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Abstract: A key necessity for the safe and autonomous flight of Unmanned Aircraft Systems (UAS) is
their reliable perception of the environment, for example, to assess the safety of a landing site. For
visual perception, Machine Learning (ML) provides state-of-the-art results in terms of performance,
but the path to aviation certification has yet to be determined as current regulation and standard
documents are not applicable to ML-based components due to their data-defined properties. However,
the European Union Aviation Safety Agency (EASA) published the first usable guidance documents
that take ML-specific challenges, such as data management and learning assurance, into account.
In this paper, an important concept in this context is addressed, namely the Operational Design
Domain (ODD) that defines the limitations under which a given ML-based system is designed to
operate and function correctly. We investigated whether synthetic data can be used to complement a
real-world training dataset which does not cover the whole ODD of an ML-based system component
for visual object detection. The use-case in focus is the detection of humans on the ground to assess
the safety of landing sites. Synthetic data are generated using the methods proposed in the EASA
documents, namely augmentations, stitching and simulation environments. These data are used
to augment a real-world dataset to increase ODD coverage during the training of Faster R-CNN
object detection models. Our results give insights into the generation techniques and usefulness of
synthetic data in the context of increasing ODD coverage. They indicate that the different types of
synthetic images vary in their suitability but that augmentations seem to be particularly promising
when there is not enough real-world data to cover the whole ODD. By doing so, our results contribute
towards the adoption of ML technology in aviation and the reduction of data requirements for ML
perception systems.

Keywords: operational design domain (ODD); environment perception; object detection; machine
learning; synthetic images; game engine; unmanned aerial vehicle (UAV); unmanned aerial
system (UAS)

1. Introduction

For Unmanned Aircraft Systems (UAS) to reach high levels of autonomy, they need
exceptional environment perception capabilities. On the one hand, to perform their nominal
mission independently and safely, e.g., to detect obstacles or other aircraft to avoid, to
detect dropping zones for cargo delivery or to detect objects to be observed or monitored.
On the other hand, environment perception is crucial for the autonomous execution of
contingency and emergency procedures, e.g., to assess unprepared emergency landing
sites after a critical system failure. Artificial Intelligence (AI) and more precise Machine
Learning (ML) currently produce state-of-the-art results in many semantic environment
perception tasks, and therefore, are a key enabling technology for UAS to reach these high
levels of autonomy.

However, in aviation, high safety and assurance requirements pose a major challenge
for the integration of ML-based systems. The development standards and assurance
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techniques that have been established for decades simply do not allow the behavior of a
system to be defined by data and by models whose internal workings are opaque to humans.

The European Aviation Safety Agency (EASA) has recognized this problem and is
currently working on concepts, guidelines and standards that shall help to integrate ML into
avionic systems. In one of their recent publications, the EASA introduces a trustworthiness
analysis that shall be carried out first during the development process of an ML system [1].
The first step during this analysis is the identification of the operational environment
in which the ML-based system will be operated. Next, the identified parameters of this
operational environment shall be formally captured within an Operational Design Domain
(ODD). During training, the ODD shall be used for learning assurance by assessing whether
the data used for training are complete with respect to the ODD. Here, completeness means
that the data “sufficiently [...] covers the entire space of the operational design domain of
the intended application” [1]. Unfortunately, in aviation, it is often difficult to collect a large
amount of training data with a high degree of completeness, especially for environment
perception tasks. This is because recording a large amount of real flight data is very
expensive and, in certain cases, too dangerous. For example, we must consider close
encounters with other aircraft or flying nearby high voltage power-lines or forest fires.

EASA also mentions ways to circumvent this problem, one of them being the use
of synthetic training data. It is known that training on synthetically generated data can
improve the general performance of visual ML models slightly in some use-cases [2–4].
Improvements have also been shown for rare classes where little data are available [5].
However, usually there is only a very slight improvement in model performance and, to
the best of our knowledge, if and how synthetic data can help to improve the coverage
of an ODD when not enough real-world data are available has not been studied. Since
there are usually not enough real-world data to cover the whole ODD and because of the
problems explained above, it is an important but open question whether the different types
of synthetic data presented by EASA are really suitable for increasing the ODD coverage
of an ML model. The answer to that question will have a huge impact on the difficulty of
deploying ML models in aviation.

In this work, we build upon these concepts and examine if and how synthetic data can
be used to increase the completeness of a dataset with respect to the ODD. Our examination
is based on an ML-based detection system that shall detect humans on the ground. For
example, such a system can be used to assess the clearance of a potential contingency
landing site. For our evaluation, we focus on one of the central ODD parameters for such
a detection task, namely the flight altitude. In correspondence with the available dataset,
it is assumed that the UAS is operated over a grassy area at an altitude of 4–103 m above
the ground. Further, it is assumed that real-world images are only available for a range of
altitude from 4 to 70 m. Therefore, synthetic images that represent an altitude of 70–103 m
are used to increase the coverage of this ODD dimension. This altitude is chosen for the
purpose of this research and may change for other practical applications in accordance
with given boundary conditions. We generate data for different kinds of synthetic data
mentioned by EASA, mix them into the training set and evaluate their influence on the
performance of a state-of-the-art model for object detection using a real-world test dataset.
We present the evaluation results and discuss the benefits, challenges and open problems of
using synthetic training data for increasing the coverage of the ODD in this UAS use-case.
To the best of our knowledge, this is the first paper to compare and evaluate the EASA
classes of synthetic data in the context of ODD.

