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Abstract: The question of future energy infrastructure needs is usually studied with modeling 

approaches that focus on the capability to cover future energy demands while phasing-out 

conventional power generation at lowest possible cost. However, common planning 

approaches consider key technologies and thus needed raw materials as available, if needed. 

We present a modeling approach where assessable limitations of critical raw material are 

addressed by a novel energy system optimization model. It uses multi-criteria optimization to 

identify technology mixes for a continental European power system that are pareto-optimal in 

terms of system costs and system criticality. Compared to the cost minimum, such power 

systems show shifts from wind to solar power generation. Furthermore, the technology mix is 

dominated by single sub-technologies, such as wind energy converters without permanent 

magnets and lithium iron phosphate batteries. 
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Modeling 

1 Introduction 

1.1 Background 

The implementation of a climate-neutral energy supply can be realized by numerous 

commercially available technologies. Optimization models that determine the technology mix 

bottom-up on the basis of monetary costs are often used to draft corresponding energy system 

designs. In this step, the demand and availability of the required raw materials, are usually not 

taken into account although material bottlenecks can hamper the implementation of required 

infrastructure measures [1].  

An established approach to consider raw material demand for climate neutral energy supply is 

ex-post analyses of given energy system designs or scenarios [2, 3]. In this way, the risk of 

bottlenecks in the supply of critical raw materials can be assessed. However, there is no 

feedback loop that adjusts the technology mix according to such bottlenecks. Therefore, 

including existing criticality indicators of raw materials into the optimization is an obvious step. 

To do this, classical modeling approaches used to design of future energy supply systems 

need to be adapted. This particularly applies to key technologies, such as wind energy 

converters, photovoltaics and battery storage. Opposed to state-of-the-art modeling setups the 
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technological resolution of the processed data sets needs to be increased. In other words, 

instead of grouping technologies that utilize the same energy resource into one investment 

option, sub-technologies have to be distinguished with respect to the raw materials needed for 

manufacturing. For example, the wind energy converter technology may be split-up into a 

group with and without permanent magnets. 

1.2 Research Question and Contribution 

This brings up the leading research questions we aim to answer: How to model climate neutral 

energy supply systems that incorporate assessments of critical raw materials? What are the 

impacts on the resulting technology mix? 

Hence, the novelty of the work presented is two-fold: i) the model-endogenous consideration 

of critical raw materials and ii) the extension of a state-of-the-art data set for energy system 

optimization. Furthermore, we present a method for multi-objective optimization we have 

implemented into our modeling framework REMix. With that, we determine pareto-optimal 

future energy systems on the basis of two criteria: costs and criticality.  

2 Methodology 

2.1 Data processing workflow 

To determine the pareto-optimal technology mix according to these criteria, we use technology 

specific data that describes both costs and criticality associated to an investment into a certain 

power generation or storage plant. This data serves as input for an instance of the modeling 

framework REMix [4]. It is parameterized mainly using a consistent data set for a highly 

renewable European electricity system [5]. In the following, we refer to this REMix model 

instance as RE-Europe1. By performing capacity expansion studies with RE-Europe using a 

multi-objective optimization method, we compute the capacities of renewable power 

generators and storage units at discrete points of a pareto-front.  

2.2 Data 

We make use of almost all kinds of data provided in the basic data set [5] and convert it into 

input files for REMix. In particular, this is the network model that describes the transmission 

grid of continental Europe, the installed capacities of fossil-fired and hydro power plants with 

the corresponding operational costs, potential data for the expansion of wind turbines and 

photovoltaics and their hourly capacity factors, and time series of the electricity demand. 

Greenhouse mitigation is incentivized by an annual budget or costs for CO2  emissions, which 

are set to 50 €/t.  

Since we have to extend the technological detail of the model, we introduce the sub-

technologies as shown in  

Table 1. Other technologies are kept as provided with the basic data set. Although techno-

economic data for power generation technologies is well documented in the literature, such 

                                                
1 Available at https://gitlab.com/dlr-ve/esy/remix/projects/re-europe 
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data becomes rare, if it needs to be specific for the sub-technology level. Therefore, we limit 

the number of considered sub-technologies and make the following assumptions for wind 

energy converters: We only distinguish two sub-technologies whereas those equipped with a 

permanent magnet are considered with a surplus of 7% compared to the specific investment 

costs of wind energy converters without permanent magnet. 

