
Performance Analysis and Improvement of FSDM
for Large, Highly Parallel Simulations

Jonathan A. Fenske1, Daniel Vollmer2

1 Institute of Software Methods for Product Virtualization
German Aerospace Center (DLR), Zwickauer Straße 46, 01069 Dresden, Germany

Jonathan.Fenske@dlr.de, https://www.dlr.de/sp
2 Institute of Aerodynamics and Flow Technology

German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Brunswick, Germany
Daniel.Vollmer@dlr.de, https://www.dlr.de/as

Abstract. Modern high-performance computing systems enable larger
numerical simulations than previously possible by utilizing more com-
puting power and a larger degree of parallelization. In order for these
simulations to run efficiently, it is necessary to have a good load balance
among the processes. This paper deals with the problems that occurred
during the load balancing with more computing power than previously
tested within the FlowSimulator framework and their solutions.

Keywords: High–Performance Computing · Performance Analysis · CFD
· Mesh Partitioning

1 Introduction

Recent increases in the availability of computational resources have enabled
larger computational fluid dynamics (CFD) simulations than ever before. How-
ever, such large scale simulations come with new challenges that need to be over-
come to be able to efficiently utilize these resources. Some of these challenges will
be investigated in this paper and additionally FlowSimulator’s current abilities
regarding large scale, highly parallelized simulations will be evaluated.

This paper is structured as follows: Section 2 gives overview of the FlowSimulator
framework. Afterwards, Section 4 discusses problems that arise when running
large scale simulations and proposes respective solutions. These large scale sim-
ulations are more closely examined in Section 5 in the form of strong scaling
benchmark evaluations. This section compares the runtime behavior of the ini-
tial code base and an improved code base with solutions for scalability issues
applied. Furthermore, the section also discusses current limits of FlowSimulator
and the best load balancing method currently available in FlowSimulator. The
paper concludes with a short summary in Section 6.

2 FlowSimulator Framework

FlowSimulator is an environment for parallel flow simulations that has been
developed and maintained by Airbus and DLR since 2005.

https://www.dlr.de/sp
https://www.dlr.de/as


2 Jonathan Fenske and Daniel Vollmer

At the heart of this framework lies the FlowSimulator DataManager (FSDM).
As the name suggests, its main purpose is data management for flow simulations.
Therefore, FSDM’s’ core functionalities are the import and export of mesh data
in several different mesh formats, data distribution with the purpose of ensuring
a good workload balance while minimizing necessary communication between
MPI processes, and geometry and boundary conditions handling. FSDM also pro-
vides a range of other functionalities [11][5] but the details of that will be left
out here. Even though FSDM is implemented in C++, most of its functionalities
are further wrapped in Python using SWIG to simplify its usability.

Other software in FlowSimulator such as flow solvers (e.g. CFD for ONERA,
DLR, and Airbus (CODA) [9], DLR TAU [10], and TRACE) is provided as plugins or
by providing an interface for FSDM. This software can then make use of FSDM’s
capabilities and access the data stored and managed in FSDM.

FlowSimulator’s design is illustrated in Figure 1.

Simulation Control Logic

Python API

Mesh Deformation
. . .

Python API

CSM Solver

Python API

CFD Solver

FlowSimulator DataManager (FSDM)
Python API

MPI HDF5 CGNS . . . ParMETIS

Fig. 1: Components interaction in FlowSimulator: C++ libraries (green), Python
interfaces (blue), and external libraries (gray boxes) [7].

3 Tools

For the investigations of the problems that are discussed in this paper, the profil-
ing tool of the Slurm Workload Manager was used 3. This profiling tool enables
the local collection of energy, filesystem, network, and task data during simu-
lations in periodic intervals. The resulting data can be gathered in a single file
afterwards.

For large scale simulations, this is a resource efficient tool for data analysis
offering low runtime overhead and limited volume of collected performance data.
In particular, the memory consumption data was helpful for investigating the
problems.