Our main contributions are as follows. On the one hand, we give a condensed overview
of the new EASA documents regarding the introduction of ML in aviation, with a special
focus on ODD and synthetic data. We relate both topics to their use in aviation. On the
other hand, we present approaches to generating different types of synthetic data according
to the EASA, name the problems and evaluate the usefulness of them for the use-case of
ODD coverage for human detection.
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2. Related Work

Data-driven approaches like Machine Learning rely on large training datasets that
are both representative and complete—properties that are often hard to achieve. Some
papers even find that “the performance on vision tasks increases logarithmically based
on volume of training data size” [6]. One active field of research that promises to reduce
the amount of real-world data needed is the use of synthetic data. Synthetic data can be
generated in different ways that range from basic geometric transformations of real images
to the extraction of rendered images from game engines. An in-depth introduction into
synthetic data and their applications can be found, e.g., in [7]. While basic transformations
like changing contrast and brightness, applying geometric transformation, etc., that are
described, e.g., in [8], are used in most ML training procedures, the following will focus on
more advanced types of synthetic images.

In the automotive industry, synthetic data have been used to detect other vehicles or
pedestrians using visual simulation environments [3,9–11] where the camera perspective
is close to the ground. In contrast to this, in aviation, the camera perspective is birds-eye.
However, the tools used to generate synthetic data are similar and synthetic data have been
used to train Machine Learning models for human detection [12], car detection [13], animal
detection [14] and semantic segmentation [2].

Results generally show that synthetic data alone is not enough to train an ML model
that is able to generalize to real-world data because of the so-called domain shift, see,
e.g., [4,9,11,15]. However, when used in combination with real-world data, synthetic
data may be able to improve the overall model performance [3,9,11,14–16] as well as its
performance on rare classes [5]. Furthermore, there is a large body of work on reducing
performance drops from all forms of domain shift called domain adaption where promising
results have been achieved. For a survey paper see [17].

Overall, the impact of the domain shift varies and remains hard to predict for different
domains and use-cases. In this paper, we investigated whether synthetic data can be used
to fill gaps in the intended operational design domain that state the limits of the operation.

3. AI in Aviation

In this section, the current efforts to introduce ML to avionic systems are presented.
This is followed by a focus on the different classes of synthetic data that can be used to
train an ML system when there are not enough real-world data available.

3.1. AI Assurance in Aviation

In 2020, the European Union Aviation Safety Agency (EASA) published the AI Roadmap [18],
which presents a foundation for the future usage of Artificial Intelligence (AI) in aviation, in
particular, Machine Learning (ML). They observe that “traditional development assurance
frameworks are not adapted to machine learning” [18] and identify four “Trustworthy AI
Building Blocks” which should increase trust in ML components and ultimately enable
their use in aviation. These blocks are called Trustworthiness Analysis, Learning Assurance,
Explainabilty and Safety Risk Mitigation. The Trustworthiness Analysis block primarily
focuses on ethical issues and encompasses the seven gears of the European Union ethical
guidelines, namely “accountability, technical robustness and safety, oversight, privacy
and data governance, non-discrimination and fairness, transparency, societal and envi-
ronmental well-being”. The Learning Assurance block is based on the observation that
existing development processes are not suitable for ML. Therefore, it concludes that a new
development assurance process has to be implemented which shifts its focus to data cor-
rectness and completeness, novel verification methods, etc. The process is introduced and
explained in subsequently published documents [19,20]. Explainability is a “human-centric”
concept and deals with the problem that artificial neural networks are black-box models
and humans cannot comprehend the internal processes. This block is intended to soften
this and aims to provide explanations that are understandable to humans. In the Safety
Risk Mitigation block, it is assumed that the ML black box cannot always be opened to
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a sufficient extent, and that, therefore, monitoring and risk mitigations are needed. This
can be carried out, for example, with conventional methods, such as object tracking in the
object recognition use-case, or by monitoring certain parameters and thresholds [20]. These
four blocks are intended to form the basis of the analysis and certification of AI systems.
They are refined in the subsequently published documents ”Concepts of Design Assurance
for Neural Networks” (CoDANN) 1 and 2 [19,20] and the theoretical backgrounds of the
problems are explained. A more in-depth review of these document can be found in,
e.g., [21].

