
Don’t mention it: An approach to assess challenges
to using software mentions for citation and
discoverability research
Stephan Druskat1,2, Neil P. Chue Hong3, Sammie Buzzard4, Olexandr Konovalov5, and
Patrick Kornek5

1German Aerospace Center (DLR), Institute for Software Technology, Berlin, Germany
2Humboldt-Universität zu Berlin, Department of Computer Science, Berlin, Germany
3EPCC, University of Edinburgh, Edinburgh, United Kingdom
4School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom
5School of Computer Science, University of St Andrews, St Andrews, United Kingdom

Corresponding author:
Stephan Druskat1

Email address: stephan.druskat@dlr.de

ABSTRACT

Datasets collecting software mentions from scholarly publications can potentially be used for research into the software that
has been used in the published research, as well as into the practice of software citation. Recently, new software mention
datasets with different characteristics have been published. We present an approach to assess the usability of such datasets
for research on research software. Our approach includes sampling and data preparation, manual annotation for quality and
mention characteristics, and annotation analysis. We applied it to two software mention datasets for evaluation based on
qualitative observation. Doing this, we were able to find challenges to working with the selected datasets to do research. Main
issues refer to the structure of the dataset, the quality of the extracted mentions (54% and 23% of mentions respectively are not
to software), and software accessibility. While one dataset does not provide links to mentioned software at all, the other does
so in a way that can impede quantitative research endeavors: (1) Links may come from different sources and each point to
different software for the same mention. (2) The quality of the automatically retrieved links is generally poor (in our sample,
65.4% link the wrong software). (3) Links exist only for a small subset (in our sample, 20.5%) of mentions, which may lead to
skewed or disproportionate samples. However, the greatest challenge and underlying issue in working with software mention
datasets is the still suboptimal practice of software citation: Software should not be mentioned, it should be cited following the
software citation principles.

INTRODUCTION
Until recently, a key challenge in trying to understand the research software landscape was a lack of knowledge of what
software is being used. While there are some discipline-specific software catalogues and lists, and recent initiatives such as the
Netherlands eScience Center Research Software Directory (Spaaks et al., 2020) and the Research Software Encyclopedia (The
Research Software Encyclopedia project, 2021), there is no single, comprehensive directory or curated list of research software
whose use is attested in the literature.

Approaches to build datasets that contain software references, e.g. for specific disciplines, often take publications as a
starting point and identify software that was mentioned in the publication, either manually (Du et al., 2021) or through machine
learning (). Domain registries such as swMATH for mathematical software (Dalitz et al., 2020) and ASCL for astrophysics
software (Allen & Schmidt, 2015) use these techniques to identify possible candidates for inclusion. Other approaches rely on
automatically mining code repositories, looking for key markers such as citation files or DOIs (Eitzen, 2020).

Researchers who want to do quantitative empirical research on research software and research software engineering
(see Felderer et al. (2023)) have a need for datasets with specific features that allow them to access research software metadata
and artifacts, including source code, i.e., datasets need to include URLs to repositories that store the relevant metadata or
artifacts.

ar
X

iv
:2

40
2.

14
60

2v
1 

 [
cs

.S
E

] 
 2

2 
Fe

b 
20

24



Examples for such research include

• accessing source code to study implementation details in research software;
• accessing source code repositories to study software metadata such as license information;
• accessing features of source code repositories such as the software’s version history, issue trackers or integration processes

(pull/merge requests) to study development processes and software provenance (Kurnatowski et al., 2021).

Recently, five datasets have been released that can potentially be used for the type of research described above. The SoftCite
project (Du et al., 2021) is a human curated list of 4,093 software mentions in the life and social sciences. This dataset, in turn,
was used by a team at the Chan Zuckerberg Initiative to train a machine learning model that has been used to identify software
references in the CORD-19 collection of COVID-19-related research papers (Wang et al., 2020), which has been published
as a raw dataset: CORD-19 Software Mentions (Wade & Williams, 2021) (CSM). The CZ Software Mentions dataset (Istrate,
Veytsman, et al., 2022) (CZI) provides software mentions from the biomedical literature, their sources, textual context and
metadata, extracted by a trained SciBERT model (). A subset of the complete corpus also disambiguates software entities,
and provides links to software source code and/or artifact repositories. SoftwareKG-PMC (Schindler et al., 2021a) provides a
knowledge graph of software mentions generated through a SciBert (Beltagy et al., 2019) model trained on a gold standard
corpus of software mentions (). Escamilla et al. (2022) extracted URLs for git hosting platforms from the ArXiv and PMC
corpora (Extract-URLs, Escamilla (2023)).

In this paper, we present our approach to assessing the usability of software mention datasets for (1) quantitative research on
research software that requires access to software metadata or artifacts (i.e. for mining software repositories), and (2) research
into the practice of software citation. We understand “usability” as the potential for a dataset to be used without further
processing to access the source code of the mentioned software that is recorded in the dataset. An example for high usability
would be the inclusion in a dataset of a correct URL to the source code repository for each software in the dataset. Our approach
was originally developed to use CSM (Wade & Williams, 2021) in order to answer research questions (see Research questions)
from the above types of research: (1) What is the impact of licenses on the type of software mention? (2) Has the practice of
software citation improved as compared to Howison and Bullard (2015)? We consecutively applied our approach to assess
the usability of CZI (Istrate, Veytsman, et al., 2022), which gave us opportunity to evaluate our approach, and compare the
usability of two datasets that have been created in a similar way (see Software mention datasets). The approach consists mainly
of the manual annotation of a stratified sample of the dataset with quality categories, categories of software mentions, and
accessibility categories, and the subsequent analysis of the annotations.

In the following sections, we present related work (Related work) and describe our assessment approach and the methodology
to apply this approach to the CSM and CZI datasets (Methods). We then present the results of the assessment and the results
of two exploratory studies based on the assessed datasets (Results). Finally, we conclude with suggestions for future work
(Conclusion).

Related work
In 2015, Howison and Bullard described challenges with identifying and finding software that has been used for biology
research, and crediting software authors (Howison & Bullard, 2015). These challenges relate to problematic practices of
software citation: Howison and Bullard found that of the publications that mentioned software in any way, only 39% cited
a formal publication relating to the software in the references, while informal mentions are included in 43% of investigated
publications. Such informal mentions often fail to provide credit to software authors. Furthermore, only in 28% of cases were
they able to identify the software versions that had been used for the research presented in the respective publications, and only
5% of the respective versions were referenced in a way that made it possible to find the actual software versions.

Since the publication of Howison and Bullard’s paper, work has been done in the scholarly communications and research
software communities to address the state of software citation practice. A. M. Smith et al. (2016) define the principles of
software citation. These principles (italicised, see A. M. Smith et al. (2016) for their definitions) address the challenges to
software identification, findability, and creditability mentioned by Howison and Bullard (2015), when applied in practice:

• Importance and unique identification disallow informal mentions that may obscure the identity of the software.
• Persistence, accessibility and specificity enable findability of and access to the specific version of referenced software.
• Credit and attribution enable credit for software authors.
The FORCE11 Software Citation Implementation Working Group (2017–2023)1 worked with different stakeholders to

endorse the software citation principles, helped implementing them, and developed guidelines for different stakeholder groups,
e.g., for software developers (N. P. Chue Hong, Allen, Gonzalez-Beltran, et al., 2019), journal authors (N. P. Chue Hong, Allen,

1https://www.force11.org/group/software-citation-implementation-working-group. SD and OK were members of the working group that was co-chaired by
NCH.

2/17

https://www.force11.org/group/software-citation-implementation-working-group


Gonzalez-Beltran, et al., 2019), publishers (Katz et al., 2021), software registries (Registries Task Force on Best Practices for
Software et al., 2020), and libraries (Schmidt et al., 2021).

Software citation practices based on the software citation principles are also implemented in, or supported by: software
metadata formats, that enable software authors to provide correct and complete citation metadata (e.g. Citation File For-
mat (Druskat, Spaaks, et al., 2021), CodeMeta (Jones et al., 2017)); open access repositories and archives that provide DOIs or
other unique identifiers for software (e.g. Zenodo (European Organization For Nuclear Research & OpenAIRE, 2013), Figshare,
Software Heritage (Abramatic et al., 2018-10-01, 2018)); source code platforms that display citation information for software
(versions) (e.g. GitHub (A. Smith, 2021)); reference managers that support import of correct and complete software citation
metadata (e.g. Zotero, JabRef); publications that support and recommend citation of software versions (Katz et al., 2021).

