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Abstract Climate models are essential to understand and project climate change, yet long‐standing biases
and uncertainties in their projections remain. This is largely associated with the representation of subgrid‐scale
processes, particularly clouds and convection. Deep learning can learn these subgrid‐scale processes from
computationally expensive storm‐resolving models while retaining many features at a fraction of computational
cost. Yet, climate simulations with embedded neural network parameterizations are still challenging and highly
depend on the deep learning solution. This is likely associated with spurious non‐physical correlations learned
by the neural networks due to the complexity of the physical dynamical system. Here, we show that the
combination of causality with deep learning helps removing spurious correlations and optimizing the neural
network algorithm. To resolve this, we apply a causal discovery method to unveil causal drivers in the set of
input predictors of atmospheric subgrid‐scale processes of a superparameterized climate model in which deep
convection is explicitly resolved. The resulting causally‐informed neural networks are coupled to the climate
model, hence, replacing the superparameterization and radiation scheme. We show that the climate simulations
with causally‐informed neural network parameterizations retain many convection‐related properties and
accurately generate the climate of the original high‐resolution climate model, while retaining similar
generalization capabilities to unseen climates compared to the non‐causal approach. The combination of causal
discovery and deep learning is a new and promising approach that leads to stable and more trustworthy climate
simulations and paves the way toward more physically‐based causal deep learning approaches also in other
scientific disciplines.

Plain Language Summary Climate models have biases compared to observations that have been
present for a long time because certain processes, like convection, are only approximated using simplified
methods. Neural networks can better represent these processes, but often learn incorrect connections leading to
unreliable results and climate model crashes. To solve this, we used a new method that informs neural networks
with causal drivers, therefore, respecting the underlying physical processes. By doing so, we developed more
reliable and trustworthy neural networks, allowing us to accurately represent the climate of the original high‐
resolution simulation on which these neural networks were trained.

1. Introduction
Our understanding of the climate system and how it may change in the future under different scenarios has greatly
improved thanks to climate models (IPCC, 2021a). Yet, systematic biases still plague current climate models
compared to observations (Eyring, Gillett, et al., 2021; Flato et al., 2013) and limit their ability to accurately
project climate change at global and regional scales (Lee et al., 2021; Tebaldi et al., 2021). Many important
processes determining the Earth's climate occur at scales smaller than current climate models grid size, typically
ranging 50–100 km horizontally (IPCC, 2021b). The effect of these subgrid‐scale or unresolved processes, such
as clouds and convection, on the system are approximated via physical parameterizations in current models, and
are a key source of the uncertainty in climate projections (Gentine et al., 2021; Schneider et al., 2017).
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High‐resolution storm‐resolving models (SRMs), run at a horizontal scale of few kilometers, explicitly represent
deep convection and dynamics of convective storms, and alleviate a number of biases present in coarser climate
models (Bock et al., 2020; Sherwood et al., 2014). For instance, they show improvements in representing the
Intertropical Convergence Zone (ITCZ) (Klocke et al., 2017), storm‐tracks and precipitation (Stevens
et al., 2019), as well as subseasonal variability (Rasp et al., 2018). Accurate representation of convective pro-
cesses is also essential to capture Earth's system feedbacks in a changing climate, like cloud‐radiation feedbacks
(Bony et al., 2015). Yet, global SRMs simulations are only possible over short periods of time (months) due to
their staggering computational costs, whereas climate research requires a number of realizations over hundreds of
years (Schneider et al., 2017).

Machine learning (ML) approaches, and in particular deep learning (DL) methods, have shown great potential in
learning explicitly resolved small‐scale processes such as deep convection from SRM simulations (Eyring,
Mishra, et al., 2021; Gentine et al., 2018, 2021; Grundner et al., 2022) and represent them in coarser resolution
models. Hybrid models, that is, ML‐based parameterizations coupled to a host climate model, have shown great
performance simulating the climate of the original SRM in terms of mean state and its variability (e.g., tropical
waves) (Bretherton et al., 2022; Rasp et al., 2018; Wang et al., 2022; Watt‐Meyer et al., 2021; Yuval &
O’Gorman, 2020). ML methods for Earth system modeling is an active area of research. Particularly challenging
to address are the poor representation of unseen climates and regimes (i.e., generalization capabilities) (Grundner
et al., 2022; O’Gorman & Dwyer, 2018; Scher & Messori, 2019), and hybrid modeling instabilities associated
with the interaction between the ML‐based algorithm and the dynamical core of the host climate model (Bre-
nowitz, Beucler, et al., 2020). Training the ML algorithm directly online, coupled to the climate model (Frezat
et al., 2022; Lopez‐Gomez et al., 2022), crude ablation (Brenowitz & Bretherton, 2019), and deeper DL algo-
rithms (Rasp et al., 2018) have been proposed to overcome hybrid ML modeling instabilities. Yet, the causes of
such instabilities are not fully understood. Our working hypothesis is that ML‐based parameterizations can
accurately reproduce subgrid‐scale processes using non‐causal relationships (i.e., mere correlations), and these
correlations might be overfitting the training dataset (Brenowitz, Henn, et al., 2020). In a nutshell, ML algorithms
can skillfully learn a given task for the wrong reasons using spurious non‐physical relationships, but may struggle
in conditions deviating from the training data in which causes and effects might differ from the initial correlations
present in the training data (Brenowitz, Henn, et al., 2020).