Furthermore, in 2023, the EASA published a document [22] that first defines concrete
objectives that should be fulfilled to develop trustworthy AI. In this context, the EASA
adopts the terms Operational Domain (OD) and Operational Design Domain (ODD) from the
automotive domain. For the automotive domain, the formal definition of ODD is given by
SAE J3016 [23]. For the aviation domain, the concept of OD is newly introduced: “Operating
conditions under which a given AI-based system is specifically designed to function as
intended, in line with the defined ConOps, including but not limited to environmental,
geographical, and/or time-of-day restrictions” [22]. The concept of operations (ConOps) is of
central importance within aviation, specifically as part of the EASA specific category [24,25].
It serves as an informal document and a basis for operational risk assessments. In addition
to this, the EASA defines the ODD as follows: “The ODD defines the set of operating
parameters, together with the range and distribution within which the AI/ML constituent
is designed to operate, and as such, will only operate nominally when the parameters
described within the ODD are satisfied. The ODD also considers dependencies between
operating parameters in order to refine the ranges between these parameters when appro-
priate; in other words, the range(s) for one or several operating parameters could depend on
the value or range of another parameter” [22]. Note that the EASA differentiates between
the system level (OD) and the AI/ML constituent level (ODD).

Hence, an ODD captures the nominal input space that the developed ML system
will be faced with during operation and effectively limits the foreseeable input space of
a given ML-based system within its designated use-case scenarios. By defining the ODD,
the developer and the certification authorities have created a defined input space in which
the model has to be tested and has to work as expected. Furthermore, when the input to
the ML component is monitored during operation, the system can decide whether the ML
component is designed to operate on the input data or whether its output cannot be trusted
and therefore should not be used. This ultimately increases the safety of the overall system.

3.2. Synthetic Training Data

The development of an ML application often requires a lot of data for training, val-
idation and testing. For some applications, however, there are not enough real-world
data available. This is especially true in aviation, where the operation of UAS to generate
large amounts of data is expensive and, for some situations, dangerous or even impossible.
Synthetic data promise to compensate this lack of data. In case of missing data to cover
the ODD, the EASA proposes to use data augmentation or even synthetic data to fill the
gaps [22]. In the report Concepts of Design Assurance for Neural Networks (CoDANN) [19],
the EASA gives more details about the work with synthetic data. First, synthetic data are
defined as “any data that was computer-generated or any data from the target sensors that
underwent a processing step that is not included in the target operational system” [19].
Then, synthetic data are classified into three different classes, distinguished by the way
of creation.

Class-1 contains synthetic data created by “basic transformations of real data” [19].
This includes geometric transformations like translations, rotations, scaling, as well as
transformations of image attributes like brightness and noise. These transformations are
commonly known as data augmentations.

Class-2 contains synthetic data created using “more advanced transformations of real
data” [19]. This class is characterised by not just transforming the existing pixels but e.g.,
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recomposing multiple images. For example, pictures of real objects could be pasted on
other real background pictures.

Class-3 contains “fully or mostly synthetic data” generated without the use of real
data [19]. Data based on 3D graphics rendering fall into this class. To create Class-3
synthetic data, computer game engines or other rendering tools can be used.

4. Data

In this section, the different kinds of synthetic data used in the experiments as well as
the processes to generate the data are described.

4.1. Real Training and Evaluation Data

As a real-world dataset, the publicly available PeopleOnGrass dataset [26] is used. The
dataset shows people on mostly grassy areas from various angles and altitudes between
4 and 103 m. It contains 13,713 objects in 2900 images. The images are taken with a
resolution of 3840 × 2150 px and also come with meta data like GPS location as well as
UAS altitude and attitude.

In this work, altitude is considered as the ODD parameter for which the coverage
should be increased. Usually, an ODD has many parameters whose consideration would
increase the complexity drastically. This simplification is made to be able to investigate
the influence of the addition of the synthetic data in isolation. To conduct the experiments,
this dataset is split and images taken at an altitude lower than 70 m are considered as
suitable for training. The images taken at an altitude of more than 70 m and from birds-eye
perspective (70◦–90◦ [26]) are considered as the ODD space which should be covered with
synthetic images. The corresponding real images will only be used for testing the models.
The dataset used for training will be called Xlower. It contains 1924 images. The dataset
containing images at an altitude of more than 70 m and from birds-eye perspective will
only be used for testing and will be called Xhigher. It contains 588 images. Furthermore,
Xlower is split into a training, a validation and a test dataset, called Xlower,train, Xlower,val
and Xlower,test which contain 1154, 385 and 385 images, respectively. The complete splitting
process is visualized in Figure 1. Example images are shown in Figure 2.

Figure 1. Splitting of the PeopleOnGrass dataset into training, validation and testing datasets
according to the experimental ODD design.
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(a)

(b)
Figure 2. Examples of the real-world images from the PeopleOnGrass dataset [26]. Images are
cropped to the dimensions needed for the used Machine Learning model. (a) Real images from
the PeopleOnGrass dataset [26] taken at an altitude of lower than 70 m. (b) Real images from the
PeopleOnGrass dataset [26] taken at an altitude of higher than 70 m and with a birds-eye perspective.