Despite these activities towards better software citation, and an increase in the number of DOI registrations for soft-
ware (Fenner et al., 2018), good software citation practice, it seems, has not yet permeated research culture: only “3.24% of
all software DOIs registered by Zenodo are traceably cited at least once” (van de Sandt et al., 2019, p. 2). Instead, informal
mentions of software in publications are still commonplace, which makes it hard to track software usage in research (see Du
et al., 2021). This in turn is not only disadvantageous for the sustainability of the software in question (see Druskat, Katz, &
Todorov, 2021, for a brief discussion of the relationship between citation and research software sustainability), it also impedes
quantitative research on different aspects of research software: instead of being able to work with citation graphs that include
software directly (), researchers are forced to trace software mentions. This is often a time-consuming and costly process: to
build the SoftCite dataset, 36 student assistants were paid for 2 years to annotate software mentions in full-text PDF files (Du
et al., 2021, p. 872). An alternative to the manual extraction of software mentions is the application of machine learning to
datasets of literature. In this paper, we report on two datasets that were created using machine learning models.

METHODS
The availability of new, large software mention datasets (see Introduction) promises improved access to research software
whose use has been reported in the literature. If these datasets include direct links to software metadata and/or artifacts for
research software, they can be used to build corpora of research software source code, or extract samples for empirical research.
Additionally, these datasets may potentially be used to analyse the practice of software citation. We iteratively developed an
approach to assess the usability of software mention datasets for these purposes. We then applied the approach to two of the
datasets mentioned above. Our approach included three steps:

1. Take a stratified proportionate random sample from a dataset and prepare the sample for annotation.

2. Manually annotate the sample for mention extraction quality, mention categories and quality, following a set of annotation
guidelines.

3. Analyse the sampling and preparation workflows, as well as the annotations, to assess the usability of the dataset, and
report preliminary results for our research questions where possible.

Code, samples and annotated data are available as Druskat and Chue Hong (2023).

Research questions
We developed and applied our approach to answer the following research questions.

RQ1: Are software mention datasets usable as data sources for research on research software? More precisely:
RQ1.1: Are software mention datasets usable as data sources for research on research software that requires access to
software metadata or artifacts? and RQ1.2: Are software mention datasets usable as data sources for research into the
practice of software citation?

The goal of these research questions is to identify features of datasets that allow their use for research on research software,
and vice versa, identify features that make datasets’ use for this purpose harder or impossible. Intuitively, the inclusion in a
dataset of links to software artifacts or metadata would enable research. Results would provide evidence of additional features
whose presence, absence, or characteristics can enable or preclude reuse for research purposes.

RQ2: Is open source software more cited in a way that allows credit for software authors than closed source software?
The goal of this research question is to understand if the way that the software is licensed has an impact on the way that

the software is cited or mentioned in publications. Howison and Bullard, 2015 define seven types of software mentions in
publications, categorised as formal citations (to publications, user manuals or project websites), explicit mentions (like an
instrument, of a URL, or just the software name) or implicit mentions (not even a name). We hypothesise that commercial
software is cited more frequently using an in-text name mention or citation to project name or website, but that open source
software is cited more frequently with a repository or associated research publication in the reference. The latter makes it easier

3/17



to credit the authors. Results would provide evidence concerning whether the increasing prevalence of Open Science / Open
Research approaches could improve the quality of software citation.

RQ3: Has the practice of software citation represented in software mention datasets improved in comparison to the
practice described in Howison and Bullard (2015)?

The goal of this research question is to find out if the practice of software citation has improved since the publication
of Howison and Bullard (2015). Since 2015, a number of contributions have been made towards better software citation.
In 2016 the software citation principles were published (A. M. Smith et al., 2016). They describe how software should be
cited, and what metadata the respective references should ideally include: The software itself should be cited, rather than a
substitute output, e.g., a paper describing software. The reference should also name the authors to enable academic credit,
include a persistent identifier to the persisted artifact of the exact version of the software that was used, and allow access to
the software itself. Following the principles paper, which was the main output of the FORCE11 Software Citation Working
Group2, the follow-up Software Citation Implementation WG3 (2017–2023) created a number of outputs addressing different
stakeholders to improve software citation practice: software developers (N. P. Chue Hong, Allen, Gonzalez-Beltran, et al.,
2019), authors (N. P. Chue Hong, Allen, Gonzalez-Beltran, et al., 2019), publishers Jay et al. (2021) and libraries (N. Chue Hong
et al., 2021). Additionally, the FAIR Principles for Research Software have drawn attention to the importance of software
metadata that also “enables and encourages the citation of software” (N. P. Chue Hong et al., 2021, p. 8). And metadata formats
were developed to make it easier to provide correct and complete software citation metadata in the first place ().

While we cannot prove causation between any of the above-mentioned activities and outputs and the data in software
mention datasets, we hypothesise that software citation practice will overall have improved since the publication of Howison
and Bullard (2015). Specifically, we expect that those of Howison and Bullard’s (2015) categories of mentions that reflect the
principles better are found relatively more often in mentions from publications in the datasets that were published in or after
2016.

Software mention datasets
We applied our approach to two datasets:

• CORD-19 Software Mentions (Wade & Williams, 2021) (CSM)

• CZ Software Mentions: A large dataset of software mentions in the biomedical literature (Istrate, Veytsman, et al., 2022)
(CZI)

CSM contains lists of software mentioned in 77,000 papers, and exceeds the size of the dataset used by Howison and Bullard
(2015, random sample of 90 papers) by a factor of over 850. It was created by detecting software mentions in the CORD-
19 (Wang et al., 2020) collection of full-text research papers related to the SARS-CoV-2 virus, using a machine learning model
originally trained and evaluated on the SoftCite dataset (Du et al., 2021).

CZI contains software mentioned in ≈ 20.7 million papers (Istrate, Li, et al., 2022), thereby exceeding the size of CSM by
a factor of ≈ 26,000. It was created by detecting software mentions in the NIH PMC-OA Commercial and Non-Commercial
subsets, and a custom collection of papers provided by various publishers to the Chan Zuckerberg Initiative. The detection used
a machine leraning model based on SciBERT(Beltagy et al., 2019), also trained on the SoftCite dataset (Du et al., 2021).

The datasets were chosen for different reasons. Firstly, both datasets have likely been prepared using the same or different
versions of the same machine learning model4, share authors (I. Williams), and have been prepared at the same institution
(Chan Zuckerberg Initiative, Redwood City, CA, USA). This suggested that the methods applied in dataset creation would not
have to be factored into a comparison of the two datasets.

Secondly, we were involved in preliminary work on CSM, which led to an earlier version of this paper. This prelim-
inary work was conducted during a hack event at the Software Sustainability Institute’s Collaborations Workshop 2021
Hack Day5 (Konovalov et al., 2021). During the hack event, a random sample of 100 mentions from CSM was taken
and manually cleaned, and annotated with categories pertaining to the quality of the mention with respect to accessi-
bility of the software and the quality of the mention extraction. Additionally, for each mention in the sample, identifi-
cation of a source code repository was attempted, and the respective URL added to the dataset. The resulting dataset
(CORD19 software popularity sampled QA DOI.csv) is available as part of Druskat and Chue Hong (2023).

2https://force11.org/group/software-citation-working-group/
3https://force11.org/groups/software-citation-implementation-working-group/
4See the code at Veytsman (2022) which uses the model that was used to create CSM (see The Software Mention Extraction authors (2022)).
5https://software.ac.uk/cw21/hack-day

4/17

https://force11.org/group/software-citation-working-group/
https://force11.org/groups/software-citation-implementation-working-group/
https://software.ac.uk/cw21/hack-day


Sampling
Usually, sampling is a means to the end of obtaining data for a study, e.g. in sample studies along the lines of Stol and Fitzgerald
(2018, p. 16f.). In our case, the sampling process was part of the study to answer RQ1, if software mention datasets are usable
as data sources for research on research software. Here, we describe our methods for sampling CSM and CZI. We discuss
results towards answering RQ1 (RQ1.1, RQ1.2) in Results.

To conduct our study towards answering RQ2 and RQ3, we took samples of both CSM and CZI. Sampling was done in
Jupyter Notebooks () using NumPy (), Pandas (The pandas development team, 2023), Dask (The Dask 2023.3.1 developers,
2023), Matplotlib (), SciPy () and scikit-learn (Grisel et al., 2023).