 

Table 1: Sub-technologies considered for multi-criteria generation expansion planning 

 
Considered sub-technologies 

Investment 

cost  
 

Ref. 

  
 

Investment 

cost   

Battery storage 

lithium iron phosphate batteries (LFP) 58 €/kW 187 €/kWh [11] 

nickel manganese cobalt (NMC) 58 €/kW 193 €/kWh [11] 

lead acid (LA) 106 €/kW 190 €/kWh [11] 

vandadium redox-flow (VRF) 106 €/kW 231 €/kWh [11] 

  

 

Cost 

surcharge  
 

Wind Energy 

Converters 

(onshore) 

with permanent magnet (PMSG) 1359 €/kW 7 % [12] 

without permanent magnet (EESG) 1270 €/kW 
 

[13] 

  
 

Efficiency 
 

Photovoltaics 

Passivated Emitter and Rear Cell 

(PERC) 771 €/kW 22 % [14] 

Silicon Heterojunction (SHJ) 694 €/kW 24 % [14] 

 

Concerning the criticality, we derived mass-weighted criticality scores per functional unit for 

each sub-technology 𝑐𝑠𝑢𝑏𝑡𝑒𝑐ℎ. This criticality score is derived from raw material proportions 

used for manufacturing [1] and based on state-of-the-art methods used to assess the criticality 

of raw materials [6]. It can be approximated as the sum of the criticality scores 𝑐𝑖 of the 

materials 𝑖 in a functional unit multiplied by specific weights 𝑤𝑖 [7]: 

 𝑐𝑠𝑢𝑏𝑡𝑒𝑐ℎ =  ∑ 𝑐𝑖 ⋅ 𝑤𝑖

𝑖

 Equation 1 

In the context of this evaluation, we limit the concept of “criticality” to the likelihood of supply 

disruption due to the geopolitical supply structure. For the material-level criticality indicator 𝑤𝑖, 

we use the Supply Disruption Probability indicator published by the European Union [8], and 

the masses of the materials in a functional unit as the weights2. 

                                                
2 Note that the material-level Supply Disruption Probability indicator by the European Union comprises a substitution 

index. For the purpose of this analysis, the substitution index was omitted in order to derive a technology-level 

criticality indicator which does not account for any substitution options. 
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The reason for defining the criticality score in this way is to determine a total system criticality 𝑐 

by simply summing up the technology specific criticalities. It is defined as 

 𝑐 = ∑ 𝑃𝑠𝑢𝑏𝑡𝑒𝑐ℎ ∙ 𝑐𝑠𝑢𝑏𝑡𝑒𝑐ℎ

𝑡𝑒𝑐ℎ

 Equation 2 

𝑠𝑢𝑏𝑡𝑒𝑐ℎ = {𝐿𝐹𝑃, 𝑁𝑀𝐶, 𝐿𝐴, 𝑉𝑅𝐹, 𝐸𝐸𝑆𝐺, 𝑃𝑀𝑆𝐺 , 𝑃𝐸𝑅𝐶, 𝑆𝐻𝐽} 

where 𝑃𝑡𝑒𝑐ℎ represents the model-endogenously determined power generation capacity. 

2.3 Model and optimization approach 

To create the RE-Europe model instance the data set from [5] is converted into the required 

input files for REMix. The corresponding conversion scripts are published open source in [9]. 

In its basic configuration RE-Europe minimizes the total costs for one target year scenario, 

where all sub-technologies 𝑠𝑢𝑏𝑡𝑒𝑐ℎ are subject to capacity expansion. To keep computing 

times and memory demands manageable, the spatial resolution of RE-Europe is reduced to 

country-level, where only cross-border transmission capacities constrain spatial load-

balancing. The cost-minimal solution serves as the basis for sub-sequent optimization runs 

where the total criticality is minimized. However, these runs are constrained by upper bounds 

on the system costs variable. Therefore, we define pareto points for cost increases of 0.4%, 

0.8%, 1.2%, 1.6% and 2% of the minimal system costs observed with the basic model. 

3 Exemplary results 

The resulting pareto-front with our multi-criteria optimization approach is shown in Figure 1. 