4.2. Class-1 Synthetic Training Data

Since we use different augmentation techniques during training by default, only
scaling, cropping and the mixing together of image patches, similar to CutMix [27] and
Mosaic [28], are used to create Class-1 data. The overall goal is to downscale and combine
the images taken at an altitude of less then 70 m to make them look as if they were recorded
at an altitude of more than 70 m.

In order to scale the images with acquisition heights of less than 70 m, the first step
is to calculate suitable scaling factors. To do so, the relative bounding box areas in the
real-world images for heights between 70 and 103 m are evaluated. The upper and lower
quartiles are used as references for the scaling of the Class-1 training data. For each image
taken at altitudes below 70 m, a scaling factor is calculated for which the bounding box
areas of all objects would be within the desired range after scaling. If any dimension of
the scaled image is smaller than 350 px, the image is discarded as it becomes too pixelated.
Since the images need to have at least 800 × 800 px for the training and only 346 scaled
images fulfill this requirement, different images are combined in the last step. To do so, a
script randomly chooses images and merges them together to create a single 800 × 800 px
image. Different to CutMix [27] or Mosaic [28] images, we do not use a specific ratio to
cut the images. Instead, the images are cut at random positions to ensure an even bigger
variance in visual appearance. Furthermore, we do not fix the number of images that are
put together. Instead, one to four images are put together into one image depending on
their size. As the bounding boxes of the original images are known, the labels of the final
Class-1 images can be calculated automatically. Figure 3 shows the general procedure used
to create the Class-1 training data. In total, 2800 Class-1 training images are created.

The advantage of Class-1 synthetic images is that they resemble the real-world images
very closely, as the synthetic images are generated by transforming real-world images
using augmentations. That makes the synthetic images look very realistic. However, the
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need for the real-world images is also a strong limitation of this approach. As only the
existing real-world images are transformed, the variation that can be introduced is limited.
Furthermore, this approach can only be applied if real-world data are available that can be
transformed so that it represents the missing data.

Figure 3. Process for generating Class-1 synthetic training images.

4.3. Class-2 Synthetic Training Data

To generate Class-2 synthetic images, human images from a birds-eye perspective,
called foreground images, are patched onto real-world background images from a birds-eye
perspective. For the creation, two real-world aerial image datasets are used. On the one
hand, a dataset that was acquired from the DLR research project Drones4Good is used. This
dataset contains 314 images with a total number of 33,839 people. On the other hand, the
Heridal dataset [29] is used. This contains over 1500 labeled aerial photographs of people
in different environments like forests, parks, snowy landscapes, etc.

For the creation of the foreground images, only the internal DLR dataset is used. Using
GIMP [30], 52 of the people pictured in various positions like standing, sitting and walking
are cut out. To ensure an even bigger variety, these patches are augmented by rotating
them 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ clockwise. Additionally, imgaug [31] is used for further
augmentations like flipping the images horizontally and vertically, as well as applying
GammaContrast. For the background images, both datasets are used. Two main criteria are
applied to decide if an image is suitable. Firstly, the image should not show any humans,
and secondly, the images should show different landscapes like forests, lakes, sidewalks,
etc. Similar to the foreground images, the background images are augmented using imgaug
by applying flips, GammaContrast and SigmoidContrast.

In the last step, a script is implemented to randomly stitch these images together. The
resulting training images show between 0 and 15 people per image and the corresponding
labels are generated automatically as the stitching positions are known by the script. The
size of the objects in the images are fitted to the size of the bounding boxes in the real-world
data as described for the Class-1 images above. The whole process is visually represented
in Figure 4. Again, 2800 Class-2 images are created to represent images taken from heights
between 70 and 103 m.

Figure 4. Process for generating Class-2 synthetic training images.

An advantage of Class-2 synthetic images is that they allow us to introduce more
variation than Class-1 synthetic images. For example, using the stitching approach, it is
possible to create images with humans in different geographical locations or in different
poses. However, this approach still needs real-world images that contain this variation.
In the given examples, background images of the desired geographical region are needed
or foreground patches of humans in the specified poses. A further disadvantage is that
the generated images may show artefacts like unrealistic sharp edges from the stitched
elements. Furthermore, the stitched humans do not have shadows. Without specifying
regions where the objects are allowed to be placed for each image, it is further possible that
the objects are stitched to unrealistic locations, e.g., a human standing on water. It remains
unclear, however, how important these factors are and how large their influence is, if any.
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4.4. Class-3 Synthetic Training Data

To generate Class-3 synthetic images, we build on the previous work by [12] which
includes a tool chain to generate synthetic images for human detection from the UAS
perspective using a game engine. It is based on the Unreal Engine [32] 4, which is used
to create and simulate virtual environments in which virtual humans can be placed. The
synthetic world and synthetic humans are downloaded from the Unreal Engine Marketplace.
To extract images, the tool AirSim [33] is used. AirSim is a plugin for the Unreal Engine 4
to simulate drone flights and car driving. It allows you to mount different virtual sensors
like a camera and lidar to a drone or a car. The virtual sensors’ data can be accessed via a
dedicated API. AirSim also enables the user to extract segmentation images which classify
the shown pixels to specific object classes. These are used to generate the bounding boxes
for the objects of interest.