To obtain a sample from CSM for annotation, we first downloaded the dataset (Wade & Williams, 2021). It consists
of a CSV file which collects publications in rows. For each publication, there is some bibliometric information, such as
DOI, title, source dataset, license, publication data, journal name and a list of URLs that resolve to a website providing
a copy of the publication. Additionally, the software mentions that were extracted from the publication are given as a
comma-separated list, e.g., [’GraphPad Prism’, ’SigmaPlot’, ’Systat’]. As we wanted to sample software
mentions, not publications, we needed to explode the lists of software mentions in the dataset while preserving the bibliometric
information, and clean up the exploded mention strings. The resulting data included 558,792 software mentions. To better
understand the data, we took counts of software mentions and plotted their distribution (Figure 1). The distribution shows
extreme positive skew, around half the distinct mentinoned software has 1 mention, around 8% has more than 10 mentions, less
than 1.5% have more than 50 mentions. We then took a simple random sample of 1,000 rows from the dataset, exploded it to
get one distinct software mention per row, took counts of mentions in the sample and plotted their distribution (Figure 2). The
distribution of the sample also shows a strong positive skew. As was to be expected, Levene’s test showed that the variances
for number of mentions between the full dataset and our sample were not equal: F(3296,35) = 7.73, p = .0054. As variance
would not influence our study, we used this sample to take another random sample of 100 software mentions for developing and
evaluating the annotation tagset.

Figure 1. Distribution of mention counts over the
complete exploded CSM dataset. x: distinct software
mentions (log), y: sum of mentions for distinct software.

Figure 2. Distribution of mention counts over our
sample from the CSM dataset. x: distinct software
mentions (log), y: sum of mentions for distinct software.

CZI consists of several subsets (Istrate, Li, et al., 2022), representing the different steps in the dataset creation process: raw
data, linked data, disambiguated data. As we were interested in evaluating the quality of original software mentions as found
in the literature (RQ3), we used the raw and linked subsets. To obtain a sample from CZI, we used two consecutive Jupyter
notebooks. In the first, we did the sampling. In the second, we merged the sampled mentions with the linked susbset of CZI to
obtain repository data for the mentions where available.

As CZI is considerably larger than CSM, we used Dask (The Dask 2023.3.1 developers, 2023) instead of Pandas (The
pandas development team, 2023) for working with the dataset, and ran the notebooks on a small CPU cluster at the German
Aerospace Center’s Institute for Software Technology using nbconvert (The nbconvert 7.2.10 developers, 2023). The sampling
notebook downloaded and extracted the dataset archives. We then merged the raw subsets for each of the collections contained
in the CZI dataset (commercial, non-commercial, publishers collection), and filtered those mentions that were curated as being
to software (see Istrate, Li, et al. (2022)). The resulting dataset contained 20,792,352 software mentions of 6,966 distinct
software. As for CSM, we plotted the distribution of software mention counts in the dataset (Figure 3) As the dataset at this
point still used ≈ 1GB of disk space, we took a stratified proportionate sample of ≈ 100,000 rows from the dataset after

5/17



brute-force deduplication of software names through capitalization, to avoid long computation times. The sample contained
99,973 software mentions of 6,966 distinct software. To visually check the stratification, we plotted the distribution of software
mention counts in the sample (Figure 4). We then extracted one random row per distinct software name to avoid having
duplicate instances of distinct software in our annotation sample, and sampled 100 rows randomly for annotation.

Figure 3. Distribution of mention counts over the
complete filtered CZI dataset. x: distinct software
mentions (log), y: sum of mentions for distinct software.

Figure 4. Distribution of mention counts over our 100k
sample from the CZI dataset. x: distinct software
mentions (log), y: sum of mentions for distinct software.

CZI contains a subset with URLs resulting from exact searches for software names in different software source code and
artifact repositories (see Istrate, Li, et al. (2022, p. 8)). We wanted to leverage these data to add them to our assessment of the
dataset quality (RQ1.1), and reuse the data to answer RQ2. To achieve this, we merged the relevant information from the subset
of CZI containing repository data into our sample. Identification of the relevant information was possible through the unique
mention IDs included in the raw and linked CZI subsets.

Annotation
We manually annotated the samples from CSM and CZI on different layers, regarding the different research questions: (a) quality
of the extracted mention, e.g., whether the extracted string included the complete software mention string (RQ1); (b) quality of
the mention in the publication, i.e., whether and how the mention allows access to the software (RQ1); (c) for CSM, a URL
where the software could be found (RQ1); (d) for CZI, quality of the repository links, i.e., whether links were extracted, and
whether they referred to the correct software (RQ1); (e) license and license type for the mentioned software (RQ2); (f) mention
type based on the mention types put forward in Howison and Bullard (2015, Table 6) (RQ3). Additionally, we added secondary
annotations: whether the publication the mention was extracted from is a preprint; whether the publication the mention was
extracted from is a paper describing the mentioned software; the confidence of the annotator regarding the correctness of the
annotations.

Annotations were guided by the annotation guidelines summarized in the next section. The guidelines were developed
iteratively by 1. annotating random samples, 2. analysing confidence annotations, 3. improving the annotation guidelines
through discussion, 4. repeating from 1. until the guidelines were not further improved. Once no further improvements were
made to the annotation guidelines, SD, NCH, SB and OK each annotated the same set of 50 random mentions from the CSM
sample. We used these annotations to calculate inter-annotator agreement (Table 1). Finally, the annotation guidelines were
applied to annotate software mentions in a second sample from CSM (n = 100) and a sample from CZI (n = 100), in addition
to the already assessed annotations in the first CSM sample. The complete workflow is shown in Figure 5.

CSM sample

Sampling Subsample
annotation

Confidence analysis High annotation
confidence?

Annotation
guidelines

improvement

CSM sample 1
(n = 50) Annotation

Annotated
CSM sample 1

(n = 50)

Inter-annotator
agreement Annotation

CSM sample 2
(n = 100)

CZI sample
(n = 100)

Analysis

no

yes

Figure 5. Visualization of the complete assessment workflow.

6/17



Annotation layer Krippendorff’s α

Mention type 0.55
Quality of the mention in the publication 0.72
Quality of the mention extraction 0.65
Preprint 0.80
Software paper 0.49

All layers 0.64

Table 1. Inter-annotator agreement for quality and mention annotations on a random sample of 50 mentions from the CSM
sample.

Annotation guidelines
For each software mention in the sample,

1. Resolve the first identifier for the publication in a web browser.

1.1. If the publication is a preprint, use the next identifier if available.

1.2. If the only available identifier is for a preprint, use the preprint.

2. Open the PDF for the publication.

2.1. If you cannot access the PDF due to a paywall, use the next identifier.

2.2. If there is no next identifier, use Unpaywall6 to access an open version of the publication, or ask a co-author to
retrieve the publication.

3. Search for the exact mention string in the PDF.

4. Verify for each search result that it is the exact search string. Note that:

4.1. The mention string may be a substring of the complete software name (due to line breaks, composite names, etc.).

4.2. There may be multiple software packages mentioned with similar names.

5. Annotate the quality of the mention retrieval according to Table 2.

6. Identify the best mention and annotate the mention type.

6.1. Identify the best mention by adherence to the software citation principles.

6.2. The Order column in Table 3 encodes the quality of the mention (from 1 = best to 6 = worst) by principles:

• Importance is always the best. Citation of project name or website is better than citation of a publication.
(Importance, Accessibility)

• Citation of a publication is better than citation of a user manual. (Credit)

• URLs in text are second best. (Accessibility)

• Instrument-like citation is better than name-only mention. (Accessibility)

• Name-only mentions are better than mention without name.

6.3. Only use mentions matching the exact mention string, including capitalization.

6.4. Only URLs found in the same paragraph as the mention, or in a footnote that is called from the same paragraph,
shall be annotated with URL.

6https://unpaywall.org/

7/17

https://unpaywall.org/


6.5. Citations to references must appear within the boundaries of the sentence that includes the mention.

6.5.1. Examples for citations to process:

• “We used SOFTWARE [1] for the analysis.”
• “We used SOFTWARE for the analysis [1].”
• “We used SOFTWARE for the analysis. [1]”

6.5.2. Example for citations to ignore:

• “We used SOFTWARE and Otherthing for the analysis. We refuted the null hypothesis. The data
provided evidence for something [1, 2].”

7. Annotate the quality of the mention (Table 4).

7.1. Differentiate between mention types NA and SN.

7.1.1. If it is clear that the authors considered the mentioned entity software, annotate as SN. Examples: listed as
“computational method”, compared with other software.

7.1.2. If still unclear, discuss with other annotators.

7.1.3. If still unclear, annotate as UN.

8. Annotate other layers.

Code Name

Y Yes, name was correctly and completely retrieved from the publication for the dataset.
N No, name was NOT correctly and completely retrieved from the publication for the dataset.

Table 2. Annotations for quality of the mention extraction/retrieval.

Code Name Definition Order

PUB Cite to publication Cites a paper/monograph primarily describing the mentioned software
(NOT a review paper comparing different software), as it would for
non-software cites. For non-software mentions, we don’t judge the
suitability of the referenced work.

