitable 
for model selection, as it considers the posterior probability distribution and not the prior prob-
ability distribution as the marginal likelihood criterion does. Thus, the calculation of the weights 
changes to  

 wi=
CVMC(GPi)

∑  k
j=1 CVMC�GPj�

 (12) 

More information about the Monte Carlo CV can be found in [12]. 

 Furthermore, the length scale might be chosen unreasonably large when optimizing the 
hyperparameters of the GP. This may also influence the performance of the BO regarding the 
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number of evaluations. Therefore, the maximum length scale is bounded by the maximum 
distance of objective function values within the simulation data space. This is a suitable choice, 
since in general it is not possible to extrapolate more than l units away from a data point [13]. 

Combining all previous mentioned modifications results in a novel BO algorithm lever-
aging prior simulation data to enhance sample efficiency. In summary, it extends the standard 
BO algorithm by using n +1 GP’s. Each GP compromises of a constant mean function and an 
SE kernel, which uses a neural network trained on one simulation data set with an added 
mismatch correction. The only exception is the last GP, which is just a standard GP with con-
stant mean and SE kernel. After fitting the hyperparameters of the GP’s with a bounded length 
scale, the next promising point is chosen by the WMEI acquisition function. This acquisition 
function weights the GP’s by a Monte Carlo CV. 

Lastly, for each simulation data set a different GP model is trained and used in the 
WMEI acquisition function. However, it might evolve the case that no data set approximates 
the actual objective function well. To consider this case, an extra GP is introduced with con-
stant mean function and a standard SE kernel. Thus, the algorithm can fall back to a normal 
BO if no data fits well with the real system. Additionally, to save computational complexity and 
to facilitate the interpretation of the results, the best scoring GP of the n GP’s regarding the 
MC CV is preselected for the WMEI acquisition function. Thus, only one prior-informed GP and 
the standard GP is used in the acquisition function.  

3. Results 

In a first test, the proposed algorithm is tested on the six-dimensional Hartmann function also 
known as Hartmann6. The function is taken to show the general applicability of the algorithm 
and can be considered to represent the objective function for an arbitrary aim point controller. 
In a second test, an actual aim point control, namely the Vant-Hull algorithm, optimized by the 
proposed algorithm.  

3.1 Evaluation Criteria 

To evaluate the performance of the algorithm, the number of function evaluation to reach a 
specified accuracy is evaluated. The accuracy is defined as 

 acc= �1- �fopt-f
+�

dmax
� ⋅100%, (13) 

where fopt is the true optimal value and f+ the best observed value of the BO. dmax denotes the 
maximum distance between two values in the range of objective function values. 

As a baseline to compare the proposed BO algorithm, a standard BO algorithm using 
a GP with constant mean function and SE kernel, as well as the EI acquisition is chosen. No 
other baseline is considered because BO already outperforms other commonly used hyperpa-
rameter optimizations with respect to sample-efficiency and incorporating prior assumptions 
about the true objective function [1]. 

3.2 Hartmann6  

The Hartmann6 function is a common test function for optimization problems, usually evalu-
ated on the hypercube xi∈ [0, 1] ∀ i=1,..., 6. On this hypercube, the function possesses two 
local minima. Four simulation data sets are created for this function. The first data set is created 
from the Hartmann6 function with an additive noise. The second is created with small shifts on 
two dimensions and the third with a large shift on one dimension. The last data set is generated 
from a six-dimensional polynomial function. While the first two data sets still resemble the true 
Hartmann6 function, the third set approximates rather badly and the last set not at all the true 
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Hartmann6 function. To use the simulations within the BO framework each set is approximated 
by a neural network. 

 Usually, the BO algorithm is fed with some observation data from random samples 
before it starts. In this test, each algorithm was fed with observation data from five different 
random samples. As the performance of the algorithm is also dependent of the initial observa-
tion data, 30 optimization runs are performed for the algorithm as well as for the baseline. The 
results are averaged over all runs. To ensure comparability, the initial observation data in each 
run is equal for the proposed algorithm and the baseline.  

In Tab. 1 the results are shown regarding the number of function evaluations averaged 
over 30 optimization runs. Each number is rounded to an integer. It can be seen that the pro-
posed algorithm outperforms the baseline for each shown accuracy by at least 33%. To reach 
90% the performance goes up and reaches its maximum of 45% less function evaluations than 
the baseline. However, after that the proposed algorithm slows down but still manages to reach 
an accuracy of 95% with 14 less function evaluations in average.  