Integrating domain knowledge in the form of causal relationships (i.e., inductive bias) is a recent and emerging
theme in ML research (Pearl & Mackenzie, 2018; Runge, Bathiany, et al., 2019; Schölkopf et al., 2021) to
overcome shortcomings of standard ML methods, which predictions are mostly based on correlations between
predictors and predictands. While correlation is a statistical relationship between two variables (i.e., where a
change in one variable is associated with a change in the other variable), causality is the relationship between an
action (the cause) and its outcome (the effect). As an example, for data coming from a causal model X1 ← X2 → Y,
an ML algorithm may learn to predict Y from both X1 and X2. However, such a prediction would fail if the ML
method is employed under changing environments where the confounder X1 is in a different state. This can easily
be the case when an ML algorithm learns an atmospheric physical process. Owing to the strong correlation
induced by convective processes in the atmospheric profile environment, surface precipitation, for example, can
be influenced not only by conditions in the troposphere but also by upper tropospheric moisture (confounder)
(Brenowitz & Bretherton, 2019). Causal discovery methods aim to discover such causal relationships from data
(Runge, Bathiany, et al., 2019; Runge, Nowack, et al., 2019), going beyond simple correlations. The goal of our
study is to merge the power of causal discovery with the data exploitation capacity of neural networks, and
investigate whether such a causally‐informed neural network can help better understand and predict (subgrid)
physical mechanisms in the atmosphere.

We build on existing data‐driven subgrid parameterization work (Rasp et al., 2018) and combine causal discovery
and deep learning, using the same high‐resolution modeling data, to improve DL‐based parameterizations. The
task of the causal discovery algorithm is to unveil the causal drivers of the subgrid‐scale processes respecting the
underlying physical mechanisms. The causally‐informed neural network algorithms have two steps. We first
identify causal drivers of subgrid‐scale processes using a causal discovery method based on conditional inde-
pendence tests. Then we build novel causally‐informed neural network algorithms, in which subgrid‐scale pro-
cesses are learned from the causal drivers. In other words, we build sparser (lower dimensional) neural networks
in which non‐causal connections are dropped. We demonstrate several key aspects of this novel method: (a)
causal discovery removes spurious links; (b) causal drivers are “climate invariant” (i.e., robust across colder and
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warmer climates (Beucler et al., 2021)); and (c) the causally‐informed hybrid
model accurately represents the climate of the original high‐resolution
climate model, retaining many convection‐related properties. We finish by
discussing a potential broader role of causal discovery in the context of ML
for physical sciences, and key remaining challenges for future work.

2. Causally‐Informed Hybrid Modeling
We extend previous work (Gentine et al., 2018; Rasp et al., 2018) to build a
causally‐informed hybrid climate model (see Table 1). Figure 1 shows a
schematic overview of the causally‐informed neural network approach. We
use an aquaplanet (i.e., ocean only without topography) setup of the Super-

parameterized Community Atmosphere Model v3.0 (SPCAM) (Collins et al., 2006). The model extends from the
surface to the upper stratosphere (3.5 hPa) with 30 vertical levels and includes a horizontal resolution of
2.8° × 2.8° (latitude by longitude). Stationary—no seasonality but with diurnal cycle—zonal mean sea surface
temperatures are imposed using a realistic equator‐to‐pole gradient (Andersen & Kuang, 2012). The time step of
the climate model component (CAM) is 30 min. The superparameterization component (SP) is a 2–D SRM
embedded in each grid column, explicitly resolving most of deep convection but parameterizing turbulence and
cloud microphysics (M. F. Khairoutdinov & Randall, 2001; Pritchard et al., 2014; Pritchard & Bretherton, 2014).
For consistency with the former study (Rasp et al., 2018), the SP component uses eight 4–km‐wide meridionally
oriented columns (west to east), and time steps of 20 s. SPCAM alleviates a number of climate model biases
(Oueslati & Bellon, 2015), including a more realistic Madden‐Julian oscillation and a single ITCZ, as well as
better representation of precipitation extremes (Arnold & Randall, 2015; Benedict & Randall, 2009; Kooperman
et al., 2016a, Kooperman et al., 2016b, 2018).

The task of the neural networks (NNs) is to learn subgrid‐scale processes (output predictands) as represented by
the SP component given the environmental conditions (input predictors) of the climate model, CAM. The training
data are column‐based values of the model's subgrid physics package, which includes the SP subgrid resolution of

Table 1
Summary of the Model Simulations

Climate models Parameterizations Causal‐threshold

SPCAM SP component (2–D SRM) —

Non‐causalNNCAM Non‐causalNN —

Causal0.59NNCAM Causally‐informed0.59NN quantile 0.59a

CausalNNCAM Causally‐informedNN quantile optimizedb

aSingle optimized causal‐threshold for all outputs. bVarying optimized
causal‐threshold (see Supporting Information S1).

