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ABSTRACT:

The use of deep learning techniques especially in conjunction with convolutional neural networks (CNN) has attracted major
attention of the remote sensing community. Main use cases are object detection, image classification and image segmentation.
The paper will focus on object detection, specifically on detection of humans. In search and rescue applications it is common to
map larger areas with downward facing cameras. However, there are many training data sets for CNNs showing oblique images
which strongly differ from nadir aerial images used for real-time maps.
To circumnavigate this issue, an unique data set was created. It solely contains nadir images at different ground sample distances
(GSD) varying from one to five centimetres. Diversity of the training data is ensured through various flights using an unmanned
aerial vehicle (UAV) at different locations. GSD dependency is valuable prior knowledge as it enhances the difficulty associated
with human detection in aerial images. An image, depicting a human at one centimetre GSD contains much more information than
the same human depicted in an image of three centimetres. That is one reason why networks trained on a variety of ground sample
distances possibly struggle to detect humans reliably on a certain GSD.
The unique data set consists of four subsets (divided by GSD). Each subset contains 1000 manually annotated humans, augmented
by rotation and colour shift resulting in 12000 training samples used to train the new released YoloV8 CNN. The entire training and
test process is unified to ensure comparable input conditions.

1. INTRODUCTION

In search and rescue (SAR) operations, the fast and accurate de-
tection of human beings can decide whether lives can be safed
or not. The validity of the detection results is crucially import-
ant to ensure the success of rescue missions. The capabilty to
identify and locate individuals in diverse or challenging envir-
onments can influence the effectiveness and efficiency of search
and rescue teams in noteworthy ways. There are traditional
ways of human detection e.g. manual visual search in images
or the use of thermal imaging but these come with limitations
which can impede the effectiveness in such complex scenarios.

However, the recent years have brought the rise of neural net-
works and deep learning which have revolutionized the field of
computer vision and broke new ground for enhancing object
detection in SAR-scenarios (Rodin et al., 2018, Bejiga et al.,
2017). Neural networks have emerged as a powerful tool for
processing and analyzing large volumes of visual data. That
has enabled the development of state of the art (SOTA) systems
for SAR applications (Martinez-Alpiste et al., 2021).

The primary objective of this paper is to explore the utilization
of YOLOv8 (you only look once - version 8) networks in human
detection for search and rescue scenarios. By leveraging the
capabilities of neural networks, we aim to address the possible
limitations that come with ground sampling distance (GSD)-
dependency and investigate this with several tests. In addition,
we are investigating whether the neural networks of one GSD
range function better when they are operated in a higher GSD
range. This effect would be conceivable if the purely mathem-
atical calculation of the GSD deviates from the actual one, e.g.
due to smear (Meißner, 2020).
∗ Corresponding author

2. PREREQUISITES AND RELATED WORK

This chapter explains the related work of this paper and the pre-
requisites that need to be taken into account when dealing with
the topic.

2.1 YOLOv8

YOLOv8 (you only look once - version 8) (Jocher et al., 2023,
Terven and Cordova-Esparza, 2023) is an object detection al-
gorithm which is designed to accurately and efficently detect
objects in images or video streams. This algorithm is published
by ultralytics (Jocher et al., 2023) and can be utilized in various
applications. Out-of-the-box support is given for object detec-
tion, segmentation and classification (Jocher et al., 2023). It is
easy to apply to use-cases since it is accessible through a Py-
thon package. There are different pretrained models (trained on
the COCO-128 dataset) which can be used for training, start-
ing from checkpoints. This is recommended by the creators
and was adapted for the following experiment. One of the key
features of YOLOv8 is the anchor-free approach. That means it
does not rely on predefined anchor boxes to generate object pro-
posals. Instead, YOLOv8 directly predicts the bounding boxes
and class probabilities for each object in the input image.