As [12] mentions problems with the label generation of objects that are occluded,
which ultimately lead to bad object detection results, we remove most trees and water areas
which could lead to humans getting occluded and thus being only partially or not visible
in the image. We also disable some gravity settings within the Unreal Engine, as the virtual
humans often fall and lay on the ground when they are placed on an inclined plane which
would lead to a significant class imbalance. After placing the humans automatically in the
environment using the tool chain, it is used to extract images with the same resolution as
the real images and the field-of-view as taken from the datasheet of the camera. The images
are taken from an altitude of 70–103 m and a camera angle of 70◦–90◦ degrees, i.e., birds-eye
perspective. Figure 5 shows the simplified process to generate the Class-3 synthetic images
and Figure 6c shows examples of the extracted images.

Figure 5. Process for generating Class-3 synthetic training images.

The main advantage of Class-3 synthetic images is that they allow you to introduce
a huge amount of variation without needing real-world images. In theory, by using a
simulation environment, images of almost all situations can be generated. However, as
the situation is only generated in a simulation environment, the images look less realistic
than Class-1 and Class-2 synthetic images and may be discriminated from real-world
images quite easily. This may be a problem for the ML model as described in Section 3.2.
Furthermore, as mentioned in [12], there may also be problems with the correct placement
of objects and resulting occlusions when the generation of the situation is automated.

(a)

Figure 6. Cont.
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(b)

(c)
Figure 6. Examples of the generated synthetic images for each class. (a) Class-1 synthetic images
generated by scaling, cropping and mixing image patches. (b) Class-2 synthetic images generated
by stitching human patches into background images. (c) Class-3 synthetic images generated using a
game-engine.

5. Experiments and Results

To evaluate whether synthetic images with altitude ranges not covered by the real-
world data improve the model performance, a Faster-RCNN with a ResNet-50-FPN back-
bone pre-trained on COCO [34] is trained. It is based on [35] and its publicly available
torchvision implementation [36] is used. As the available real-world images are relatively
large and the humans are proportionally very small, the images are cropped to 800 × 800 px.
During training, random crops are extracted from the images. During evaluation, center
crops are generated to always evaluate on the same image crops.

To make the trained model more robust and to mitigate some potential differences in
low-level image metrics between the different kinds of synthetic and the real-world images,
the standard augmentation strategies brightness and contrast change, Gauss and ISO noise,
as well as blur, provided by the library Albumentations [37], are used. Furthermore, random
horizontal flipping is applied to increase the size of the training set.

Using these augmentations, the model is trained with a batch-size of four images for a
maximum of 100 epochs to make sure that the model is able to converge to a good solution.
To reduce the computational load, early stopping with a patience of five is used to stop the
training when the model converged before finishing 100 epochs. As optimizer, Adam [38],
with a learning rate of 0.00001, is used.

To evaluate the models, the widely used metric Average Precision (AP) at an Intersection
over Union (IoU) threshold of 0.5 (AP@[IoU = 0.5]) from the COCO evaluation [34] is used.
It measures the accuracy of the detections of the model by comparing the overlap between
predicted bounding boxes and ground truth boxes. In this metric, the predicted bounding
box is considered accurate if it overlaps with the ground truth box by at least 50%. This
metric provides a single score to evaluate the overall performance of an object detection
model by considering precision-recall curves, where precision is the ratio of true positive
detections to the total number of detections, and recall is the ratio of true positive detections
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to the total number of ground truth objects. To compensate for the randomness in the
training process, the model is trained three different times with the given parameters and
the average of the AP of each trained model is taken. When not explicitly stated otherwise,
the given results are always averaged over three training runs.

As we only evaluate the ML component to investigate the influence of the ODD
coverage, we consider the described ML evaluation metrics. We note, however, that when
looking at the performance of the whole aircraft system, these metrics would have to be
incorporated into more high-level metrics at the aircraft system level, which can provide
evidence for the system’s performance given the specific parameters of the aircraft.

To be able to evaluate whether the amount of the synthetic data added to increase the
ODD coverage has an influence on the model performance, the experiments are also run
with different amounts of synthetic images. The sizes are indicated using the field “Fraction
of added synthetic data” in the evaluation Tables 1 and 2. For example, as Xlower,train
contains 1154 images, a fraction of added synthetic data of 0.1 means that 115 synthetic
images are mixed into the real training dataset to increase ODD coverage. The same
fraction is added to the validation set used for early stopping. For comparison, a model
trained without added synthetic images is shown as a baseline. All models are trained
with the parameters given above. Figure 7 shows a simplified flowchart of the training and
evaluation process.