Figure 1. Schematic overview of the causally‐informed neural network approach. The Superparameterized Community Atmosphere Model (SPCAM) is used to learn
subgrid‐scale processes (Y) as represented by the SP component given the environmental conditions (X ) of the climate model, CAM. Two data‐driven parameterizations
are considered: (top) non‐causal; and (bottom) causally‐informed. For the causally‐informed approach, (a) we use a causal discovery algorithm, the PC1 phase of the
PCMCI method (Runge, Nowack, et al., 2019), to prune the fully connected input vector and eliminate non‐physical spurious inputs and connections. Therefore, (b) we

develop 65 separate single‐output NNs, each one having a specific subset of causal inputs, causal′ (Y j
t ) , with a varying input vector length. The main difference between

the analogous Causally‐informedNN and Non‐causalNN parameterizations is that the latter always includes an input vector of length 94 (i.e., full set of environmental
conditions). Finally, (c) we couple both the Non‐causalNN parameterization and the new Causally‐informedNN parameterization of SPCAM physics within CAM,
resulting in the Non‐causalNNCAM and CausalNNCAMmodels respectively (Table 1). The causal discovery diagram was adapted from Runge, Nowack, et al. (2019) and
the sketch of SPCAM from Prein et al. (2015).
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convective transport, turbulence and radiation scheme, with a few omissions (condensed water species and
ozone). The inputs (X ) are column‐wise values of temperature T(p) [K], specific humidity q(p) [kg kg− 1], and
meridional wind V(p) [m s− 1] at each column level, surface pressure Psrf [Pa], incoming solar radiationQsol at the
top of the atmosphere, as well as sensible‐ and latent‐heat fluxes at the surface, Qsen and Qlat in [W m− 2],
respectively. The outputs (Y) comprise: heating tendencies ΔTphy(p) (including convection and radiative heating
rates) [K s− 1]; and moistening tendencies Δqphy(p) [kg kg

− 1 s− 1] at each model level; net shortwave and long-
wave radiative heat fluxes at the model top and at the surface (Qtop

sw , Q
top
lw , Q

srf
sw and Q

srf
lw respectively) [Wm

− 2], and
surface precipitation P [kg m− 2 d− 1]. Only the heating and moistening tendencies are coupled to the climate
model's dynamical core, with the other outputs being diagnostics. Two data‐driven DL parameterizations are
considered: non‐causal; and causally‐informed (see Parameterizations column in Table 1). In both cases, and
based on previous work (Rasp et al., 2018), we use fully connected feedforward NNs, with nine hidden layers and
256 units per layer (around 0.5 million parameters). The NNs are optimized by minimizing the loss defined as the
mean squared error of the prediction compared to the SPCAM “truth” value. We use 3 months of an SPCAM
simulation for training, validation and test sets (each set approximately including 45 million samples using every
model time step and grid column). Note the training set is shuffled in time and space (grid columns). See Sup-
porting Information S1 for additional details.

We develop 65 separate single‐output NNs for both cases, causal and non‐causal parameterizations (corre-
sponding to 30 vertical levels for heating and moistening rates, plus net shortwave and longwave radiative heat
fluxes at the model top and at the surface, and surface precipitation), rather than a single NN for the entire column
(Han et al., 2020). In this way, each causally‐informed NN has a specific subset of causal inputs (drivers) obtained
during the causal discovery phase, and therefore a varying input vector length (see below). The main difference
between the analogous causally‐informed NNs and non‐causal NNs is that the latter always include an input
vector of length 94 (i.e., 3 times the number of levels for temperature, humidity, and wind, as well as 2–D fields of
surface pressure, sensible and latent heat fluxes, and top of the atmosphere incoming solar radiation) (see Sup-
porting Information S1). For the causally‐informed NNs, our goal is to prune the fully connected input vector to
eliminate non‐physical spurious inputs and connections. From a causal perspective, the setup here is simplified
because the inputs and outputs are known to be separated in time based on the SP climate model's structure.
Hence, we can utilize a causal discovery selection algorithm that removes those inputs that are conditionally
independent of the output, thus, providing no additional information to predict the output.

While no causal discovery method is infallible, we can gain a deeper understanding of how a dynamical system
works and develop more informed algorithms based on causal evidence rather than simply relying on correlations
or associations between variables (i.e., environmental conditions driving subgrid‐scale processes). Our selection
algorithm is the PC1 phase of the PCMCI method (Runge, Nowack, et al., 2019), which is based on the PC al-
gorithm (Spirtes & Glymour, 1991), and the Momentary Conditional Independence (MCI) test. PCMCI, and its
different flavors, have been widely used in recent years in climate sciences, such as for better understanding
teleconnections in the Earth system (Kretschmer et al., 2016, 2018; Runge et al., 2014; Siew et al., 2020) and their
pathways (Galytska et al., 2023; Karmouche et al., 2023; Kretschmer et al., 2021; Runge et al., 2015) or to
investigate land‐atmosphere interactions (Krich et al., 2020).

PC1 starts by a fully connected matrix between all inputs and outputs. This initializes the causal drivers to

causalg (Y
j
t ) = {Xi

t− 1}
NX
i=1, where NX is the number of all potential drivers across the different vertical levels and g

refers to each column of the model grid. Then PC1 tests whether each input (Xi
t− 1) is conditionally independent of

an output (Y j
t ) given selected subsets of the other correlated inputs in the dataset (causalg (Y

j
t )) . If two variables

are found to be conditionally independent, it is inferred that there is no direct causal relationship between them.