2.2 Object Detection

Object Detection is the foundation of this paper. It is a tech-
nique used to locate instances of objects in images or frames of
videos (Amit et al., 2020). The detection is usually achieved by
using deep learning or machine learning. The main goal of ob-
ject detection in this paper is to mimic the ability of a human to
perceive and locate an object in an image. Object detection is an

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-139-2023 | © Author(s) 2023. CC BY 4.0 License.

 
139



enormously important technology for the future e.g. in the driv-
ing assistant sector (Mao et al., 2022) or in our focussed case
search and rescue scenarios (Martinez-Alpiste et al., 2021).

There are mainly two variants for object detection models.

Two-Stage Detectors

With this technology the first stage identifies parts of the im-
age which might contain the object (regions of interest or RoI).
The second stage then detects the objects in said RoI´s. These
detectors are usually slower but more precise when it comes
to results in comparison to single-stage detectors (Soviany and
Ionescu, 2018).

Single-Stage Detectors

In a single-stage object detector, the detection is performed in a
single pass through the network. It directly predicts the bound-
ing boxes and class labels for objects in an image. They divide
the input image into a grid of cells and predict bounding boxes
and class labels directly for each cell. These detectors are usu-
ally faster but less precise when it comes to results (Soviany and
Ionescu, 2018).

Considering the above stated, a single-stage detector was
chosen because the final goal should be to use such networks
in real-time mapping applications where the speed of a single-
stage detector outperforms the higher accuracy of a two-stage
detector with view on the use-case (SAR).

YOLO is designed to detect larger or prominent objects in an
image and some articles focus on modification of the YOLO
object detector to improve its performance in detecting smal-
ler objects (Benjumea et al., 2021). When dealing with detec-
tion of humans in aerial images this fact led to the investigation
presented in this paper that GSD is an important factor in terms
of precision and overall accuracy. As mentioned before a pre-
trained network was transformed via transfer learning to fit the
use-case of human detection.

2.3 Nadir/Oblique Aerial Images

This paper focuses on the use of nadir aerial images. An aerial
image is a photography of any kind and sprectrum (e.g. visual,
thermal infrared, near infrared, multispectral, etc.) taken from
a carrier system moving above the earth´s surface. The camera
capturing the scene can be aligned in different angles depending
on the purpose of the images. A nadir aerial image is taken
orthogonal to the scene. An oblique aerial view would deviate
from this (Paine and Kiser, 2012). The difference between the
two is shown in Figure 1.

Figure 1. Nadir and oblique view.

2.4 Search and Rescue

A search and rescue (SAR) scenario refers to a situation where
efforts are undertaken to locate, assist, and rescue individuals
who are in distress, danger, or missing (Frost and Stone, 2001).
SAR operations are typically carried out in various challenging
environments.

Search and rescue scenarios can involve a wide range of situ-
ations, such as:

1. Missing Person
2. Natural Disasters
3. Maritime and aviation incidents
4. Urban disasters
5. Medical emergencies

The goal in all of these situations is to help the individuals as
fast and effectively as possible. SAR missions can be assisted
by UAV´s, computer vision and the use of neural networks to
improve the image processing (Waharte and Trigoni, 2010).

2.5 GSD

The ground sampling distace (GSD) refers to the dimensions of
a single pixel in an image, in relation to the surface it covers on
the ground. When calculating the GSD of an image one has to
consider camera´s sensor properties and focal length, as well
as the distance between the sensor and the ground when the
photo is taken. This is usually represented by the altitude of the
drone or aircraft the camera is attached to (Draeyer and Strecha,
2014).

This paper investigates the influence GSD-specific-training has
on the applicability of neural networks in different GSD sec-
tions.

3. EXPERIMENTS

3.1 Requirements

There are some specifications on the hardware and software
side that should be mentioned before talking about the exper-
iment itself.

3.1.1 Hardware The hardware specifications on the ma-
chine used for training the neural networks were the following
(Table 1):

Part Specs
CPU AMD Ryzen 9 3900X @3.8 GHz
GPU nVidia RTX 3090 @24GB VRAM
RAM Crucial Ballistix 64GB @2666 MHz

Table 1. Hardware Specifications.

