2023 IEEE PES ISGT-Europe

October 23rd-26th, 2023, Grenoble, France

Distributed Co-Simulation of Networked Hardware-in-the-Loop Power Systems

Nauman Beg, Moiz Ahmed*, Karen Derendorf, Frank Schuldt, Stefan Geissendoerfer

German Aerospace Center (DLR) – Institute of Networked Energy Systems, Oldenburg, Germany

Paper Nº: A9108NB

*Presenting author

Introduction and Objectives

Increased Complexity

- Digitalization
- Sector coupling
- Diverse simulation tools

Rapid Prototyping

- Through model reduction
- Ease-of-model Integration

Hybrid Simulation Setups

- Distributed grid simulators
- Distributed assets
- Communication infrastructure

Architecture – socket based agent communication

SIM Agent

Communication b/w grid simulator and co-simulation framework

Hardware-in-the-Loop (HiL) Agent

Communication b/w individual HiL Emulator and co-sim framework

Case study - Objectives

- Comparative study of a real-time droop control application of a PV emulator
 - In monolithic framework
 - In distributed co-simulation framework
- Objectives
 - Functionality test
 - Benchmark various iterations of co-simulation setup with monolithic simulation
 - **Performance metric:** Round-trip Delay (RTD)

Schematic of Case Study

Description of Case Study

Grid Model

- Ideal model with inputs:
 - grid voltage
 - grid frequency
- Simulation tool: PowerFactory

PV Emulator

- Simplified inverter with P(f) droop characteristic
- Control model implementation
 - Monolithic case: PowerFactory DSL modeling framework
 - Distributed co-sim case: Simulink Real-Time

Distributed Co-Simulation Results

Distributed Co-Simulation Results

Scenarios

Scenario Nr.	$\Delta t_{co-sim} \ (ms)$	Δt_{sim}	Setup
0	NA		monolithic
1	100	s	
2	80	l l	distributed
3	40		co-simulation
4	20	1	

Round Trip Delay (RTD)

Scenario Nr.	RTD
	(ms)
1	4
2	7
3	44
4	79

RTD vs Co-sim Step Size

Takeaways

- ✓ Integration of diverse software tools and hardware systems
- ✓ Spatially distributed real systems
- ✓ Dynamic behavior in grid simulators
- ✓ Reduce the need of detailed modeling

Framework Trade-offs

- Observability
- Latency