Specifically, it removes drivers Xi
t− 1 from causalg (Y

j
t ) if they are conditionally independent (irrelevant or

redundant) of Y j
t given subsets Sk ⊂ causalg (Y

j
t ) whose cardinality k iteratively increases. For k= 0, all Xi

t− 1 with

Xi
t− 1 ⊥ Y j

t , where ⊥ refers to conditional independence, are removed. For k = 1, those with Xi
t− 1 ⊥ Y j

t |S1 are
removed, where S1 is the strongest driver (as measured by their absolute partial correlation value) from the
previous step. For k = 2, those with Xi

t− 1 ⊥ Y j
t |S2 are removed, where S2 are the two strongest drivers (regarding

the individual absolute partial correlation values), among the remaining drivers, excluding Xi
t− 1, from the previous
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step. A simple forward‐selection method would always keep the strongest driver at each iteration step, while our
approach re‐tests them conditional on the remaining k strongest drivers. This procedure continues until the al-
gorithm converges and stops when there are no more possible combinations Sk, that is, if the cardinality of Sk is
equal to the number of remaining drivers. We note that the iterative process of repeatedly testing each potential
causal driver of an output against efficiently chosen subsets of the other potential inputs is what establishes PC1 as
causal under the assumptions discussed below. Here conditional independence is tested using partial correlation
because we may reasonably assume that at a short 30 min time‐scale, even non‐linear relations are sufficiently
well captured by a linear model. The independence test is based on a standard significance level αpc = 0.01.

Our goal here is primarily to remove spurious inputs. A causal interpretation of causalg (Y
j
t ) using the

above algorithm rests on the following assumptions: causal sufficiency (all common causes are observed),
the Markov condition (dependence must be due to causal connectedness), faithfulness (independencies are
not by coincidence but structural, therefore, follow the Markov condition). This approach yields a set of

causal drivers causalg (Y
j
t ) for each variable Yj at every column g and every vertical level. Because we

want these drivers to generalize across all columns (across space and time), we define “robust” causal

drivers as causal′(Y j
t ) = {Xi

t− 1 : P(X
i
t− 1 → Y j

t ∈ causalg (Y
j
t ) )> q} . Specifically, we only consider causal

drivers Xi
t− 1 for a given output Y

j
t , those whose probability P of being causally‐linked to the output across

the 8,192 latitude and longitude columns is at least quantile q. This is also the main idea behind the
invariant causal prediction approach (Peters et al., 2016). We explore two cases to choose q: a single
optimized quantile‐threshold of q = 0.59 for all outputs; and a varying quantile‐threshold optimized for
each output separately (quantile‐threshold optimization is based on causally‐informed NNs offline perfor-
mance; see Supporting Information S1). q is the primary hyperparameter of the algorithm. A too loose
threshold would lead to keeping non‐physical spurious inputs similar to a fully connected (non‐causal)
feedforward NN. A too strict threshold would lead to neglecting some important input features (key drivers)
and thus having poor predictive skills. The results presented here are based on the varying quantile‐
threshold (see Supporting Information S1 for the single optimized quantile‐threshold results).

Finally, to test the value of our causal discovery approach (PC1) in removing potential spurious inputs‐to‐outputs
links, we explore two additional feature selection approaches. First, we compare PC1 with a baseline (non‐causal)
correlation method, which follows the column‐wise approach. Second, linear Lasso regression is applied to the
entire training set without separating each location (Tibshirani, 1996), which under the above causal assumptions
may also work as a complementary method for selecting causal features. Although we choose in this work the PC1
algorithm and explore linear Lasso regression, we note there are a number of causal discovery methods that may
well be suitable (Runge et al., 2023).

3. Results
3.1. Causal Discovery

Based on the causal discovery algorithm, we can investigate the main drivers of the subgrid‐scale processes as
represented by the SPCAM model. Causal drivers of SPCAM's parameterizations inferred by our causal dis-
covery algorithm are in agreement with current physics understanding (Figure 2; Figure S1 in Supporting In-
formation S1). Causal matrices, similar to transilient matrices (Romps &Kuang, 2011; Stull, 1993), reveal largest
coefficients—ratio of the causal drivers appearance across the model's grid—on the diagonal, meaning that key
direct drivers are primarily local in the vertical. This is especially strong for humidity, which is known to be a key
regulator of convective mixing and updraft buoyancy through lateral entrainment (de Rooy et al., 2013; Stom-
mel, 1951; Warner, 1970). Nonetheless, the causal matrices reveal the influence of the lower troposphere
(p > 600 hPa) on the profile. This is expected since convective processes and buoyant plumes originate from the
boundary layer, affecting the troposphere above. In particular, boundary‐layer and lower troposphere temperature
is causally‐linked (driver) to moistening and heating rates throughout the troposphere. Several studies have shown
that cold pools induced by unsaturated downdrafts organize the boundary layer (Del Genio &Wu, 2010; Kuang &
Bretherton, 2006; M. Khairoutdinov & Randall, 2006; Mapes & Neale, 2011), and organizing convection leads to
changes in atmospheric heating and moistening tendencies and precipitation (Muller & Bony, 2015; Tomp-
kins, 2001). Furthermore, heating rates in the upper‐troposphere and lower‐stratosphere (∼100–300 hPa) are
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associated with mid‐tropospheric moistening, where deep convection can have a substantial radiative effect due to
cirrus clouds. Incoming solar radiation is the most important driver of heating rates because of its regulation of the
diurnal cycle. Interestingly, precipitation at the surface is strongly causally‐linked by environmental conditions
from the lower to the middle troposphere, and therefore associated with convective processes and rain re‐
evaporation, consistent with the strong relationship between precipitation and the bulk temperature and moisture
in the lower troposphere (Ahmed & Neelin, 2018; Del Genio, 2012; D’Andrea et al., 2014).