2

PRO Cite to project name or website Cites the project name or website via a “fake” reference. 1

URL URL in text URL in text or in footnote 4

MAN Cite to user manual 3

INS Instrument-like Mention software in a manner similar to scientific instruments or
materials, typically mentioning the name in text followed by the author
or company and a location in parentheses.

5

NAM In-text name mention only 6

NOT Not even name mentioned 7

Table 3. Annotations for mention types following Howison and Bullard (2015).

License annotation
Licenses for each software mention were annotated by NCH for the sample of CSM prepared during the initial hack event
(see Software mention datasets), and by SD for the CZI sample. This was done by examining any associated code repository,
website or documentation related to the mentioned software. For CSM, where a link to a repository or project website was
identified as part of the preliminary work of the hack event, this was used and checked to see if a license was documented.

8/17



Code Name

SC Software where a direct link to a code repository or distribution repository landing page (e.g., CRAN, PyPI) can be
found in the mentioning paper, and the page includes author/version/license metadata.

SP Software where a link to another website can be found in the mentioning paper and that website provides access to
the source code, but the website does not provide author/version/license metadata.

SN Software but no link to a code repository or website providing access to the source code can be found in the
mentioning paper. Annotate as SN even if the reference is to a software paper that does include a link to a source
code repository.

NA Not software (only annotate this, retrieval quality and confidence)

UN Other classification - unknown/needs further investigation, e.g., unclear from the information in the paper whether
this is software or not.

Table 4. Annotations for quality of the mention itself.

If a link was not present in the initial dataset, an additional attempt to find a source of documentation for the software was
undertaken by NCH, and the license recorded if available. For CZI, any repositories for the software mention linked to from
the linked subset of CZI were checked to see if they were for the mentioned software. If they were not, an attempt to find a
source of documentation for the software was undertaken by SD and added to the dataset. Additionally, the quality of the
repository URL extraction in CZI was annotated, and the license recorded. In a number of cases where the mention was to
Software-as-a-Service and the license could not be identified, it was categorised in a subset of the ”unknown” category.

Analysis
Results pertaining to research question RQ1: Are software mention datasets usable as data sources for research on research
software? and its subquestions were gained through qualitative observation during the sampling and annotation work described
above.

In order to yield exploratory results for research question RQ2: Is open source software more cited in a way that allows credit
for software authors than closed source software?, we grouped the licenses into the categories closed (closed source licenses),
academic (academic use only, non-commercial licenses), permissive (minimally restrictive open source licenses), copyleft (open
source licenses with reciprocal clauses) and unknown (license conditions could not be found, including Software-as-a-Service).
We then clustered licenses into open (permissive + copyleft) and closed licenses (closed + academic + unknown). We also
clustered mention types into quality categories good (PUB), okay (PRO + URL) and poor (INS + NAM).

To gain exploratory insights into the data with regard to RQ3: Has the practice of software citation represented in software
mention datasets improved in comparison to the practice described in Howison and Bullard (2015)?, we grouped the mention
type annotations by publication year of the mentioning publication, and compared the distribution over mention types with the
results from Howison and Bullard (2015).

Analyses of the annotations were done in Jupyter Notebooks () using NumPy (), Pandas (The pandas development team,
2023) and Matplotlib (). Both our annotated data and the Jupyter notebooks with the analyses are available as part of Druskat
and Chue Hong (2023).

RESULTS
We developed an approach to assess the usability of software mention datasets for research on research software (RQ1).
The approach includes taking a sample from the software mention dataset and preparing it for annotation, then annotating it
manually for mention extraction quality and mention categories and quality, following a set of annotation guidelines. Finally,
the annotations are analyzed to answer research questions.
We applied the approach to small samples (total n = 250) from two software mention datasets (CORD-19 Software Mentions
(CSM), Istrate, Veytsman, et al. (2022); CZ Software Mentions (CZI), Wade and Williams (2021)), and assessed it through
qualitative observation. We were particularly interested to see if software mention datasets can be used for quantitative research
that requires access to software metadata or artifacts (RQ1.1). We also wanted to find out if they can be used for research into
the practice of software citation (RQ1.2).

Through the application of our approach to assess the usability of software mention datasets for research on research
software, we were able to uncover challenges to working with software mention datasets for the above-mentioned types of
research.

9/17



We also found that practice of software citation must significantly improve in general to adhere to the software citation
principles (A. M. Smith et al., 2016), thereby improving the quality of the source data used to create software mentions datasets.

Exploratory studies
While it was our main goal to evaluate our approach to assessing the usability of software mention datasets for research on
research software, some highly preliminary results were gained during the evaluation process.

Using our samples from CSM and CZI, we analyzed the software licenses for mentioned software. Figure 6 shows the
distribution of license categories for closed and open licenses.

0 20 40 60 80 100
% of mentions

Unk
no

wnOpe
n lic

en
se

s
Clos

ed
lic

en
se

s

Li
ce

ns
e

ty
pe

34.5

50

10.3

31

16.7

13.2

34.5

33.3

76.5

Type of software mention based on software license

Good (PUB) Okay (PRO, URL) Poor (INS, NAM)

Figure 6. Percentages of mention types found in two samples from CSM and CZI, based on their software license, categorised
by “quality”.

While software available under a closed license (license types “closed” and “academic”, see Table 5) is generally referenced
using a poor quality mention (76%), half of the mentioned openly licensed software (“permissive”, “copyleft”) is referenced
using a good quality mention, and another 16.7% using at least a medium quality mention. Table 6 shows the detailed
distribution of mention types over license types.

License category License code Description

Closed Closed Closed source licenses, generally commercial products
Academic Academic No cost for academic or non-commercial use

Permissive Apache, Artistic, BSD, Minimally restrictive open source licenses
MIT, Unlimited

Copyleft LGPL, GPL Open source licenses with reciprocal clauses
Unknown Unknown, License conditions could not be found, with a subset for

Unknown (SaaS) Software as a Service (SaaS) with no license for service or code

Table 5. Categorisation of software licenses identified in our dataset.

Using our samples from CSM and CZI, we analyzed the quality of software mentions published after 2015, and compared them
with the mention quality reported in (Howison & Bullard, 2015). Mentions in publications published in or after 2016 made up
75% of the CSM sample and 63% of the CZI sample. Table 7 shows the distribution of mention types over the samples from
CSM, CZI and Howison and Bullard’s data.
Figure 7 shows the same data. While the CSM data show an increase by 12.1% for URL type mentions as compared to Howison
and Bullard’s data, the other high and medium quality mentions have decreased (PUB −6.9%) or only slightly increased (PRO
+0.8%). For our CZI sample, the quality of mentions seems to have decreased overall: PUB −7%, PRO −0.5%. There is only
a slight increase in URL mentions (+1.7%), but a significant increase in name-only mentions (NAM: +18.9%), which represent
more than half of the mentions in the sample published after 2015.

10/17



PUB PRO INS URL NAM Total
∑ % ∑ % ∑ % ∑ % ∑ % ∑ %

License type

Closed 3 1.84 1 0.61 23 14.11 6 3.68 24 14.72 57.0 34.97
Academic 4 2.45 0 0.00 1 0.61 2 1.23 4 2.45 11.0 6.75

Permissive 16 9.82 2 1.23 0 0.00 4 2.45 12 7.36 34.0 20.86
Copyleft 17 10.43 3 1.84 1 0.61 2 1.23 9 5.52 32.0 19.63

Unknown 10 6.13 4 2.45 0 0.00 5 3.07 10 6.13 29.0 17.79

Table 6. Distribution of mention types over license categories.

CZI CSM Howison & Bullard
Mention type ∑ % ∑ % ∑ %

PUB 19 30.2 20 30.3 105 37.2
MAN 1 1.6 0 0.0 6 2.1
PRO 3 4.8 4 6.1 15 5.3
INS 4 6.3 11 16.7 53 18.8

URL 4 6.3 11 16.7 13 4.6
NAM 32 50.8 20 30.3 90 31.9

Table 7. Distribution of mention types over samples.

0 20 40 60 80 100
% of mentionsCSM

sa
mple

CZI s
am

ple

How
iso

n an
d Bull

ar
d (2

01
5)

30.3

30.2

37.2

0

1.6

2.1

6.1

4.8

5.3

16.7

6.3

18.8

16.7

6.3

4.6

30.3

50.8

31.9

Comparison of mention types

PUB MAN PRO INS URL NAM

Figure 7. Percentages of mention types found in the CSM and CZI samples compared to Howison and Bullard (2015). See
Table 3 for the definition of mention types.