Table 1. Number of function evaluations for Hartmann6 function. 

Algorithm 50 % acc. 80 % acc. 90 % acc. 95 % acc. 
BO (baseline) 12 eval. 23 eval. 33 eval. 43 eval. 
Proposed BO 8 (-33 %) 13 (-43 %) 17 (-45 %) 29 (-33 %) 

In Fig. 1a the distance to the global optimum as well as the confidence interval of 95% is 
shown. The dotted line denotes the model change, where the actual BO algorithm starts after 
the random initial samples. It can be observed that the proposed algorithm also stays in tighter 
bounds, thus its performance depends less on the initial observations compared to the base-
line. 

 

(a) Hartmann6 test function     (b) Vant-Hull algorithm 

Figure 1. Mean distance and 95% confidence interval to the global optimum. 

3.3 Vant-Hull Aim Point Controller 

The Vant-Hull controller is a simple open-loop control method to prevent violation of the allow-
able flux density (AFD). The controller locates the aim points with a certain distance from the 
upper or lower edge of the receiver. This distance is determined by the approximate beam 
radius and a parameter k for each heliostat. This algorithm was extended by Collado et al. [14] 
to use three different k factors. Each factor is allocated to one sector of the field, which are 
divided in radial direction. These factors are optimized in this test. However, the last factor is 
kept constant as it showed to have no significant influence. The simulation data was created 
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for the solar tower in Jülich with 2153 heliostats and a norther-field layout. The algorithm was 
actually designed for an all-round field, however using the solar field in Jülich leaves the pos-
sibility to verify the simulation at the real plant as this plant can be used by the author. 14 
different data sets were created with varying mirror error (1.5-2 mrad), mirror reflectivity (0.72-
0.9) and AFD (750-800 kW/m²). These parameters were chosen as they are usually not exactly 
known during simulation trials. The objective function was designed to increase with the power 
on the receiver while being penalized by causing overflux conditions. Again, these data sets 
are approximated by an NN. One of the data sets is taken to resemble to the true plant and 
the others are used within the BO algorithm. The algorithms are averaged over 30 runs but 
this time with only two initial observations due to the smaller number of parameters. The results 
are listed in Table 2. As the algorithm converges fast for the small problem, values of 90% 
accuracy and above are shown. This time the proposed algorithm is equally fast to reach 90% 
accuracy. However, 95% accuracy is achieved faster by requiring 33% less steps and for 98% 
accuracy 61% less steps. In Fig. 1b the distance and standard deviation is depicted for 52 
iterations. One can recognize that the baseline is outperformed by the proposed BO after six 
steps.  

Table 2. Number of function evaluations for Vant-Hull algorithm. 

Algorithm 90 % acc. 95 % acc. 98 % acc. 99 % acc. 
BO (baseline) 4 eval. 12 eval. 23 eval. 32 eval. 
Proposed BO 4 (+0 %) 8 (-33 %) 9 (-61 %) 14 (-56 %) 

4. Conclusion and Outlook 

In this work, a novel approach was proposed for sample-efficient hyperparameter 
optimization of an arbitrary aim point controller for solar power tower plants. The approach is 
based on the Bayesian Optimization and was extended to efficiently make use of simulation 
data. The proposed algorithm was tested on the six-dimensional Hartmann function to evaluate 
the general applicability on an arbitrary aim point controller. As benchmark, a standard BO 
approach was used. In this test, the proposed algorithm outperformed the benchmark e.g. the 
algorithm yielded an accuracy of 95% regarding the optimal value within 33% less function 
evaluations. In a second test, the algorithms were tested on the modified Vant-Hull aim point 
controller with two hyperparameters. Here, the improvement was similar. To reach 95% accu-
racy, 33% less steps are needed. In conclusion, the objective of using multiple simulation data 
sets to speed up the finding of near optimal controller parameters was achieved. Thus, the 
algorithm can enable the optimization of aim point controllers at a real plant. However, if the 
reduction of optimization steps is sufficient depends on the objective function as well as the 
time to execute one test run at a real plant. In future work, the algorithms shall be evaluated 
on other aim point control strategies. 
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