Our causal feature selection methodologies outperform a more naïve baseline feature selection approach
removing potential spurious inputs‐to‐outputs links. Using a simple correlation method, we find that correlations

Figure 2. Causal discovery feature selection matrix of subgrid‐scale processes in SPCAM for the varying optimized causal‐threshold per output (see Supporting
Information S1). The inputs of the neural networks are given on the x‐axes: 2–D variables (Qlat,Qsen,Qsol, Psrf); and 3–D variables (V, q, T ) from the surface (10

3 hPa) to
the model's top (3 hPa), respectively. The outputs (subgrid‐scale processes) are represented on the y‐axes: 2–D variables (P,Qtop

lw ,Q
top
sw ,Q

srf
lw , andQ

srf
sw ); and 3–D variables

(Δqphy and ΔTphy) from the surface to the model's top, respectively. Insets (a) and (b) zoom‐in into Δqphy and 2–D output variables, respectively. Contour colors represent
the coefficient (absolute ratio) of the causal drivers appearance throughout the model's grid. Right panel shows the number of causal drivers for each output, with a mean
number of inputs of 48 (51% of the total).
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across the atmospheric profile are largely non‐local and redundant among state fields (i.e., less physical; see
Figure S2 in Supporting Information S1). This is due to the large inter‐correlation in the atmospheric profile
associated with convective processes. These strong correlations across levels would nonetheless include potential
spurious links and primarily define the strength of the neural network connections. Moreover, using simple
correlations to optimize the connectivity matrices is challenging, since either a number of outputs lack input links
(e.g., upper tropospheric moisture; Figure S2 in Supporting Information S1), or the system is quasi‐fully con-
nected (not shown). Furthermore, we use linear Lasso regression (Tibshirani, 1996), which under the above causal
assumptions (sufficiency, Markov, and faithfulness) may work as a causal feature selection method. While
selected features show largest Lasso coefficients on the diagonal (Figure S3 in Supporting Information S1),
meaning it captures that key direct physical drivers are primarily local in the vertical, there are clear spurious
features (e.g., moistening and heating tendencies in the lower troposphere are associated with environmental
conditions in the stratosphere; see also Section 3.3 and Figure S9 in Supporting Information S1). While the
correlationally‐informed parameterization performs sub‐optimally compared to the reference non‐causal case
(particularly in the lower troposphere), lasso‐informed parameterization shows in general similar skills (Figure S7
in Supporting Information S1). Causal discovery is arguably a more complex method that rests on some expert
knowledge of the physical problem (allowing us to choose a suitable causal algorithm and its setup), and on a
number of mathematical assumptions. However, it goes beyond standard feature selection approaches and helps
further remove spurious links, as demonstrated by PC1 and linear Lasso regression.

As a further test of the credibility of our causal feature selection methodology and its stability with a changing
input distribution, we also explore its sensitivity to climate change (Galytska et al., 2023; Karmouche et al., 2023).
Thermodynamic features driving different atmospheric processes are “climate invariant”, that is, they govern the
same processes regardless of the climate state of the system, as physics does not change with climate change. For
example, whatever the state of the climate system, we expect the key direct drivers of heating and moistening
tendencies to remain local, though deep convection affects them non‐locally throughout the troposphere. Reas-
suringly, we find that causal drivers of subgrid‐scale processes as inferred by our causal discovery algorithm in
SPCAM are consistent across climates for both, global 4 K sea surface temperatures cooling and warming (only
around 5% inconsistent non‐local causal drivers in the vertical, Figure 3). This result suggests that causal dis-
covery helps unveil the most direct key drivers of smaller‐scale processes represented by SPCAM and remove
some of the confounding effects present when using neural networks, that would otherwise affect their perfor-
mance due to spurious inter‐correlations across the vertical profile (shown below).

3.2. Mean Climate and Variability

We here couple both the standard NN emulation (Non‐causalNN) and the new causally‐informed NN emulation
(Causally‐informedNN) of SPCAM physics within CAM, resulting in the Non‐causalNNCAM and Cau-
salNNCAM models respectively (Table 1). We evaluate their response when run online (i.e., coupled to the
coarse‐resolution model), using zonal‐mean daily averaged output from 1 year prognostic runs with a 1 month
spin‐up (after reaching climate equilibrium; not shown). Note that instabilities generally would develop within the
first 6 months (Ott et al., 2020).