When we clustered the mention types into three more coarsely grained categories, we could observe the same trends. Table 8
shows the detailed distribution, Figure 8 provides an overview.

DISCUSSION
The application of our approach to two software mentions datasets allowed us to define features that software mention datasets
should include to enable research into research software and software citation practices (see Results).

During sampling, we found that the structure of the dataset has an impact on ease of sampling. CSM is based on publications:
each row contains all mentions from a specific publication in a Python-like string list. This makes it more cumbersome and
computationally expensive to extract a sample based on individual software mentions, as all rows must first be exploded, and
data must be cleaned afterwards to exclude artifacts from list data. This structure also makes it harder to explore the dataset

11/17



Good (PUB) Okay (PRO, URL) Poor (INS, NAM)

CSM sample 30.3 22.8 47.0
CZI sample 30.2 11.1 57.1

Howison and Bullard (2015) 37.2 9.9 50.7

Table 8. Distribution of mention categories over samples.

0 20 40 60 80 100
% of mentionsCSM

sa
mple

CZI s
am

ple

How
iso

n an
d Bull

ar
d (2

01
5)

30.3

30.2

37.2

22.8

11.1

9.9

47

57.1

50.7

Comparison of mention categories

Good (PUB) Okay (PRO, URL) Poor (INS, NAM)

Figure 8. Percentages of mention categories found in the CSM and CZI samples compared to Howison and Bullard (2015).

initially with regard to individual software mentions, as they are potentially distributed across many rows, which makes filtering
difficult. This is much improved in CZI, which is based on individual mentions, starting with the initial raw data. Linking the
different subsets of CZI is straightforward, as mentions have a unique ID. Therefore we reason that ordering data in software
mention datasets by uniquely identified mention, not publication, is an important feature to make the dataset easily usable.

As both datasets are tabular data, manual annotation is technically straightforward, as respective columns could be added.
Additionally, software for working with tabular data is readily available. We reason that being persisted as tabular data is a
feature that improves usability of datasets for research.

While the annotation process for mention types and quality, and the quality of mention extraction, towards answering RQ3
was generally straightforward, the quality of the mention extraction has an impact on usability: in our sample of CSM, 19.3%
of mentions were incorrectly extracted, i.e., the software name was not completely and correctly retrieved from the publication.
Our sample data from CZI suggests that this may have improved here, with 7% of the mentions incorrectly extracted. Generally,
an analysis of mention types could be made much more feasible if the dataset included all contexts for all mentions of a software
across a publication. CZI includes context in its text column for raw data, which already makes it easier to find the respective
mention. However, a single context does not necessarily represent the “best” mention, nor does it allow for an analysis of how
a software is mentioned across a publication, where formal citations or references may have been made in another context.
We therefore reason that ideally, software mention datasets should include contexts for all mentions of a software across a
publication.

Our samples included mentions that were not to software, which may give a preliminary indication of the precision of
the machine learning models that were used to extract the mentions. In our CSM sample, extended with the sample used for
calculating inter-annotator agreement, 69 out of 150 mentions were not to software. This means that only little more than half
(54%) of mentions were correctly identified as software. In our CZI sample, 23 out of 100 mentions were not to software, i.e.
77% were correctly identified. Assessing the precision of the models used for software mention identification in more detail
should be part of future research. It seems necessary to improve these models to achieve higher precision.

The annotation of license information for software mentions based on the two dataset samples – as an example for
quantitative research on research software – was difficult. CSM does not contain any links between the mentioned software
and its documentation or software repository. This made it necessary to find a source of license documentation manually for
each mentioned software. Such an approach does not scale and renders quantitative research infeasible. CZI, on the other
hand, provide linking from different sources: GitHub, PyPI, CRAN, SciCrunch and Bioconductor (see Istrate, Li, et al. (2022)).

12/17



However, three aspects impede quantitative research based on these data.

1. CZI include links from different sources. In some cases, there were more than one link per software. This makes it
difficult to leverage the links when they point to different targets. This is less problematic for cases where the targets
represent the same software, although this information is hard to assess automatically. It becomes highly problematic,
when the targets represent different software, which additionally may have the same name. In our sample of CZI, 7 out
of 62 mentions (11.3%) had links to multiple different software.

2. Linking was created automatically in CZI, but the linking quality is generally poor: out of 55 mentions in our sample for
which one, or multiple of the same link were provided, 36 (65.4%) gave a link to the wrong software. Of these, 9 were
based on exact string matches between software name and mention string.

3. Not all software mentions have a link associated with them (16 out of 78 potentially linkable software mentions, 20.5%
in our sample)

We are hopeful that the quality of machine learning models and algorithms for linking software mentions to repositories will
be improved in the future. We nevertheless reason that links to repositories are not currently a dataset feature that improves
the usability of mention datasets for quantitative research. Alternatively, datasets with repository URLs mined directly from
publications (e.g., Escamilla et al. (2022)) could be used for quantitative research, although the semantics between the contents
of the publication and the URL cannot be established to any satisfactory degree. One approach to improve the latter would be
to combine URL mining and mention retrieval in the same dataset.

The underlying issue in terms of the challenges of using software mention datasets for research purposes as discussed
here is the currently still suboptimal practice of software citation. If authors more strictly followed the software citation
principles (A. M. Smith et al., 2016), software mentioned in the literature would be accessible per default, not via tedious
manual search.

We believe that our approach to assess the usability of software mention datasets is generally valid, but it comes with its own
shortcomings. Manual annotation of samples does not scale, and thus our approach can only be used for preliminary results from
exploratory studies. The approach could potentially benefit not only from better linking models and algorithms as mentioned
above, but also from a machine learning model to categorize mention types. Another shortcoming of our approach is the use of
mention types that do not optimally reflect the software citation principles. Instead, we reused the types from Howison and
Bullard (2015) to achieve comparability. Future work could therefore attempt the development of new mention type categories
closed related to the software citation principles.

Based on the exploratory research presented here, we recommend features that software mention datasets can include to
enable research on research software:

1. Software mentions datasets should be ordered by uniquely identified mention, not by mentioning publication.

2. Software mentions datasets should be made available as tabular data.

3. Software mentions datasets should include contexts for all mentions of a software across a publication.

4. Software mentions datasets should only include mentions that are to software, not to other entities.

5. URLs to software repositories in software mentions datasets should resolve to repositories containing the mentioned
software.

Exploratory studies
The results from our exploratory studies (see Exploratory studies) are not representative. Their following discussion is therefore
highly preliminary.

For RQ2: Is open source software more cited in a way that allows credit for software authors than closed source software?
we hypothesized that commercial/close source software is cited more frequently using a lower-quality in-text name mention
or citation to project name or website, and that open source software is cited more frequently with a repository or associated
research publication in the reference. The results from our sample annotations seem to support this hypothesis. They showed
that a third of openly licensed software still has a poor quality mention in our sample, suggesting that efforts towards better
software citation are still necessary.

We were also interested in finding out the state of software citation – or mentioning – as compared to 2015. For RQ3: Has
the practice of software citation represented in software mention datasets improved in comparison to the practice described
in Howison and Bullard (2015)? we hypothesized that categories of mentions that reflect the principles better are found
relatively more often in mentions from publications in the dataset samples that were published in or after 2016, than in the data

13/17



presented in Howison and Bullard (2015). Our results suggest that – at least in our data samples – the practice of software
citation has not improved in the last 8 years.

The results from both exploratory studies would support previous work that describes challenges for software citation () and
call for improved practice of software citation (Bouquin et al., 2023) and advocacy towards it (Du et al., 2022).

Limitations
The positive evaluation of our assessment approach is threatened by medium value Krippendorff’s α inter-annotator agreement
scores (Table 1), where a value of α1.0 signifies complete agreement. Regarding the central “mention type” annotation,
agreement showed only a slim positive trend (α0.55), and α0.64 across all layers. More confidence can be put into the
assessment of the similarly important mention extraction quality annotations, at α0.72. Likewise, the qualitative observation
towards answering RQ1 (RQ1.1, RQ1.2) is subjective by nature.

Our studies towards answering RQ2 and RQ3 were based on very small sample sizes. This would be a severe threat to
validity of results that claim more than exploratory significance; note that we do not make such a claim here. Additionally, both
sampled datasets include mostly biomedical software, and their data could not be used to make claims for research software in
general.

