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Introduction This text complements the description of the
concept of this study, the SPCAM model setup, neural net-
works specifications, causal discovery optimization, and neu-
ral nets explainability provided on the main manuscript.
Text S1. Superparameterized Community Atmo-
sphere Model v3.0 (SPCAM) The superparameteriza-
tion component (SP) is spun-up at the beginning of the sim-
ulation and subcycles every 20 seconds given the large-scale
tendencies (Collins et al., 2006). At the end of every time
step (30 minutes), the horizontal mean of state variables for
temperature, moisture and condensate from the SP com-
ponent update the resolved fields in its host (Benedict &
Randall, 2009). Note that unlike traditional parameteriza-
tions, the SP component runs continuously throughout the
simulation after the initial spin-up, which adds a “memory”
effect to the subgrid-scale processes affecting the large-scale
tendencies. The memory of subgrid-scale processes is not
explicitly treated during the training of the neural networks
(NNs); rather we assume its importance is secondary (Jones
et al., 2019). After the SP component, the radiation scheme
is called using the explicitly resolved vertical distribution of
clouds among the large-scale resolved fields. Finally, surface
fluxes are computed following a simple bulk scheme using
the host model’s coarse state fields, and then the dynamical
core.

Solar insolation follows a diurnal cycle in perpetual
Southern Hemisphere solstice. Sea surface temperatures
(SSTs) are imposed following a zonally symmetric setup but
with a shift in maximum temperatures five degrees North of
the equator (Andersen & Kuang, 2012):
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Sensitivity experiments comprise global changes in SSTs
(±4 K) by adding a wavenumber one perturbation to the
reference (+0 K) SSTs in increments of 1 K:
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with longitudes (λ) in degrees. The SPCAM model source
code used here, including the neural network implementa-
tion via the Fortran-Keras Bridge (Ott et al., 2020), is avail-
able at https://gitlab.com/mspritch/spcam3.0-neural
-net (causalcoupler branch; commit hash: 5ebff0a6). Fur-
ther details of the SPCAM model are provided elsewhere
(Khairoutdinov & Randall, 2001; Collins et al., 2006;
Pritchard et al., 2014; Pritchard & Bretherton, 2014).
Text S2. Neural network setup Building on previous hy-
brid modeling work (Rasp et al., 2018), we develop and train
all NNs used here with Keras (https://keras.io/) built on
top of Tensorflow 2 (https://www.tensorflow.org/). All
NNs were trained for 18 epochs using: a batch size of 1, 024;
the LeakyReLU activation function set to max(0.3x, x); the
Adam optimizer (Kingma & Ba, 2014); a starting learning
rate of 1 × 103 subsequently divided by 5 every 3 epochs;
and a mean squared error loss function.

Each input field was normalized by subtracting its mean
across samples and then dividing it by its maximum range,
whereas the outputs were normalized to bring them to the
same order of magnitude (Table S1).

The computational costs of CausalNNCAM and Non-
causalNNCAM are virtually the same. However, these hy-
brid models, consisting of 65 single-output NNs coupled to
the host model via the Fortran-Keras Bridge, result in sim-
ilar computational costs compared to SPCAM. Therefore,
CausalNNCAM and Non-causalNNCAM are approximately
20 times slower than a former hybrid model consisting in
one multi-output NN (Rasp et al., 2018). Nevertheless, we
emphasize that our study is a proof of concept focused on
the added value of combining causality and ML, and en-
visage an overall speed up of the hybrid models could be
attained by developing a method that enables multi-output
causally-informed NNs, as well as advanced software engi-
neering solutions and coding (e.g., efficiently coupling ma-
chine learning algorithms with Fortran code).
Text S3. Causal drivers optimization We optimize the
causal threshold during the causal discovery phase (i.e., find-
ing the most important causal drivers of the subgrid-scale
processes in SPCAM). The causal drivers determine the in-
put layer of the causally-informed NNs, while the rest of the
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NNs setup remains unchanged (see above). Two optimiza-
tion approaches are considered: 1) a single optimized causal
threshold for all outputs; and 2) a varying optimized causal
threshold for each output.