3.1.2 Software The software specifications and versions of
the used software can be found underneath in Table 2.

3.1.3 Camera Parameters To make the data from differ-
ent GSD´s comparable it is important that the same sensor was
used to capture all of it. The camera parameters are listed below
in Table 3.
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Part Version
OS Windows 10 Pro
YOLOv8 8.0.45
PyTorch 2.0.1 + cu117
CUDA 11.3
nVidia-Driver 531.79

Table 2. Software Specifications.

Part Specs
Sensor width 35.9936mm
Sensor height 23.9168mm
Image width 4864px
Image height 3232px
Principal distance 50.874261mm
Manufacturer SVS Vistek

Table 3. Camera Parameters.

3.1.4 Training Data In order to carry out this experiment,
annotated data was needed. This consisted of aerial images
from the above mentioned camera in different GSD ranges. The
images used in training were all caputered by the same sensor
of the German Aerospace Center over several years. The GSDs
available ranged from 1cm to 5cm resolution. According to
this, a classification of the available images was made into four
classes. Class 1 (1-2cm), Class 2 (2-3cm), Class 3 (3-4cm) and
Class 4 (4-5cm).

The images were then annotated and exported using
wekantaro’s software (”LabelMe”) (Wada, n.d.). 1000 persons
were annotated per class. Considering that this is a somewhat
small amount of training data for a neural network, it was de-
cided to augment the annotated data. Since the labels created
during this process cannot be used directly in YOLOv8, a cus-
tom script was used to adapt the labels.

The augmentation was done with a specially designed software,
which is expected to grow significantly in functionality in the
future. With the already available augmentation, a twelvefold
increase in data was achieved.

For each annotation, a box of 320 pixels was drawn in all dir-
ections around the center pixel of a person. The result is an
image with dimensions of 640*640 pixels with at least one an-
notation in the centre of the image. If more than one person is
annotated in the 640*640 pixels, all annotations will of course
be included. After converting the individual annotations of the
large image into individual sections, these were rotated three
times by 90° each and two colour shifts were made per rotation
(including the initial tile).

In order to be able to make moderate shifts in the colour, the
average of the pixel values is formed. This is then placed into
a five-part, equidistant grid from 0 to 65536. Depending on the
position in the grid, either one shift up and down or two steps
up or down could be made.

Through this process, the number of training data was increased
from 1000 annotated images to 12000. Of these 12000 images,
11800 per class were then used to train the neural networks and
200 were retained for validation. In the course of the develop-
ment, it became apparent that 200 annotated images were not
sufficient for the validation. As a result, 100 individuals per
class were annotated again and the following files were aug-
mented. Thus, the number of 200 validation images grew to
1400. Consequently, a ratio of about 90:10 between the train-
ing and validation set was achieved.

The whole process can be visualised as follows in Figure 2:

Figure 2. Augmentation Process.

3.2 Training

The training was carried out as shown in the following matrix
(Table 4).

NN Size / GSD 1-2cm 2-3cm 3-4cm 4-5cm
S ... ... ... ...
M ... ... ... ...
L ... ... ... ...
XL ... ... ... ...

Table 4. Neural Network Size vs. GSD.

It was decided to do this in order to be able to compare all
neural networks at the end. In this way, it becomes obvious, for
example, which network with which data generally performed
best or which network in a class (GSD) particularly stands out.

The training consisted of the following parameters per cell of
the matrix (Table 5):

Parameter Value
Image Size 640*640px
Epochs 150
Batch Size 8
Worker Count 8

Table 5. Training Parameters.

After the training, the 16 created networks were run on the
validation data of each class to obtain comparison parameters.
These can then be used to evaluate the experiment.

4. RESULTS

In this chapter, the results of the individual networks are shown.
The results were generated with the data already mentioned for
validation. For the evaluation of the results, various paramet-
ers can be output by the validation methods of YOLOv8. The
chosen parameters are examined in more detail below:

4.1 Parameters

In this following subsection the parameters for the evaluation of
the networks are presented.