CONCLUSION
We presented an approach for the assessment of the usability of software mentions datasets for research on research software.
Despite some small shortcomings, our approach is valid and applicable in the assessment of software mention datasets. It
includes sampling and data preparation, manual annotation for quality and mention characteristics, and annotation analysis. We
applied our approach to two software mention datasets (<empty citation>) to evaluate the approach. Through our approach,
we were able to find challenges to working with the selected datasets. We were also able to define dataset features that would
enable the use of software mention datasets in quantitative research on research software, and research into the practice of
software citation. These features include: a dataset structure based on individual software mentions, persistence as tabular
data, the inclusion of contexts for all mentions of individual software across an individual publication. We also found that
automatically retrieved links to repositories for a software were of low quality in our sample; better retrieval algorithms and
machine learning models are needed to improve the quality of links. Finally, the underlying issue with and challenge to working
with software mention datasets is the suboptimal practice of software citation. We conclude that software should be cited using
a formal citation and reference according to the software citation principles (A. M. Smith et al., 2016), and not mentioned.

ACKNOWLEDGMENTS
This work originated from an idea proposed by NCH and SD at the Software Sustainability Institute’s Collaborations Workshop
2021 and we acknowledge feedback from Michelle Barker, Daniel S. Katz, Shoaib Sufi, Carina Haupt and Callum Rollo. Our
immense thanks to the other members of the team who explored the idea during the hackathon: Hao Ye, Louise Chisholm and
Mark Turner.

We thank two anonymous reviewers of the original submission for constructive comments that helped shape this revised
version.

REFERENCES
Abramatic, J.-F., Cosmo, R. D., & Zacchiroli, S. (2018-10-01, 2018). Building the universal archive of source code (ACM, Ed.).

Communications of the ACM, 61(10), 29–31. https://doi.org/10.1145/3183558
Allen, A., & Schmidt, J. (2015). Looking before leaping: Creating a software registry. Journal of Open Research Software, 3(1).

https://doi.org/10.5334/jors.bv
Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A Pretrained Language Model for Scientific Text. Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 3613–3618. https://doi.org/10.18653/v1/D19-1371

Bouquin, D., Trisovic, A., Bertuch, O., & Colón-Marrero, E. (2023). Advancing Software Citation Implementation (Software
Citation Workshop 2022). (arXiv:2302.07500). https://doi.org/10.48550/arXiv.2302.07500

Chue Hong, N., Cope, J., Herterich, P., Katz, D. S., & Worthington, S. (2021). Recognising the value of software: How libraries
can help the adoption of software citation. https://doi.org/10.6084/m9.figshare.14825268.v1

14/17

https://doi.org/10.1145/3183558
https://doi.org/10.5334/jors.bv
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.48550/arXiv.2302.07500
https://doi.org/10.6084/m9.figshare.14825268.v1


Chue Hong, N. P., Allen, A., Gonzalez-Beltran, A., de Waard, A., Smith, A. M., Robinson, C., Jones, C., Bouquin, D.,
Katz, D. S., Kennedy, D., Ryder, G., Hausman, J., Hwang, L., Jones, M. B., Harrison, M., Crosas, M., Wu, M.,
Löwe, P., Haines, R., Edmunds, S., Stall, S., Swaminathan, S., Druskat, S., Crick, T., Morrell, T., & Pollard, T.
(2019). Software Citation Checklist for Authors (FORCE11 Software Citation Implementation Working Group Report).
Zenodo. https://doi.org/10.5281/zenodo.3479199

Chue Hong, N. P., Allen, A., Gonzalez-Beltran, de Waard, A., Smith, A. M., Robinson, C., Jones, C., Bouquin, D., Katz,
D. S., Kennedy, D., Ryder, G., Hausman, J., Hwang, L., Jones, M. B., Harrison, M., Crosas, M., Wu, M., Löwe, P.,
Haines, R., Edmunds, S., Stall, S., Swaminathan, S., Druskat, S., Crick, T., Morrell, T., & Pollard, T. (2019). Software
Citation Checklist for Developers (FORCE11 Software Citation Implementation Working Group Report). Zenodo.
https://doi.org/10.5281/zenodo.3482769

Chue Hong, N. P., Katz, D. S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F. E., Harrow, J., Castro, L. J.,
Gruenpeter, M., Martinez, P. A., & al., e. (2021). FAIR principles for research software (FAIR4RS principles).
Research Data Alliance. https://doi.org/10.15497/RDA00065

Dalitz, W., Sperber, W., & Chrapary, H. (2020). swMATH: A publication-based approach to mathematical software. SIAM
Newsletter, Volume 53(Number 06 — July/August 2020). https://doi.org/10.12752/8009

Druskat, S. (2020). Software and Dependencies in Research Citation Graphs. Computing in Science & Engineering, 22(2),
8–21. https://doi.org/10.1109/MCSE.2019.2952840

Druskat, S., & Chue Hong, N. (2023). Don’t mention it: Challenges to using software mentions to investigate citation and
discoverability - Data and Notebooks. https://doi.org/10.5281/zenodo.5518122

Druskat, S., Katz, D. S., & Todorov, I. T. (2021). Research Software Sustainability and Citation. 2021 IEEE/ACM International
Workshop on Body of Knowledge for Software Sustainability (BoKSS), 1–2. https://doi.org/10.1109/BoKSS52540.
2021.00008

Druskat, S., Spaaks, J. H., Chue Hong, N., Haines, R., Baker, J., Bliven, S., Willighagen, E., Pérez-Suárez, David, & Konovalov,
O. (2021). Citation File Format. https://doi.org/10.5281/ZENODO.5171937

Du, C., Cohoon, J., Lopez, P., & Howison, J. (2021). Softcite dataset: A dataset of software mentions in biomedical and
economic research publications. Journal of the Association for Information Science and Technology, 72(7), 870–884.
https://doi.org/10.1002/asi.24454

Du, C., Cohoon, J., Lopez, P., & Howison, J. (2022). Understanding progress in software citation: A study of software citation
in the CORD-19 corpus. PeerJ Computer Science, 8, e1022. https://doi.org/10.7717/peerj-cs.1022

Eitzen, C. (2020). Research Software - Publication and Sustainability [Master’s thesis, Kiel University]. https://oceanrep.
geomar.de/51354/

Escamilla, E. (2023). Extract-URLs. swh:1:snp:689cdf3440075d94e250b1da9f9e9d43c4efe675
Escamilla, E., Klein, M., Cooper, T., Rampin, V., Weigle, M. C., & Nelson, M. L. (2022). The Rise of GitHub in Scholarly

Publications. In G. Silvello, O. Corcho, P. Manghi, G. M. Di Nunzio, K. Golub, N. Ferro, & A. Poggi (Eds.),
Linking Theory and Practice of Digital Libraries (pp. 187–200, Vol. 13541). Springer International Publishing.
https://doi.org/10.1007/978-3-031-16802-4 15

European Organization For Nuclear Research & OpenAIRE. (2013). Zenodo. https://doi.org/10.25495/7GXK-RD71
Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lamprecht, A.-L., & Rumpe, B. (2023). Toward Research Software

Engineering Research (tech. rep.). Zenodo. https://doi.org/10.5281/zenodo.8020525
Fenner, M., Katz, D. S., Nielsen, L. H., & Smith, A. (2018). DOI Registrations for Software. https://doi.org/10.5438/1NMY-9902
Grisel, O., Mueller, A., Lars, Gramfort, A., Louppe, G., Prettenhofer, P., Fan, T. J., Blondel, M., Niculae, V., Nothman, J., Joly,

A., Lemaitre, G., Vanderplas, J., Estève, L., kumar, m., du Boisberranger, J., Qin, H., Hug, N., Varoquaux, N., Layton,
R., Metzen, J. H., Jalali, A., (Venkat) Raghav, R., Schönberger, J., Yurchak, R., Jerphanion, J., la Tour, T. D., Li, W.,
Marmo, C., & Woolam, C. (2023). Scikit-learn/scikit-learn: Scikit-learn 1.2.2. https://doi.org/10.5281/zenodo.7711792

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S.,
Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Rı́o, J., Wiebe,
M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., & Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2

Howison, J., & Bullard, J. (2015). Software in the scientific literature: Problems with seeing, finding, and using software
mentioned in the biology literature. Journal of the Association for Information Science and Technology, 67(9), 2137–
2155. https://doi.org/10.1002/asi.23538

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https:
//doi.org/10.1109/MCSE.2007.55

Istrate, A.-M., Li, D., Taraborelli, D., Torkar, M., Veytsman, B., & Williams, I. (2022). A large dataset of software mentions in
the biomedical literature. https://doi.org/10.48550/arXiv.2209.00693