3 https://slurm.schedmd.com/hdf5_profile_user_guide.html

https://slurm.schedmd.com/hdf5_profile_user_guide.html


Large, Highly Parallel Simulations with FlowSimulator 3

Moreover, the built-in timing methods of FSDM were used for further per-
formance analysis.

4 Partitioning problems

In order to fully and efficiently utilizing the ever growing computational power
of modern high–performance computing systems for large scale simulations, a
good workload balance is essential. This is achieved by employing partitioning
methods on the mesh data. Even though the mesh data is already distributed
among the MPI processes during the mesh import further partitioning is required
because this initial data distribution is only concerned with avoiding memory
bottlenecks and does not to provide an optimal partitioning.

For this purpose, an implementation of the Recursive Coordinate Bisection
(RCB) method [3] as well as interfaces for the two graph partitioning libraries
ParMETIS [8] and Zoltan [4] are provided within the FlowSimulator framework.
The RCB method is a simple and fast algorithm that recursively bisects the mesh
based on the coordinates of the mesh’s nodes. The graph partitioners however
require a graph representing the mesh. For this reason, FSDM additionally pro-
vides a graph extraction method. The graph can then be partitioned according
to prescribed weights of the graph vertices. Furthermore, these methods also
try to minimize the edge cut resulting in minimal communication between the
MPI processes. Hence, the graph partitioning methods lead to better results than
the RCB method. However, the RCB method is still used to speed up the graph
extraction process and to avoid memory bottlenecks.

When investigating the functionality of FlowSimulator with respect to large
scale simulations, two errors occurred. Both were caused by too much memory
consumption during communication between the MPI processes. The computa-
tional scalability studies that led to these discoveries are described in Section 5.

The first problem was encountered during the graph extraction. There an
out-of-memory error occurred during a call to a method establishing the connec-
tivity of local graph vertices to graph vertices on other MPI processes. This error
was caused by large communication buffers during the exchange of the relevant
data between the MPI processes. Each MPI process stored all data from all other
MPI processes at the same time in its receive buffer. Thus, this problem could be
solved by only storing the data of only one other MPI process in the local receive
buffer at a time.

The other problem emerged during the execution of the RCB method while
the cut data was gathered on each of the MPI processes in order to know how the
mesh will be distributed. Here another out-of-memory error occurred because
the local cut data from all MPI processes was gathered on the root process which
distributed the resulting arrays. Therefore, each MPI process stored its local cut
data in arrays that are large enough to contain the cut data from all MPI pro-
cesses. The root process stored all of these arrays in its receive buffer at the same
time which led to the out-of-memory error. It was possible to avoid this error by
using MPI_Allreduce for the cut data arrays instead [5].



4 Jonathan Fenske and Daniel Vollmer

5 Results

In this section, the results from the computational studies that were conducted
with the goal of evaluating and improving the functionality of FlowSimulator
and especially FSDM regarding large scale and highly parallelized simulations are
presented. This includes the computational studies that inspired the improve-
ments mentioned in Section 4 and a comparison to an FSDM version that already
contains these improvements.

5.1 Test Case

The shown test case is based on the high–lift configuration of the Common
Research Model (CRM-HL) from NASA’s 4th High Lift Prediction Workshop [1].
In particular, the computational results presented in the following paragraphs
were obtained with the largest mesh of the 103–ANSA–Unstructured–hiA–Yplus1
family (see Figure 2). This mesh consists of about 723 million cells and 629
million nodes. Hence, it is large enough to be partitioned among a very large
number of MPI processes and to still provide meaningful results and performance
improvements in large scale simulations.

Fig. 2: The CRM-HL grid used for the presented computational studies [5].

5.2 Computational setup

The scalability studies were conducted on DLR’s high–performance computing
system CARO. CARO consists of 1, 364 compute nodes, each composed of two
AMD EPYC 7702 CPUs and 256 GB DDR4 RAM except for 20 compute nodes
with 1 TB DDR4 RAM. These CPUs comprise 64 CPU cores that are organized
in 16 dies with shared L3 caches [2]. The frequency was fixed to the CPU’s base
frequency of 2 GHz 4. The used FSDM versions were the development versions
stages from 07/2022 and 03/2023. The used CODA version was the development
version from 03/2023. Both FSDM and CODA were compiled with Open MPI 4.1.1,
using the compiler flags -O3 and –int-size=64 and the compiler was GCC 10.3.0.