The CausalNNCAM model accurately represents the mean tropospheric temperature and variability of the
original model (Figure 4) while the Non‐causalNNCAM model shows significant cold biases in the tropics. Key
features of the SPCAM simulations used here are the representation of a single ITCZ associated with a primary
tropospheric tower of heating rates (warming; Figure 4) and moistening rates (drying; Figure S4 in Supporting
Information S1) due to subgrid‐scale processes, as well as secondary free‐troposphere maxima at midlatitudes
storm‐tracks. While these features are well represented in CausalNNCAM, a spurious double‐ITCZ is clearly
represented in the Non‐causalNNCAM. We note these biases are not present in the former non‐causal hybrid
model upon which this work builds, NNCAM (Rasp et al., 2018), which represents very well the mean climate of
the original SPCAM simulation (see Section 4.2 and Figure S11 in Supporting Information S1). It is also worth
noting that the Causal0.59NNCAM simulation shows similar deficiencies in the troposphere as in the non‐causal
realization. This suggests that a single optimized causal‐threshold may well be too strict for a number of subgrid‐
scale processes (output predictands), which results in neglecting key physical drivers (input predictors) (see
Figures S5–S6 in Supporting Information S1). Stratospheric temperature biases are evident in all prognostic
simulations with DL‐based parameterization, and are very likely associated with the important role of ozone
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(missing variable as a predictor in our NN setup) in determining the climate in the stratosphere (WMO, 2018).
These biases were also evident in NNCAM (Rasp et al., 2018).

The better ability of the causally‐informed DL‐based parameterization, CausalNNCAM, to realistically reproduce
the mean ITCZ and characteristic midlatitude storm‐track variability of the SPCAM reference simulation is also
reflected in surface precipitation and net radiative fluxes (Figure 5), as it accurately resolves the zonal patterns of
precipitation and net radiation of SPCAM. In contrast, in Non‐causalNNCAM precipitation is substantially
underestimated, both mean and variability and a double‐ITCZ pathology is evident. CausalNNCAM correctly
captures precipitation peaks, though it is somewhat overestimated over the ITCZ and associated with stronger
moistening rates (Figure S4 in Supporting Information S1). Similarly, net radiative fluxes at the top of the at-
mosphere in Non‐causalNNCAM are underestimated in the subtropics compared to SPCAM due to the double‐

Figure 3. Same as Figure 2, but for (a) warming and (b) cooling of global 4K sea surface temperatures by adding a wavenumber one perturbation to the reference sea
surface temperatures in increments of 1 K. Right panels show the number of causal drivers for each output. Both cases have an equivalent mean number of inputs of 48
(51% of the total) compared to the reference climate (+0 K).
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ITCZ bias, deficiency largely overcome in CausalNNCAM. These results clearly show that CausalNNCAM not
only reduces the dimensionality of the DL algorithm, which limits the impact of confounders such as the strong
spatial (vertical and zonal) inter‐correlations in the atmospheric profiles, but can also match the performance of
NNCAM (Rasp et al., 2018). We reiterate that these biases in Non‐causalNNCAM were not present in NNCAM
(Figure S11 in Supporting Information S1). Nevertheless, both non‐causal and causal parameterizations accu-
rately represent the physics of the test set (offline; Figures S7 and S8 in Supporting Information S1), and perform
as well as the original NN (Rasp et al., 2018). Details about the disparities between offline and online perfor-
mances are provided in Section 4.2. In principle, it would be possible to develop a good performing non‐causal
hybrid model by systematically training a very large number of NNs, as it has been already shown (Rasp
et al., 2018).

Causal discovery helps improve DL‐based learning of physical processes (i.e., parameterizations) by
informing them with causal drivers. Two key open questions are whether such causally‐informed neural
networks: (a) lead to a reduced complexity of the system (lower dimensionality associated with greater input

Figure 4. Zonal‐mean climatologies of (a)–(c) temperature (T ), (d)–(f) T variability (standard deviation; std), and (g)–(i) heating tendencies (ΔTphy) for SPCAM,
CausalNNCAM and Non‐causalNNCAM. Contour colors for temperature biases (b)–(c) are for statistically significant differences at the 95% confidence interval. Note
Non‐causalNNCAM biases are not present in NNCAM (Rasp et al., 2018), see Figure S11 in Supporting Information S1.
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sparsity); and (b) can make more accurate predictions across climate regimes (improving generalization
skills). To address the former question, we explore the performance of equivalent lower dimensional NNs
compared to the causally‐informed case (i.e., same number of inputs), but applying different methods to
select the inputs. Both, randomly‐ and correlationally‐informed NNs show worse performance compared to
the causally‐informed case for heating and moistening tendencies (Figure S7 in Supporting Information S1).
In addition, we use a linear version of the neural network parameterizations by replacing the activation
functions with the identity function (i.e., removing non‐linearity), to test whether inputs‐to‐outputs non‐
linearities are relaxed due to lower dimensionality in the causal case. The linear versions of the parame-
terizations show, as expected, a substantial drop in their performance compared to the non‐linear versions
(Figure S7 in Supporting Information S1). Interestingly, however, the performance of the linear parame-
terizations for both, Non‐causalNN and Causally‐informedNN, are equivalent. Therefore, lower dimension-
ality alone explains little of the causally‐informed NNs accurate performance, suggesting that it is largely
related to the use of causal drivers (i.e., removing spurious links).