Figure 7. Simplified flowchart of the training and evaluation process used in this work.

Table 1. AP@[IoU = 0.5] of the models on the real-world images captured at an altitude higher than
70 m. Results are averaged over 3 training runs. The bold number marks the best overall result.

Fraction of Added Synthetic Data
Training Dataset 0.1 0.25 0.5 1.0 1.5

Real (baseline) —————————————— 0.27 ——————————————
Real + Class-1 0.39 0.38 0.38 0.39 0.44
Real + Class-2 0.29 0.25 0.25 0.24 0.25
Real + Class-3 0.28 0.27 0.26 0.27 0.25

Table 2. AP@[IoU = 0.5] of the models on the real-world test images captured at an altitude lower
than 70 m. Results are averaged over 3 training runs. The bold number marks the best overall result.

Fraction of Added Synthetic Data
Training Dataset 0.1 0.25 0.5 1.0 1.5

Real (baseline) —————————————— 0.56 ——————————————
Real + Class-1 0.57 0.57 0.56 0.57 0.58
Real + Class-2 0.54 0.56 0.55 0.55 0.54
Real + Class-3 0.53 0.55 0.57 0.55 0.55

Table 1 shows the AP@[IoU = 0.5] on the test set Xhigher, i.e., the images from the
PeopleOnGrass dataset taken at an altitude higher than 70 m and from a birds-eye per-
spective. A graphical representation of the results is shown in Figure 8. The results show
that the addition of Class-1 synthetic data improves the results drastically compared to the
benchmark model trained on images taken below 70 m. The general trend suggests that
the addition of more data may increase the performance even further. On the other hand,
the addition of a small amount of Class-2 and Class-3 data also bring slight improvements,
however, these are much smaller and may even be neglected. The addition of larger subsets
shows no influence or even worsens the results.
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Figure 8. AP@[IoU = 0.5] of the models on the real-world images captured at an altitude higher than
70 m. Results are averaged over 3 training runs. Dots represent results; the lines are interpolations.

As the synthetic images should not deteriorate the performance of the model on
images for which real data were available during training, the performance of the model is
also evaluated on the test set Xlower,test. The results of the models trained with the mixed
datasets are shown in Table 2. They show that, at the altitude for which real-world training
images were available, the addition of Class-1 synthetic images does not lead to worse
performance but may instead even improve the results slightly compared to the baseline.
Class-2 and Class-3 synthetic data only have a minor effect here with a tendency for a
slightly lower performance.

While Tables 1 and 2 already show clear indications of the usefulness of Class-1
synthetic data, we further investigated whether these results are based mainly on the
synthetic training data or on the real test data. On the one hand, it seems reasonable to argue
that higher classes of synthetic data should lead to better model performance as they are
able to generate more variations in the data. On the other hand, for the given use-case
of increasing the dataset’s completeness regarding the altitude, the images in Xlower and
Xhigher look quite similar, as shown in Figure 2, and only differ in aspects like the bounding
box sizes. Therefore, the good results for Class-1 synthetic data must be attributed to their
high similarity with the test data. It must be noted that these results may be specific to the
ODD parameter considered in this work and may not translate to cases where the coverage
of other ODD parameters shall be increased.

To address this concern, the models are also trained using only the synthetic data
without mixing with the real Xlower and are tested on another real-world dataset. In this
case, a subset of the Heridal dataset [29] is used. In contrast to the PeopleOnGrass dataset,
the Heridal dataset does not contain information about the altitude from which images
were taken. Therefore, images with a similar bounding box size to the images in Xhigher are
selected. From these, the images are cropped to the needed size of 800 × 800 px. If there
were several people in one image, several 800 × 800 px parts of the image are cut out, each
containing at least one person. In total, 60 images for validation are created. Figure 9 shows
some examples of the resulting images. The models are trained with the same training
parameters as before and the results are again averaged over three training runs.

The model results are shown in Table 3. It can be seen that the results now clearly differ.
Now, the model trained with Class-1 synthetic data only reaches half the performance of
the model trained with Class-2 synthetic data, which performs the best. The model trained
with Class-3 synthetic data is rated second-best and performs slightly worse than the one
trained with Class-2 synthetic data. Therefore, it is reasonable to assume that the Class-1
synthetic data give the best results for the initial tasks because these are the most similar to
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the target domain. Should the coverage of other ODD parameter be improved, the other
classes of synthetic data may lead to better results.

Figure 9. Examples of cropped images from the Heridal dataset [29] used for further evaluation.

Table 3. Results on a subset of the Heridal dataset [29] with similar bounding box sizes as Xhigher.
Results are averaged over 3 training runs. The bold number marks the best overall result.