4 https://www.amd.com/en/product/8766

https://www.amd.com/en/product/8766


Large, Highly Parallel Simulations with FlowSimulator 5

5.3 Computational studies

The computational studies were conducted as strong scaling benchmarks, i.e.,
the experiments were first carried out with the minimum number of necessary
compute nodes on CARO and then the number of used compute nodes is sub-
sequently doubled while keeping the problem size constant. First the CRM-HL
mesh was imported into FSDM. During this mesh import the mesh data was
already distributed among the MPI processes to avoid bottlenecks during this
phase. This initial distribution, however, still necessitated further partitioning
in order to have a good workload balance and minimized communication between
the processes. To do this, the mesh data was prepartitioned with FSDM’s RCB
method and subsequently a graph representing the mesh was extracted. Finally,
the mesh data is repartitioned using either ParMETIS’ ParMETIS_V3_PartKway
k-way graph partitioning method [12] or Zoltan’s Parallel Hypergraph Partition-
ing (PHG) method [6]. After this, a test run with the next generation CFD solver
CODA is optionally performed to assess the quality of the partitioning. Since CODA
is capable of multi-threading, the investigations were first done with 4 threads
per MPI process to exploit the shared L3 caches in CARO’s architecture.

Partitioning with ParMETIS (4 threads per MPI process) First the
experiments were conducted with ParMETIS leading to multiple out-of-memory
errors as described in Section 4 and showcased in Figure 3. It can be seen that
employing FSDM’s graph extraction method was not possible for 16,384 or more
cores whereas FSDM’s RCB method ran into out-of-memory errors for 65,536 or
more cores.

After applying the changes explained in Section 4, the benchmarks were
performed again and corresponding results are displayed in Figure 3 as well.
With these changes it is now possible to run simulations with at least 131,072
cores on CARO when using 4 threads per process. Furthermore, there is a slight
runtime decrease for FSDM’s RCB method (see also [5]). Additionally, the load
imbalance factor is consistently within the desired tolerance of 1.05.

512 2048 8192 32768 131072

ncores

100

101

102

103

104

R
u

n
ti

m
e

[s
]

RCB

Graph Extraction

ParMETIS

512 2048 8192 32768 131072

ncores

100

101

102

103

104

R
u

n
ti

m
e

[s
]

RCB

Graph Extraction

ParMETIS

Fig. 3: Comparison of partitioning runtime in the old (left) and improved (right)
FlowSimulator versions while scaling from 512 cores to 131, 072 cores, using 4
threads per MPI process. Missing data points represent failed runs.



6 Jonathan Fenske and Daniel Vollmer

The resulting partitioning was then used for CODA to see how it deals with this
high number of processes. For this purpose, not a complete simulation was run
but just 100 iterations to see if CODA can deal with so many MPI processes. The
simulations were conducted using a finite volume discretization, the linearized
implicit Euler method for time integration and the Jacobi method as the iterative
solver. The outcome of this strong scaling benchmark is shown in Figure 4. This
figure illustrates a comparison of the total runtimes, the runtime of the iterative
solver, and the preprocessing runtime. Preprocessing aggregates everything that
happens before the iterative solver.

1024 2048 8192 32768 131072

ncores

100

101

102

103
R

u
n
ti

m
e

[m
in

]

Preprocessing

Iterate

Total

Fig. 4: Strong scaling benchmark of CODA scaling from 1, 024 cores to 131, 072
cores and using 4 threads per MPI process.

It should be noted that in contrast to FSDM itself CODA does not run with this
test case for 4 or less compute nodes on CARO due to out-of-memory errors.
However, this benchmark demonstrates that CODA is able to run with 131,072
or more cores, almost utilizing the entire CARO cluster. The relative parallel
efficiency, i.e., comparing the runtime with the least possible amount of cores
with the runtime of the largest executed test run through the formula

Erel =
Tn1

n2

n1
· Tn2

=
T1,024

128 · T131,072
,

where E is the relative parallel efficiency and Tn is the runtime of the iterative
solver for n cores, is approximately 0.7.