Then, we investigate the generalization capabilities of the DL‐based parameterizations across ±4 K climates
compared to the original climate model (see Supporting Information S1). We find that causally‐informed pa-
rameterizations retain similar generalization capabilities as the non‐causal case, but without any substantial
improvement with respect to the latter (Figure S7 in Supporting Information S1). In particular, we find that our
DL‐based parameterizations, both Non‐causalNN and Causally‐informedNN, generalize poorly under the +4 K
climate, which is in line with previous results (Rasp et al., 2018). DL algorithms usually optimize an objective
using a training dataset. NNs make out‐of‐distribution predictions (extrapolation) such as across different cli-
mates, relying on implicit assumptions. There is no inherent guarantee that NNs will accurately generalize far
beyond their training data (Beucler et al., 2021), even when using causal drivers. This extrapolation challenge
leads to the failure of DL‐based parameterizations when confronted with environmental conditions significantly
different from their training data range (Rasp et al., 2018). Overall, these results suggest that while neural network
parameterizations can be improved in combination with causality, the prediction skills across climates must be
enhanced by other approaches (Beucler et al., 2021).

3.3. Neural Nets Explainability

Having demonstrated that causal discovery helps unveil direct physical drivers of subgrid‐scale processes and that
the causally‐informed prognostic simulation accurately represents the climate of the original SPCAM model, we
turn here to explaining the predictions of such DL‐based parameterizations. Figure 6 shows the feature impor-
tance of unresolved processes predictions for both, Causally‐informedNN and Non‐causalNN parameterizations,
under the reference climate (+0 K), using a SHapley Additive exPlanations (SHAP) analysis (Lundberg &
Lee, 2017; Shrikumar et al., 2017) (see Supporting Information S1). In both cases, the predominant features are in
line with physical understanding. Spurious features, however, are evident in the Non‐causalNN case (Figure 6a
and Figure S9 in Supporting Information S1). Heating and moistening rates in the lower troposphere are linked to
temperature throughout the atmosphere. The absence of a clear pattern—but random links—is suggestive of non‐
physical spurious correlations. These spurious links are likely the result of the strong inputs‐to‐outputs inter‐

Figure 5. Zonal average climatologies of precipitation (P), and net radiative fluxes at the top of the atmosphere. (a) Mean
(thick solid lines) and standard deviation (thin dashed lines) are shown for P. Note the shaded gray area indicates the standard
deviation around the mean of SPCAM. (b) Radiative longwave (Qtop

lw ; solid lines) and shortwave (Q
top
sw ; dashed lines) net

fluxes are shown. Zonal mean values are area‐weighted, that is, cosine (latitudes). Note Non‐causalNNCAM biases are not
present in NNCAM (Rasp et al., 2018), see Figure S11 in Supporting Information S1.
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Figure 6.
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correlation vertically in the atmosphere due to convective processes. By construction, such spurious links are
mainly missing in the causally‐informed parameterization (Figure 6b), which in turn shows stronger feature
importance values for causal drivers compared to the latter (Figure 6c).

4. Discussion
4.1. Causal‐Threshold Optimization

Optimizing the causal‐threshold to find robust and globally invariant causal drivers poses the unique
challenge of lacking a ground truth causal graph, and therefore, relies on both expert knowledge and
empirical performance. This work considers two threshold optimization cases: a single optimized quantile‐
threshold for all outputs (fixed value); and a varying quantile‐threshold optimized for each output
separately. While the single optimized quantile‐threshold may appear more straightforward and “cleaner”
(Figure S1 in Supporting Information S1), it may fail to reflect the true complexity of the underlying
causal relationships. In contrast, using a varying threshold optimized for each output introduces adapt-
ability during the causal discovery phase and enables it to capture nuances in the data (Figure 2). For
example, mild causal relationships between heating tendencies in the upper stratosphere with environ-
mental conditions throughout the atmosphere, present in the varying quantile‐threshold, may be associ-
ated with structural artifacts of the original SPCAM model (e.g., models with top of the atmosphere
below the stratopause present stratosphere‐troposphere coupling issues) (Charlton‐Perez et al., 2013).
The superior empirical performance of the causal parameterization based on the varying threshold
approach is associated with the set of causal drivers that better uncover hidden causal dependencies
(Figure 2), which may be overlooked by the more rigid single threshold strategy (Figure S1 in Sup-
porting Information S1).

4.2. Hybrid Model Stability and Performance

This work builds on a previous NN (architecture and hyperparameters) based on the same dataset, for which the
resulting hybrid model (once the NN is coupled to the coarse climate model) ran stably and accurately represented
the climate of the original SPCAM model (Rasp et al., 2018). We find a number of CausalqNNCAM cases with
sub‐optimal single optimized causal‐thresholds (q ∈ [0.6, 0.8]) that were unstable. Moreover, causally‐informed
parameterizations with the optimal causal‐threshold (quantile optimized; Table 1) but with simpler architectures
(shallower and less complex) were also unstable once coupled to the host climate model. This result is in
agreement with previous work (Rasp et al., 2018). Nevertheless, we find that Non‐causalNNCAM, Cau-
sal0.59NNCAM, and CausalNNCAM run stably without climate drifts (spurious and increasing long‐term errors
compared to SPCAM; not shown).