Training Dataset AP@[IoU = 0.5]

Real (baseline) 0.05
Class-1 0.15
Class-2 0.30
Class-3 0.26

6. Discussion

In this section, we discuss various outcomes of the experiments: whether altitude is a
reasonable ODD parameter, findings from the generation of the synthetic images, which
synthetic data class works best in which situation, how to use synthetic data to increase
the ODD coverage, how domain fitting and overfitting might affect the experiments and
limitations of the approach.

6.1. Altitude as an ODD Parameter for UAS’ Visual Object Detection Tasks

When testing the baseline model trained on images taken at an altitude of less than
70 m on images taken under the same conditions but at a slightly higher altitude, a
sharp drop in AP@[IoU = 0.5] from 0.56 to 0.27 can be seen in Tables 1 and 2. We
therefore conclude that altitude is a reasonable parameter for the ODD of the considered
use-case. This parameter is also relatively easy to measure and monitor which is good
for practical applications.

6.2. Generation of Synthetic Images

The generation of Class-1 synthetic images proved to be the easiest way to generate
synthetic data for the considered use-case. By using available libraries as explained above,
the real-world images can be transformed to represent images taken at a different altitude.

The generation of Class-2 synthetic images required more effort as another real-world
dataset to provide the background images has to be found or recorded. Furthermore, the
human patches to be placed into the background images have to be extracted from the
images. The generated images show some artefacts like sharp edges from the stitched
elements and the stitched humans do not have shadows. Additionally, some humans
that are automatically placed are located at unrealistic locations like on top of trees. This
problem could be mitigated by specifying regions in which humans are allowed to be
placed. This, however, would increase the manual effort needed to generate the images
drastically. It remains unclear, however, how important these factors are and how large
their influence is, if any.
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The generation of Class-3 synthetic images required the most effort of the three
approaches. Although the Unreal Engine ecosystem provides a huge amount of simulation
environments, 3D models of humans as well as tools to extract images, it requires some
coding effort to put all these components together as described above. Furthermore,
different rendering artefacts could be observed like blurred color gradients, especially for
humans rendered as small objects of a scene. An example is given in Figure 10. Similar
to the generation of Class-2 synthetic images, the automatic placement of humans locates
some of them in unrealistic positions, e.g., on top of trees. Furthermore, people placed on
inclined areas sometimes fall to the ground because of the gravitation model within the
Unreal Engine resulting in people laying on the ground.

Figure 10. Example of blurred color gradients for small objects, when zoomed in. (Left): part of the
original image, (Right): blurred color gradient after zooming into the marked area.

In general, it can be observed that the higher the class, the more effort is needed to
generate synthetic data. In theory though, this effort is justifiable as higher classes allow
more variation in the generated data which helps to increase completeness. However, the
results show that this is not necessarily the case.

6.3. Usage of Synthetic Data to Increase Coverage of the ODD Parameter Altitude

From the results, it can be seen that the addition of synthetic images to improve the
completeness of the dataset regarding altitude, when no real data are available, leads to
better object detection performances in the considered use-case. The highest effect can
be seen when adding Class-1 synthetic images. The trend here is that more data leads
to better results. The results may even be improved further when more Class-1 data are
added to the training set. In the experiments, an increase in AP@[IoU = 0.5] from 0.27 to
0.44 was achieved in the ODD ranges in which no real-world images were available. These
results were achieved without decreasing the performance in the other ODD ranges but
even slightly improved them.

Small amounts of Class-2 and Class-3 data also give minor improvements. When more
data of these classes are added, the results become worse or do not show any influence on
the model performance on the altitude where no real data are available during training. On
the images recorded at an altitude of 70 m or less, for which real data were available during
training, the addition of the Class-2 and Class-3 data also does not show a significant
influence but seems to lead to slightly worse results in some cases.

Overall, synthetic images seem suitable to increase the coverage of the ODD parameter
altitude when not enough real-world images are available.
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6.4. Domain Fitting and Overfitting

Although Class-1 synthetic images only allow us to introduce a limited amount of
variation, they achieved the best results for the considered use-case.

As shown for the considered use-case, the addition of Class-1 synthetic images leads
to the best results when the ODD cannot be covered fully with real-world images during
training. A possible reason for this comes from the observation that the images in the used
dataset all look very similar and are recorded at the same grassy park area. As a result, the
Class-1 synthetic images show the people in similar positions as the test images recorded at
the higher altitude. Therefore, the Class-1 synthetic images may lead the model to not only
learn to detect humans but also their preferred positions in the area. This is not the case for
the Class-2 and Class-3 synthetic images. They give the model incentives to only learn the
human features leading to more robust detectors. This is also affirmed by the results on the
Heridal dataset where Class-1 images led to the worst results. In general, this phenomenon
may be considered as overfitting. But, it may also be considered inherent to the tasks of
increasing ODD coverage with respect to the altitude, as these real images and the humans
are considered the ODD, and therefore, the intended area of use. Therefore, one may say
that the model is “well adjusted” to the situation and task, i.e., fits the data and domain
nicely. The evaluation on the Herdial dataset also shows that, for other parameters, the
higher synthetic data classes may be better and may help the model to generalize better
when other ODD parameters are considered.