Furthermore, Figure 4 also shows that, while the iterative solver takes less
and less runtime with each increase in the number of cores, the preprocessing
runtime is only reduced until 8,192 cores and increases afterwards.

ParMETIS vs Zoltan In order to see whether there is an advantage in using
Zoltan rather than ParMETIS, the same tests were conducted again with Zoltan
employing the same workflow. Figure 5 shows a runtime comparison of ParMETIS
and Zoltan. Since the same prepartitioning and graph extraction routines were
used before both graph partitioners, the runtimes of the prepartitioning and
graph extraction routines were the same and are thus excluded here.



Large, Highly Parallel Simulations with FlowSimulator 7

512 1024 4096 16384 65536

ncores

10−1

100

101

102

R
u

n
ti

m
e

[m
in

]

ParMETIS

Zoltan

Fig. 5: Comparison of partitioning runtime of ParMETIS’ ParMETIS_V3_PartKway
and Zoltan’s PHG algorithms while scaling from 512 cores to 65, 536 cores, using
4 threads per MPI process. Missing data points represent failed runs.

It can be observed that Zoltan ran into out-of-memory errors when using
8,192 or less cores. Furthermore, in cases where Zoltan worked, it was con-
siderably slower than ParMETIS. Thus, for the current implementation of the
interfaces for ParMETIS and Zoltan within the FlowSimulator framework it
can be recommended to use ParMETIS.

Partitioning with ParMETIS (pure MPI) Even though it is not the op-
timal configuration, the tests were performed again with pure MPI to have an
indication how well FSDM can deal with an even greater number of partitions.
As shown in Figure 6, ParMETIS fails for 32,768 or more cores whereas FSDM’s
RCB method fails for 65,536 or more cores. These failed runs were again caused
by out-of-memory errors. Further investigations have shown that these errors
also occur for much smaller meshes with the same number of MPI processes.
This indicates that the reason for the out-of-memory errors is the number of
MPI processes.

512 2048 8192 32768 131072

ncores

100

101

102

103

104

R
u

n
ti

m
e

[s
]

RCB

Graph Extraction

ParMETIS

Fig. 6: Comparison of partitioning runtime while scaling from 512 cores to
131, 072 cores, using pure MPI. Missing data points represent failed runs.



8 Jonathan Fenske and Daniel Vollmer

6 Conclusion

In this paper new challenges and problems arising with the opportunity to uti-
lize more computational power than before were investigated. These problems
prevented FlowSimulator from running large scale simulations with more than
a few thousand MPI processes. However, new developments within FSDM now en-
able simulations with at least 32,768 MPI processes on 131,072 cores, potentially
even on the entire CARO cluster, and through recent FSDM releases they have
been made available to the entire FlowSimulator community. It became clear
that optimized communication patterns and memory management are becoming
even more crucial when trying to run large scale simulations.

It was further demonstrated that the usage of ParMETIS should be preferred
to using Zoltan within the FlowSimulator framework in order to run highly
parallelized applications efficiently.

Running simulations with even more MPI processes poses further challenges
as the currently implemented partitioning methods still run into out-of-memory
errors. Hence, further improvements will have to be made in order to enable
simulations with an even greater degree of parallelization, possibly by using
hierarchical partitioning, i.e., first partitioning the mesh data among the compute
nodes and then within the compute nodes for example.

Since such a high degree of parallelization is now possible, more investi-
gations regarding the parallel efficiency of CODA or other CFD solvers within
FlowSimulator for large scale and highly parallelized simulations can now be
subject of further study.

Acknowledgments. The authors thank BETA CAE Systems SA for providing the
CRM mesh.

This research was funded in parts via the DLR–internal project HighPoint.
This research used resources of the DLR high-performance computing cluster CARO

in Göttingen.
CODA is the computational fluid dynamics (CFD) software being developed as part

of a collaboration between the French Aerospace Lab ONERA, the German Aerospace
Center (DLR), Airbus, and their European research partners. CODA is jointly owned by
ONERA, DLR, and Airbus.