The single optimized causal threshold approach focuses
on ∆Tphy and ∆qphy at the level closest to the surface (992
hPa), where the causally-informed NNs show worst offline
performance compared to the non-causal NNs (reference
case). The single optimized threshold is chosen following
two conditions:

1. R2
causally−informedNN(thr) ≥ R2

non−causalNN ↔
R2

non−causalNN > 0

2. max(thr).
The NNs were trained using the reference simulation (+0

K), and their performance was computed applying the coeffi-
cient of determination (R2) to the test sets of all simulations
considered (−4 K, +0 K and +4 K). While the first condi-
tion selects those causally-informed NNs that perform at
least as good as its non-causal NN counterpart (as long as it
shows some skill), the second condition selects the causally-
informed NN with the most stringent threshold (minimum
number of causal drivers).

There are two causal threshold definitions considered
(Fig. S1):

causal′(Y j
t ) = Xi

t−τ : P (Xi
t−τ → Y j

t ∈ causalg(Y
j
t ) ) > quantile

(4)
and,

causal′(Y j
t ) = Xi

t−τ :
(#(Xi

t−τ ∈ causalg(Y
j
t ) )

Ng

)
> ratio.

(5)

The quantile-based definition considers causal drivers of
each output (causal′(Y j

t )), the inputs (X
i
t−τ ) for which their

probability of being causally-linked to the given output is
greater than a certain quantile (threshold). The ratio-based
definition considers causal drivers of each output, the in-
puts for which their ratio of being causally-linked to the
given output across the model’s grid (Ng = 8,192) is greater
than a certain value (threshold). Figure S10 shows the R2

value for all causally-informed NNs explored compared to
the non-causal NNs for both, ∆Tphy and ∆qphy. While us-
ing the definition of the ratio-based threshold no causally-
informed NN explored met the above conditions, we find
the optimal 0.59 value for the quantile-based approach (See
Table 1; Causal-threshold: quantile 0.59).

Using the quantile-based threshold definition, a varying
optimized causal threshold for each output is achieved using
the Grid Search algorithm of the SHERPA package (Hertel
et al., 2020). We explore a threshold range of 0.-0.95 at in-
tervals of 0.05. For each output, 20 NNs were trained –one
per threshold step– using the reference simulation (+0 K),
and the optimal threshold is based on the minimum mean
squared error of the validation set (6 floating points).

Figure S7 shows the offline performance (R2) of
the Causally-informed0.59NN (single optimized causal-
threshold) and Causally-informedNN (varying optimized
causal-threshold) cases for ∆Tphy and ∆qphy, using
the test set of the reference simulation (+0 K). Al-
though Causally-informed0.59NN shows similar offline per-
formance compared to Causally-informedNN, its hybrid
model (Causal0.59NNCAM) shows a double Intertropical
Convergence Zone bias (see discussion in main text and Fig.
S5 and S6).
Text S4. Neural nets explainability We use the
SHapley Additive exPlanations (SHAP) (Lundberg & Lee,
2017) game theoretic approach to explain the predictions of
subgrid-scale processes by the NNs. Although the compu-
tation of the exact Shapley value is challenging, there are
different SHAP built-on methods to approximate it. The al-
gorithm used here is DeepExplainer, specifically tailored for

deep learning models, which is based on the Deep Learning
Important FeaTures (DeepLIFT) (Shrikumar et al., 2017).
DeepExplainer decomposes the prediction (output) of a neu-
ral network on the different inputs. This is achieved by
approximating the difference of the output from a distribu-
tion of background outputs with regard to the difference of
the input from a distribution of background inputs. The
complexity of the method scales linearly with the number
of background samples (n), and the variance of the expec-
tation estimates scales by approximately 1/

√
n. Although

1000 samples would give already a very good approximation
to the exact Shapley value, we use 4096 random samples
across 1440 time-steps (∼1 month) and the full horizontal
model grid (8192 points; latitude by longitude).
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Table S1. Summary of neural networks inputs and output fields.