We observe a typical curve shape where the greatest gains in terms of criticality reduction can 

be achieved at pareto point 1. Note that the system criticality is dimensionless and not 

normalized.  
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Figure 1: Pareto points with system cost increases of 0.4% (pareto point 1), 0.8% (2), 1.2% (3), 1.6% 

(4) and 2% (5). 
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3.1 Storage sub-technologies in a fully renewable system 

Figure 2 shows exemplary results of our proof-of-concept with storage expansion planning for 

battery sub-technologies only3. It depicts the technology switch between two battery sub-

technologies in terms of annual power generation at minimal system cost and pareto point 5. 

At an individual country level, we observe partial substitutions of lithium iron phosphate 

batteries by redox-flow batteries. Further results are as expected: If only the criticality of 

storage technologies is considered, the total amount of installed units decreases and the 

missing flexibility is compensated by expensive but slack generation. In other words, situations 

where demand is not fully served become more. 
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Figure 2: Power generation from lithium iron phosphate batteries (top) and redox-flow batteries (bottom) 

for energy systems with minimal system cost (left) and minimal criticality for an allowed cost increase of 

2% opposed to the cost optimum (right). 

3.2 Complete power system with renewable sub-technologies 

For Figure 3, the model additionally includes the all sub-technologies for power generation 

from wind and solar according to Table 1. There is a clear shift in electricity generation from 

955 to 798 TWh/a of wind energy to 686 to 813 TWh/a photovoltaics generation. This change 

is not only taking place in relation to the sub-technologies, but also spatially, as the southern 

locations (e.g. Spain +28 TWh/a and Italy +26 TWh/a) have significantly better potential for 

                                                
3 To enforce the expansion of battery storage RE-Europe is simplified to a fully renewable system where battery 

storage represents the only option to balance variable renewable power generation. 
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photovoltaics than Germany, which is dominant in wind energy (46 TWh/a less wind energy 

production at pareto point 5). 
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Figure 3: Power generation from Wind Onshore (top) and Photovoltaic (bottom) for energy systems with 

minimal system cost (left) and minimal criticality for an allowed cost increase of 2% opposed to the cost 

optimum (right) 

 

Figure 4: Power generation share of technologies (with >1% share at the cost optimum, pareto0) for five 

pareto points. 
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At the sub-technology level, we observe different effects. All technologies are cleary dominated 

by one technology. This mainly applies to battery storage, where only LFP achieves a share 

of >1% in the technology mix shown in Figure 4. Solar and wind power generation are 

dominated by Silicon Heterojunction (SHJ) modules and generators without permanent 

magnets, respectively. However, at the cost minimum a small share of wind energy converters 

with permanent magnets is present. Opposed to that, for photovoltaics, the share of Passivated 

Emitter and Rear Cells (PERC) slightly increases with decreasing system criticality levels. 

4 Conclusions 

Critical raw materials may hamper the transition towards a climate-neutral energy system. In 

this study, we presented a novel approach to construct future energy systems that take into 

account this aspect. For this, we used a multi-objective optimization approach to determine 

pareto-optimal European power systems based on criticality assessments for battery storage, 

wind energy converters and photovoltaic technologies. An open-source model instance of the 

modeling framework REMix - RE-Europe - has been created to gain a deeper understanding 

of the desired energy system designs. In our analyses, we observed two effects: On the one 

hand, a technology shift from wind to solar power generation, if system criticality is to be 

minimized. On the other hand, technology classes were dominated by single sub-technologies, 

such as wind energy converters without permanent magnets and lithium iron phosphate 

batteries. This indicates that the need for further adaptions of our methodology, e.g., the 

incorporation of an objective that reflects market risks.  

If we extent the model to consider market risks, the multi-criteria optimization will thus be done 

for three dimensions. This comes at the cost of additional computational effort. Therefore, we 

consider the implementation of performance enhancement approaches, such as the parallel 

computation of pareto points. This is particularly possible, if independent grid points can be 

solved as individual optimization problems. However, we plan to compare pareto-optimal 

systems determined with further approaches, such as random weighting or sandwiching [10]. 

Apart of the typical limitations that come with the chosen optimization approach for a single 

target year, using a set of fixed input parameters, we see space for improvements on the data 

side, particularly concerning the determination of suitable criticality scores. There are many 

conceivable aggregation approaches still to be investigated. Nevertheless, with this work we 

presented a proof-of-concept for identifying energy system designs that are robust against 

constrained access to critical raw materials. 
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