15/17

https://doi.org/10.5281/zenodo.3479199
https://doi.org/10.5281/zenodo.3482769
https://doi.org/10.15497/RDA00065
https://doi.org/10.12752/8009
https://doi.org/10.1109/MCSE.2019.2952840
https://doi.org/10.5281/zenodo.5518122
https://doi.org/10.1109/BoKSS52540.2021.00008
https://doi.org/10.1109/BoKSS52540.2021.00008
https://doi.org/10.5281/ZENODO.5171937
https://doi.org/10.1002/asi.24454
https://doi.org/10.7717/peerj-cs.1022
https://oceanrep.geomar.de/51354/
https://oceanrep.geomar.de/51354/
swh:1:snp:689cdf3440075d94e250b1da9f9e9d43c4efe675
https://doi.org/10.1007/978-3-031-16802-4_15
https://doi.org/10.25495/7GXK-RD71
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5438/1NMY-9902
https://doi.org/10.5281/zenodo.7711792
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1002/asi.23538
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.48550/arXiv.2209.00693


Istrate, A.-M., Veytsman, B., Li, D., Taraborelli, D., Torkar, M., & Williams, I. (2022). CZ Software Mentions: A large dataset
of software mentions in the biomedical literature. https://doi.org/10.5061/DRYAD.6WWPZGN2C

Jay, C., Haines, R., & Katz, D. S. (2021). Software Must be Recognised as an Important Output of Scholarly Research.
International Journal of Digital Curation, 16(1), 6. https://doi.org/10.2218/ijdc.v16i1.745

Jones, M. B., Boettiger, C., Mayes, A. C., Smith, A., Slaughter, P., Niemeyer, K., Gil, Y., Fenner, M., Nowak, K., Hahnel, M.,
Coy, L., Allen, A., Crosas, M., Sands, A., Hong, N. C., Cruse, P., Katz, D., & Goble, C. (2017). CodeMeta: An
exchange schema for software metadata. https://doi.org/10.5063/SCHEMA/CODEMETA-2.0

Katz, D. S., Bouquin, D., Hong, N. P. C., Hausman, J., Jones, C., Chivvis, D., Clark, T., Crosas, M., Druskat, S., Fenner, M.,
Gillespie, T., Gonzalez-Beltran, A., Gruenpeter, M., Habermann, T., Haines, R., Harrison, M., Henneken, E., Hwang,
L., Jones, M. B., Kelly, A. A., Kennedy, D. N., Leinweber, K., Rios, F., Robinson, C. B., Todorov, I., Wu, M., &
Zhang, Q. (2019). Software Citation Implementation Challenges. https://doi.org/10.48550/arXiv.1905.08674

Katz, D. S., Chue Hong, N. P., Clark, T., Muench, A., Stall, S., Bouquin, D., Cannon, M., Edmunds, S., Faez, T., Feeney, P.,
Fenner, M., Friedman, M., Grenier, G., Harrison, M., Heber, J., Leary, A., MacCallum, C., Murray, H., Pastrana, E.,
Perry, K., Schuster, D., Stockhause, M., & Yeston, J. (2021). Recognizing the value of software: A software citation
guide. F1000Research, 9, 1257. https://doi.org/10.12688/f1000research.26932.2

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S.,
Ivanov, P., Avila, D., Abdalla, S., & Willing, C. (2016). Jupyter Notebooks – a publishing format for reproducible
computational workflows. In F. Loizides & B. Schmidt (Eds.), Positioning and power in academic publishing: Players,
agents and agendas (pp. 87–90). IOS Press.

Konovalov, O., Ye, H., Chisholm, L., Turner, M., Chue Hong, N. P., Buzzard, S., & Druskat, S. (2021). Introducing Habeas
Corpus: A Collaborations Workshop 2021 HackDay Project. https : / / archive . softwareheritage .org / swh :1 : cnt :
d2e0fa61ff93704cbca9638d911d601498667019;origin=https://github.com/softwaresaved/habeas-corpus;visit=swh:
1:snp:17af7c58cac3146d7d6ab468175a10bf86b1126d;anchor=swh:1:rev:8cfd4ebb43dd6406fd413fd77be136899c72cc56;
path=/docs/CW21%5C Habeas%5C Corpus%5C Presentation.pdf

Kurnatowski, L., Stoffers, M., & Haupt, C. (2021). Provenance based software dashboards. Workshop on the Science of
Scientific-Software Development and Use. https://elib.dlr.de/147617/

Peroni, S., & Shotton, D. (2020). OpenCitations, an infrastructure organization for open scholarship. Quantitative Science
Studies, 1(1), 428–444. https://doi.org/10.1162/qss a 00023

Registries Task Force on Best Practices for Software, Monteil, A., Gonzalez-Beltran, A., Ioannidis, A., Allen, A., Lee, A.,
Bandrowski, A., Wilson, B. E., Mecum, B., Du, C. F., Robinson, C., Garijo, D., Katz, D. S., Long, D., Milliken, G.,
Ménager, H., Hausman, J., Spaaks, J. H., Fenlon, K., Vanderbilt, K., Hwang, L., Davis, L., Fenner, M., Crusoe, M. R.,
Hucka, M., Wu, M., Hong, N. C., Teuben, P., Stall, S., Druskat, S., Carnevale, T., & Morrell, T. (2020). Nine Best
Practices for Research Software Registries and Repositories: A Concise Guide. arXiv:2012.13117 [cs]. Retrieved
December 26, 2020, from http://arxiv.org/abs/2012.13117

Schindler, D., Bensmann, F., Dietze, S., & Krüger, F. (2021a). SoftwareKG-PMC. https://doi.org/10.5281/ZENODO.5713973
Schindler, D., Bensmann, F., Dietze, S., & Krüger, F. (2021b). SoMeSci- A 5 Star Open Data Gold Standard Knowledge Graph

of Software Mentions in Scientific Articles. Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, 4574–4583. https://doi.org/10.1145/3459637.3482017

Schindler, D., Bensmann, F., Dietze, S., & Krüger, F. (2022). The role of software in science: A knowledge graph-based analysis
of software mentions in PubMed Central. PeerJ Computer Science, 8, e835. https://doi.org/10.7717/peerj-cs.835

Schmidt, B., McGillivray, B., Larrousse, N., Broeder, D., Wilson, K., & Chue Hong, N. P. (2021). LIBER 2021 Session #3:
Working with Software & Data. https://doi.org/10.5281/ZENODO.5036311

Smith, A. (2021). Enhanced support for citations on GitHub. https://github.blog/2021-08-19-enhanced-support-citations-github/
Smith, A. M., Katz, D. S., Niemeyer, K. E., & FORCE11 Software Citation Working Group. (2016). Software citation principles.

PeerJ Computer Science, 2(e86). https://doi.org/10.7717/peerj-cs.86
Spaaks, J. H., Klaver, T., Verhoeven, S., Diblen, F., Maassen, J., Sang Tjong Kim, E., Pawar, P., Meijer, C., Ridder, L., Kulik, L.,

Bakker, T., van Hees, V., Bogaardt, L., Mendrik, A., van Es, B., Attema, J., van Hage, W., Ranguelova, E., van
Nieuwpoort, R., Gey, R., & Zach, H. (2020). Research Software Directory. https://doi.org/10.5281/ZENODO.1154130

Stol, K.-J., & Fitzgerald, B. (2018). The ABC of Software Engineering Research. ACM Transactions on Software Engineering
and Methodology, 27(3), 1–51. https://doi.org/10.1145/3241743

The Dask 2023.3.1 developers. (2023). Dask. https://pypi.org/project/dask/2023.3.1
The Jupyter Notebook 6.5.3 developers. (2023). Jupyter notebook (version 6.5.3-e3e14a1). https://pypi.org/project/notebook/6.