Inputs Units Outputs Units Normalization

Temperature, T (p) K Temperature tendencies, ∆Tphy(p) Ks−1 Cp

Specific humidity, q(p) kgkg−1 Moistening tendencies ∆qphy(p) kgkg−1s−1 Lv

Meridional wind, V (p) ms−1 Net shortwave radiative heat flux at TOA, Qtop
sw Wm−2 10−3

Surface pressure, Psrf Pa Net longwave radiative heat flux at TOA, Qtop
lw Wm−2 10−3

Incoming solar radiation, Qsol Wm−2 Net shortwave radiative heat flux at the surface, Qsrf
sw Wm−2 10−3

Sensible heat flux, Qsen Wm−2 Net longwave radiative heat flux at the surface, Qsrf
lw Wm−2 10−3

Latent heat flux, Qlat Wm−2 Precipitation, P kgm−2d−1 1.728×106
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Figure S1. Same as Fig. 2, but for single optimized
a) quantile-based threshold (0.59), and b) ratio-based
threshold (0.09). Right panels show the number of causal
drivers for each output, with a mean number of inputs
of 36 (39 % of the total) and 35 (38 % of the total) for
the quantile-based-threshold of 0.59 and the ratio-based
threshold of 0.09, respectively.
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Figure S2. Same as Fig. S1, but for Pearson correla-
tion ratio-based thresholds of a) 0.76, and b) 0.7. Right
panels show the number of causal drivers for each output,
with a mean number of inputs of 36 (39 % of the total)
and 48 (51 % of the total) for the ratio-based thresholds
of 0.76 and 0.7, respectively.
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Figure S3. Same as Fig. S1, but for Lasso regression
with a) 0.01 alpha and b) varying alpha. Note varying
alpha in b) is chosen to obtain a similar number of inputs
as in the quantile-optimized causal-threshold case (Fig.
2).
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Figure S4. Same as Fig. 4, but for specific humidity (q) and moistening rates (∆qphy).
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Figure S5. Same as Fig. 4, but for Causal0.59NNCAM.
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Figure S6. Same as Fig. S4, but for Causal0.59NNCAM.
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Figure S7. Vertically resolved coefficient of determina-
tion (R2), averaged horizontally and in time, for heat-
ing rates (∆Tphy) and moistening rates (∆qphy) of neu-
ral network (NN) parameterizations trained on the ref-
erence climate (+0 K). R2 is calculated using the test
sets of each SPCAM simulation case (−4 K, +0 K and
+4 K). Linear version of the neural network parameter-
izations (thin solid lines) are for the activation identity
functions. Correlationally-informed (dashed black lines)
and randomly-informed (dotted black lines) NNs use the
same number of inputs as in the single optimized causal-
threshold (q=0.59) case. Lasso-informed (solid yellow
line) NN use similar number of inputs as in the quantile-
optimized causal-threshold case (Fig. S3b).



: X - 11

Figure S8. (top row) Zonal-mean climatologies of
heating tendencies (∆Tphy), and (bottom row) latitudi-
nally resolved coefficient of determination (R2) of surface
precipitation (P ) and net longwave radiative heat fluxes

(Qtop
lw , Qsrf

lw ).

Figure S9. Same as Fig. 6, but including mean
SHAP value sign for: a) Non-causalNN; b) Lasso-
informedNN (Fig. S3b); c) Causally-informed0.59NN;
and d) Causally-informedNN.



X - 12 :

Figure S10. Coefficient of determination (R2) of a)
∆Tphy and b) ∆qphy at the surface (992 hPa) for the Non-
causal neural network (NN) and the causally-informed
NN using a number of thresholds for both approaches,
ratio- (brown) and quantile-based (red). The reference
SPCAM simulation (+0 K) was used for training. R2

is computed using the test sets of each simulation case
(−4 K, +0 K and +4 K). The optimal single threshold is
marked with a black cross.

Figure S11. Adapted from Fig. 1 in (Rasp et
al., 2018). a) Zonal mean convective and radiative
subgrid heating rates ∆Tphy. b) Zonal mean tem-
perature T of SPCAM and NNCAM biases. Black
dashed line shows the mean tropopause. c) Lati-
tudinally resolved mean shortwave and longwave net
fluxes at the top of the atmosphere and precipitation.
Zonal mean values are area-weighted. This figure is
shared under the CC BY-NC-ND 4.0 DEED license
(https://creativecommons.org/licenses/by-nc-nd/4.0/).