The DL‐based parameterizations presented here (Non‐causalNN, Causally‐informed0.59NN, and Causally‐
informedNN) perform as well as the original NN (Rasp et al., 2018) in the test set (offline; Figure S7 in Sup-
porting Information S1). Particularly, we note that Non‐causalNN (and Causally‐informed0.59NN; not shown)
accurately captures both the ITCZ and midlatitudes storm‐tracks as represented by SPCAM (Figure S8 top row in
Supporting Information S1). We find that DL‐based parameterizations for surface precipitation and net radiative
fluxes following a better architecture found by a systematic hyperparameter tuning using an analogous SPCAM
dataset (Hertel et al., 2020), lead to a marginal or negligible performance improvement (Figure S8 bottom row in
Supporting Information S1). Notably, there are disparities between offline and online performances (Brenowitz,
Henn, et al., 2020). In theory, it would be possible to develop equally good, or even better, performing hybrid
models compared to the original NNCAM model (Rasp et al., 2018) if one trains a large number of NNs (Lin
et al., 2023; Ott et al., 2020). In spite of that, this work advances DL‐based parameterizations for climate models
by implementing causal discovery, and demonstrates these newly developed causally‐informed NNs better

Figure 6. Feature importance mapping of subgrid‐scale processes predictions. Explanations are based on absolute averaged values of the SHapley Additive exPlanations
(SHAP; see Supporting Information S1) (Lundberg & Lee, 2017; Shrikumar et al., 2017) for: (a) Non‐causalNN; (b) Causally‐informedNN and (c) the difference
between both parameterizations (smoothed via Gaussian interpolation). Same as in Figure 2, the inputs of the neural networks are given on the x‐axes, and the outputs
(subgrid‐scale processes) are represented on the y‐axes. 3–D variables are shown from the surface (103 hPa) to the model's top (3 hPa). Absolute averaged SHAP values
are shown in symlog scale, and are calculated for over 4,000 random samples of the test set compared to the train set (as background).
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respect the underlying physical processes, with improved interpretability and without compromising performance
skills (offline and online).

5. Conclusions
Data‐driven parameterizations of subgrid‐scale processes based on SRMs are able to represent to a good extent
the climate of the original simulation once coupled to the coarser climate model (i.e., hybrid model) (Bretherton
et al., 2022; Rasp et al., 2018; Watt‐Meyer et al., 2021; Yuval & O’Gorman, 2020). Hybrid models can potentially
alleviate persistent biases in coarse climate model simulations, and improve future climate projections. However,
instabilities in hybrid models have been difficult to overcome and prognostic skills are challenging even in
idealized simulations (e.g., aquaplanet settings without topography). It may well be that the sources of such
instabilities and prognostic skills are associated with spurious non‐physical relationships learned by the ML al-
gorithm due to strong vertical inter‐correlations, as well as fitting to noise. Current approaches to achieve stable
hybrid models fail to care for the causes (e.g., deepening the deep learning algorithm or ablating the stratosphere)
(Brenowitz & Bretherton, 2019; Rasp et al., 2018). An approach that is scalable and can reliably target the causes
to overcome these issues would be a key breakthrough for ML‐based parameterizations.

Here, we present a novel approach that combines causal discovery and DL to improve climate models and
projections. We demonstrate that causal discovery robustly unveils causal (physical) drivers of subgrid‐scale
processes across different climate regimes, while improving interpretability and trust in the DL algorithm. Our
causally‐informed data‐driven model also runs stably when coupled to the host coarse resolution model and
generates a climate (mean and variability) close to the original simulation under the reference climate (within the
distribution of the training dataset). We showed that causally‐informed NNs prevent obvious spurious links in
conventional DL‐based parameterizations, leading to greater attention of the algorithm to the physical drivers
compared to the latter.

Causal discovery, however, requires expert knowledge. In particular, we provided a solution to optimizing the
causal‐threshold (i.e., significance of the causal drivers), by running statistics over a number of causal graphs and
testing the performance of the related causally‐informed NNs. Yet, we avoided a systematic hyperparameter
tuning of the original DL algorithm (Rasp et al., 2018) to find a stable and skillful performing hybrid model
(Hertel et al., 2020). Moreover, we demonstrate that causal discovery, both PC1 and linear Lasso regression, can
identify key causal drivers of subgrid‐scale processes that respect the underlying physical mechanisms (i.e.,
removing redundant information and non‐physical links), for which standard feature selection methods, such
as linear correlation, clearly fail. Future work will test this approach in more challenging and realistic setups (e.g.,
historical simulations with varying forcings and a real topography), as well as extend this method to integrate
causality with state‐of‐the‐art advances in deep learning approaches (Camps‐Valls et al., 2021).

This work presents a fundamental and novel step in overcoming major challenges of data‐driven models of
physical processes (e.g., in parameterizations for climate models), paving the way toward improving climate
models and projections via causally‐based ML techniques. Explicitly using direct drivers in deep learning
methods to represent physical processes is a key challenge that our methodology addresses, which in turn helps
solve the problem of finding more reliable and reproducible data‐driven parameterizations. Furthermore, ad-
vances in ML techniques are rapidly offering potential solutions to other limitations, such as generalization
capabilities. The combination of causal discovery and deep learning presented here introduces a powerful new
approach that opens a new window into process‐based representation of complex processes not only for Earth
system science but also in other scientific disciplines.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
The code used to train the neural networks and to produce all figures of this manuscript is archived on Zenodo:
Software ‐ (Solino & Iglesias‐Suarez, 2023). An example of SPCAM data is also archived on Zenodo: Data ‐
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