5.3/
The Matplotlib 3.7.1 developers. (2023). Matplotlib. https://pypi.org/project/matplotlib/3.7.1/
The nbconvert 7.2.10 developers. (2023). Nbconvert. https://pypi.org/project/nbconvert/7.2.10

16/17

https://doi.org/10.5061/DRYAD.6WWPZGN2C
https://doi.org/10.2218/ijdc.v16i1.745
https://doi.org/10.5063/SCHEMA/CODEMETA-2.0
https://doi.org/10.48550/arXiv.1905.08674
https://doi.org/10.12688/f1000research.26932.2
https://archive.softwareheritage.org/swh:1:cnt:d2e0fa61ff93704cbca9638d911d601498667019;origin=https://github.com/softwaresaved/habeas-corpus;visit=swh:1:snp:17af7c58cac3146d7d6ab468175a10bf86b1126d;anchor=swh:1:rev:8cfd4ebb43dd6406fd413fd77be136899c72cc56;path=/docs/CW21%5C_Habeas%5C_Corpus%5C_Presentation.pdf
https://archive.softwareheritage.org/swh:1:cnt:d2e0fa61ff93704cbca9638d911d601498667019;origin=https://github.com/softwaresaved/habeas-corpus;visit=swh:1:snp:17af7c58cac3146d7d6ab468175a10bf86b1126d;anchor=swh:1:rev:8cfd4ebb43dd6406fd413fd77be136899c72cc56;path=/docs/CW21%5C_Habeas%5C_Corpus%5C_Presentation.pdf
https://archive.softwareheritage.org/swh:1:cnt:d2e0fa61ff93704cbca9638d911d601498667019;origin=https://github.com/softwaresaved/habeas-corpus;visit=swh:1:snp:17af7c58cac3146d7d6ab468175a10bf86b1126d;anchor=swh:1:rev:8cfd4ebb43dd6406fd413fd77be136899c72cc56;path=/docs/CW21%5C_Habeas%5C_Corpus%5C_Presentation.pdf
https://archive.softwareheritage.org/swh:1:cnt:d2e0fa61ff93704cbca9638d911d601498667019;origin=https://github.com/softwaresaved/habeas-corpus;visit=swh:1:snp:17af7c58cac3146d7d6ab468175a10bf86b1126d;anchor=swh:1:rev:8cfd4ebb43dd6406fd413fd77be136899c72cc56;path=/docs/CW21%5C_Habeas%5C_Corpus%5C_Presentation.pdf
https://elib.dlr.de/147617/
https://doi.org/10.1162/qss_a_00023
http://arxiv.org/abs/2012.13117
https://doi.org/10.5281/ZENODO.5713973
https://doi.org/10.1145/3459637.3482017
https://doi.org/10.7717/peerj-cs.835
https://doi.org/10.5281/ZENODO.5036311
https://github.blog/2021-08-19-enhanced-support-citations-github/
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.5281/ZENODO.1154130
https://doi.org/10.1145/3241743
https://pypi.org/project/dask/2023.3.1
https://pypi.org/project/notebook/6.5.3/
https://pypi.org/project/notebook/6.5.3/
https://pypi.org/project/matplotlib/3.7.1/
https://pypi.org/project/nbconvert/7.2.10


The NumPy 1.24.2 developers. (2023). NumPy. https://pypi.org/project/numpy/1.24.2/
The pandas development team. (2023). Pandas-dev/pandas: Pandas (version 1.5.3). https://doi.org/10.5281/zenodo.7549438
The Research Software Encyclopedia project. (2021). Research Software Encyclopedia. Retrieved August 24, 2021, from

https://rseng.github.io/software/
The SciPy 1.10.1 developers. (2021). SciPy. https://pypi.org/project/scipy/1.10.1/
The Software Mention Extraction authors. (2022). Software mention extraction and linking from scientific articles. https:

//archive.softwareheritage.org/swh:1:cnt:149c13ef5b99c3ad52903305daee718bd09bfff7;origin=https://github.
com/chanzuckerberg/software-mention-extraction;visit=swh:1:snp:592c9f600b721e8d56a59bcb424bf9a969a942fc;
anchor=swh:1:rev:99296e04c9a982b5f31d4bf2dd33fec3894a385e;path=/README.md;lines=7-8

van de Sandt, S., Nielsen, L. H., Ioannidis, A., Muench, A., Henneken, E., Accomazzi, A., Bigarella, C., Lopez, J. B. G.,
& Dallmeier-Tiessen, S. (2019). Practice meets Principle: Tracking Software and Data Citations to Zenodo DOIs.
arXiv:1911.00295 [cs]. Retrieved August 12, 2020, from http://arxiv.org/abs/1911.00295

Veytsman, B. (2022). Software mentions extractor (lines 65-69). https://archive.softwareheritage.org/swh:1:cnt:398bf69be085934e489d2a598ac19a44c92b3b4a;
origin=https://github.com/chanzuckerberg/software-mentions;visit=swh:1:snp:699d5878f3cfc43c3fc57c98dd19455a370359d2;
anchor=swh:1:rev:561ae152ff5e064fed85b9327afbeec36439fa63;path=/software-mentions-extractor/software-
mentions-extractor.py;lines=65-69

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., & SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 17,
261–272. https://doi.org/10.1038/s41592-019-0686-2

Wade, A. D., & Williams, I. (2021). CORD-19 Software Mentions. https://doi.org/10.5061/DRYAD.VMCVDNCS0
Wang, L. L., Lo, K., Chandrasekhar, Y., Reas, R., Yang, J., Eide, D., Funk, K., Kinney, R. M., Liu, Z., Merrill, W., Mooney, P.,

Murdick, D., Rishi, D., Sheehan, J., Shen, Z., Stilson, B., Wade, A. D., Wang, K., Wilhelm, C., Xie, B., Raymond, D. A.,
Weld, D. S., Etzioni, O., & Kohlmeier, S. (2020). CORD-19: The COVID-19 Open Research Dataset. NLPCOVID19.

17/17

https://pypi.org/project/numpy/1.24.2/
https://doi.org/10.5281/zenodo.7549438
https://rseng.github.io/software/
https://pypi.org/project/scipy/1.10.1/
https://archive.softwareheritage.org/swh:1:cnt:149c13ef5b99c3ad52903305daee718bd09bfff7;origin=https://github.com/chanzuckerberg/software-mention-extraction;visit=swh:1:snp:592c9f600b721e8d56a59bcb424bf9a969a942fc;anchor=swh:1:rev:99296e04c9a982b5f31d4bf2dd33fec3894a385e;path=/README.md;lines=7-8
https://archive.softwareheritage.org/swh:1:cnt:149c13ef5b99c3ad52903305daee718bd09bfff7;origin=https://github.com/chanzuckerberg/software-mention-extraction;visit=swh:1:snp:592c9f600b721e8d56a59bcb424bf9a969a942fc;anchor=swh:1:rev:99296e04c9a982b5f31d4bf2dd33fec3894a385e;path=/README.md;lines=7-8
https://archive.softwareheritage.org/swh:1:cnt:149c13ef5b99c3ad52903305daee718bd09bfff7;origin=https://github.com/chanzuckerberg/software-mention-extraction;visit=swh:1:snp:592c9f600b721e8d56a59bcb424bf9a969a942fc;anchor=swh:1:rev:99296e04c9a982b5f31d4bf2dd33fec3894a385e;path=/README.md;lines=7-8
https://archive.softwareheritage.org/swh:1:cnt:149c13ef5b99c3ad52903305daee718bd09bfff7;origin=https://github.com/chanzuckerberg/software-mention-extraction;visit=swh:1:snp:592c9f600b721e8d56a59bcb424bf9a969a942fc;anchor=swh:1:rev:99296e04c9a982b5f31d4bf2dd33fec3894a385e;path=/README.md;lines=7-8
http://arxiv.org/abs/1911.00295
https://archive.softwareheritage.org/swh:1:cnt:398bf69be085934e489d2a598ac19a44c92b3b4a;origin=https://github.com/chanzuckerberg/software-mentions;visit=swh:1:snp:699d5878f3cfc43c3fc57c98dd19455a370359d2;anchor=swh:1:rev:561ae152ff5e064fed85b9327afbeec36439fa63;path=/software-mentions-extractor/software-mentions-extractor.py;lines=65-69
https://archive.softwareheritage.org/swh:1:cnt:398bf69be085934e489d2a598ac19a44c92b3b4a;origin=https://github.com/chanzuckerberg/software-mentions;visit=swh:1:snp:699d5878f3cfc43c3fc57c98dd19455a370359d2;anchor=swh:1:rev:561ae152ff5e064fed85b9327afbeec36439fa63;path=/software-mentions-extractor/software-mentions-extractor.py;lines=65-69
https://archive.softwareheritage.org/swh:1:cnt:398bf69be085934e489d2a598ac19a44c92b3b4a;origin=https://github.com/chanzuckerberg/software-mentions;visit=swh:1:snp:699d5878f3cfc43c3fc57c98dd19455a370359d2;anchor=swh:1:rev:561ae152ff5e064fed85b9327afbeec36439fa63;path=/software-mentions-extractor/software-mentions-extractor.py;lines=65-69
https://archive.softwareheritage.org/swh:1:cnt:398bf69be085934e489d2a598ac19a44c92b3b4a;origin=https://github.com/chanzuckerberg/software-mentions;visit=swh:1:snp:699d5878f3cfc43c3fc57c98dd19455a370359d2;anchor=swh:1:rev:561ae152ff5e064fed85b9327afbeec36439fa63;path=/software-mentions-extractor/software-mentions-extractor.py;lines=65-69
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5061/DRYAD.VMCVDNCS0

	Introduction
	Related work

	Methods
	Research questions
	Software mention datasets
	Sampling
	Annotation
	Analysis

	Results
	Exploratory studies

	Discussion
	Exploratory studies
	Limitations

	Conclusion
	Acknowledgments
	References