References

1. 4th AIAA CFD High Lift Prediction Workshop (HLPW-4) (2022), https://
hiliftpw.larc.nasa.gov/index-workshop4.html

2. CARO (2024), https://gwdg.de/hpc/systems/caro/
3. Berger, M.J., Bokhari, S.H.: A partitioning strategy for nonuniform problems on

multiprocessors. IEEE Transactions on Computers 36(05), 570–580 (1987)
4. Boman, E.G., Catalyurek, U.V., Chevalier, C., Devine, K.D.: The Zoltan and Isor-

ropia parallel toolkits for combinatorial scientific computing: Partitioning, order-
ing, and coloring. Scientific Programming 20(2), 129–150 (2012)

https://hiliftpw.larc.nasa.gov/index-workshop4.html
https://hiliftpw.larc.nasa.gov/index-workshop4.html
https://gwdg.de/hpc/systems/caro/


Large, Highly Parallel Simulations with FlowSimulator 9

5. Cristofaro, M., Fenske, J.A., Huismann, I., Rempke, A., Reimer, L.: Accelerating
the flowsimulator: improvements in fsi simulations for the hpc exploitation at in-
dustrial level. In: 10th International Conference on Computational Methods for
Coupled Problems in Science and Engineering (COUPLED PROBLEMS 2023)
(August 2023), https://elib.dlr.de/196157/

6. Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Catalyurek, U.V.: Par-
allel hypergraph partitioning for scientific computing. IEEE (2006)

7. Huismann, I., Reimer, L., Strobl, S., Eichstädt, J., Tschüter, R., Rempke, A.,
Einarsson, G.: Accelerating the FlowSimulator: Profiling and scalability analysis
of an industrial-grade CFD-CSM toolchain. In: 9th edition of the International
Conference on Computational Methods for Coupled Problems in Science and En-
gineering (COUPLED PROBLEMS 2021). https://doi.org/10.23967/coupled.
2021.008

8. Karypis, G.: METIS and ParMETIS pp. 1117–1124 (2011). https://doi.org/10.
1007/978-0-387-09766-4_500

9. Leicht, T., Jägersküpper, J., Vollmer, D., Schwöppe, A., Hartmann, R., Fiedler, J.,
Schlauch, T.: DLR-project Digital-X – next generation CFD solver ’Flucs’ (2016)

10. Reimer, L.: The FlowSimulator – a software framework for CFD-related multidis-
ciplinary simulations. In: NAFEMS European Conference: Computational Fluid
Dynamics (CFD) – Beyond the Solve (2015)

11. Reimer, L., Heinrich, R., Geisbauer, S., Leicht, T., Görtz, S., Ritter, M.R., Krum-
bein, A.: Virtual aircraft technology integration platform: Ingredients for multidis-
ciplinary simulation and virtual flight testing. In: AIAA SciTech Forum (Januar
2021), https://elib.dlr.de/140244/

12. Schloegel, K., Karypis, G., Kumar, V.: Parallel multilevel algorithms for multi-
constraint graph partitioning. In: Bode, A., Ludwig, T., Karl, W., Wismüller, R.
(eds.) Euro-Par 2000 Parallel Processing. pp. 296–310. Springer Berlin Heidelberg,
Berlin, Heidelberg (2000)

https://elib.dlr.de/196157/
https://doi.org/10.23967/coupled.2021.008
https://doi.org/10.23967/coupled.2021.008
https://doi.org/10.23967/coupled.2021.008
https://doi.org/10.23967/coupled.2021.008
https://doi.org/10.1007/978-0-387-09766-4_500
https://doi.org/10.1007/978-0-387-09766-4_500
https://doi.org/10.1007/978-0-387-09766-4_500
https://doi.org/10.1007/978-0-387-09766-4_500
https://elib.dlr.de/140244/

	Performance Analysis and Improvement of FSDM for Large, Highly Parallel Simulations