A potential reason that the model trained on Class-3 synthetic data performs worse
than Class-2 synthetic data on the Heridal dataset may be that the simulated images are
too different from real-world images. This phenomenon is also known as sim-to-real gap
and sometimes found in the literature as described above. In a simulation environment,
it is possible to generate very diverse images from the correct altitude but they may not
represent the image domain well enough. Unwanted differences in appearances may
prevent the models from learning features that generalize well to the real world. In contrast,
Class-1 synthetic images may not be able to generate data with as many variations but
represent the real image domain much better.

6.5. Limitations of the Approach

Using Class-1 synthetic images led to the highest improvement in model performance
for the considered use-case. Our hypothesis is that this is the case because they are most
similar to the real-world test data. However, this is only true for the considered use-case
and may not be the case for other ODD parameters. This is especially true as Class-1
images have the strong limitation that they can only be generated if real-world data are
available that can be transformed so that it represents the missing data. In the case of
the ODD parameter altitude, this approach was well applicable, but this may not be the
case for other ODD parameters. For example, Class-1 images cannot represent other
geographical locations.

Class-2 data allows us to represent more ODD parameters and, e.g., could also be used
to cover different geographical regions under the condition that real background images of
these regions are available. Class-3 synthetic data allows us to introduce the most amount
of variation and coverage of any possible ODD parameter in theory. However, as can be
seen from the results, the generation approach for Class-3 data followed in this work has
not succeeded in exploiting these advantages. This may be at least partially attributed to
the domain gap, i.e., differences in appearance from the rendered images compared to the
real-world ones. Nevertheless, Class-2 and Class-3 already show hints in Table 3 that they
may be more suitable or at least can be suitable when applying the model to a different
dataset that shows significant differences to the original one.

To conclude, it should be noted that there is a risk when using synthetic training data
in safety-critical systems as it differs from the data the model will face when deployed. As
explained above, current research suggest that real-world images lead to the best model
results and should be used when available. However, synthetic images show promising
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results in this work and help to improve the model when not enough real-world data to
cover the whole ODD are available. As a result, future research in this direction is strongly
suggested. Whether the improvements and the overall performance of the model are good
enough has to be evaluated during the certification of the whole aircraft system in which
the ML component will be integrated.

7. Conclusions and Future Work

In this work, results from a case-study exploring the use of synthetic training data
to increase the coverage of the ODD parameter altitude in the training dataset for human
detection are presented. The generation of Class-1, Class-2 and Class-3 synthetic images
is described and the generated data are used to increase the ODD coverage. The results
indicate that the extension of the training dataset with additional synthetic data is promising
in regards to the overall performance of an object detector. Within the addressed problem
domain of detecting humans in low-altitude aerial images, as taken by onboard cameras
of UAS, our results indicate that Class-1 synthetic data are best suited and lead to better
overall performance. Particularly when using Class-1 synthetic images, a performance
increase in AP@[IoU = 0.5] from 0.27 to 0.44 was achieved in the real-world test dataset.
These are very promising results with regard to reducing the amount of real-world data
needed to cover the whole ODD during training. In contrast, the experimental results from
using Class-2 and Class-3 synthetic data showed only marginal improvements or even a
decrease in the performance. Hence, their potential benefits, especially the need for less
real-world data, could not be leveraged. A plausible cause for the loss of performance is
the domain shift introduced to the training dataset with the addition of Class-2 and Class-3
data. Furthermore, we discussed how these results could transfer to other ODD parameters
like a geographic region.

The results show that synthetic data may be used to increase ODD coverage; however,
care must be taken in regard to the quality and kind of synthetic data. For rather narrow
ODDs, as considered in this work, Class-1 data may be best suited due to the low risk of
introducing a significant domain shift that would lead to a loss of performance. However,
this class of synthetic images cannot be used to increase the coverage of all ODD parameters
as the real-world data may not be able to be transformed to represent the desired properties.
For the use of Class-2 and Class-3 data, the wideness or narrowness of the ODD, in other
words the degree of specialization required from the ML algorithm, may affect the amount
of effort required to generate data that do not introduce unintentional domain shifts to the
training dataset.

In future work, this interplay between the design domain and data requirements
shall be further analyzed. Also, the impact of domain shifts and the sim-to-real gap, in
general, are subjects to future research. In this context, domain adaptation techniques may
be considered to reduce their effects. When looking at the considered use-case of human
detection for emergency landing site detection, future work may include the detection of
humans in different poses like laying and sitting, as well as increasing the overall system
performance to bring it closer to reaching a performance level that may be deployed to
real-world aircraft.
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