4.1.1 Detection confidence The confidence score is a meas-
ure of how certain or confident the model is in its predictions. It
provides an estimate of the reliability or trustworthiness of the
network’s output for a given input.
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The confidence score is typically associated with classification
tasks, where the neural network is trained to assign input data
into different categories or classes. When making predictions,
the network computes a probability distribution over all pos-
sible classes and assigns a confidence score to each class. The
confidence score reflects the network’s belief in the correctness
of its prediction for that particular class (Wenkel et al., 2021).

In the case of this work there is only the class ”human” which
is tested with the validation data.

A high confidence score indicates that the network is very con-
fident in its prediction for a given class, while a low confidence
score suggests more uncertainty or ambiguity. In some cases,
the confidence score can be used to set a threshold for decision-
making. For example, if the confidence score is below a certain
threshold, the network might indicate that it is unsure about the
prediction and leave it out of the results or it requires human
intervention.

4.1.2 True and false positives True positives and false pos-
itives are terms used in the context of binary classification tasks,
where the neural network is trained to classify inputs into one
of two classes: positive and negative.

True Positives (TP): True positives refer to the cases where
the neural network correctly predicts a positive class when
the actual class is indeed positive. In other words, the net-
work correctly identifies the presence of the target condition
or event (Hoiem et al., 2012).

False Positives (FP): False positives occur when the neural net-
work incorrectly predicts a positive class when the actual class
is negative. In this case, the network falsely identifies the target
condition or event when it is not present (Hoiem et al., 2012).

Two further parameters can be derived from this.

Precision, also known as positive predictive value, is defined
as the ratio of true positives to the sum of true positives and
false positives. It measures the proportion of correctly identi-
fied positive instances out of all instances predicted as positive.
Precision indicates how reliable the positive predictions are.

Recall, also called sensitivity or true positive rate, is the ratio of
true positives to the sum of true positives and false negatives. It
measures the ability of the classifier to correctly identify posit-
ive instances out of all actual positive instances. Recall reflects
the classifier’s ability to detect the target condition or event.

4.1.3 mAP 0.5 The term ”mAP 0.5” refers to the mean Av-
erage Precision at an Intersection over Union (IoU) threshold
of 0.5. It is commonly used as an evaluation metric for object
detection tasks performed by neural networks (Padilla et al.,
2020).

In object detection, the goal is to identify and localize objects
within an image. The IoU is a measure of the overlap between
the predicted bounding box and the ground truth bounding box
for an object. An IoU threshold of 0.5 means that if the IoU
between the predicted box and the ground truth box is greater
than or equal to 0.5, the detection is considered correct.

The mean Average Precision (mAP) is a summary metric that
measures the overall performance of an object detection model
across multiple IoU thresholds. It combines precision and recall

values at different IoU thresholds to calculate an average preci-
sion value for each class. The mAP 0.5 specifically focuses on
the IoU threshold of 0.5.

A high mAP 0.5 value indicates that the neural network per-
forms well in object detection tasks, particularly in terms of
accurately localizing objects with a reasonable overlap with the
ground truth bounding boxes. It implies that the model achieves
a good balance between precision and recall at an IoU threshold
of 0.5.

However, it’s important to note that mAP 0.5 alone may not
provide a comprehensive evaluation of a neural network’s per-
formance. It is typically used in conjunction with other IoU
thresholds (such as 0.75 or 0.9) to assess the model’s robustness
across different levels of bounding box overlap. Additionally,
considering other metrics like precision, recall, and F1 score
can provide a more comprehensive understanding of the net-
work’s performance.

4.2 Experiment outcome

The upcoming diagrams and analyses show the outcome of the
experiment performed on the trained networks and validation
datasets.

Figure 3. Confidence Distribution.

This diagram (Figure 3) shows the distribution of the confidence
across the different nets and GSD ranges. It is clearly visible
that the confidence values are highest in the 1-2cm class and
decrease with increasing GSD. This pattern is only interrupted
by the l- and x-net in the GSD region of 3-4cm.

For the 1-2cm class, it can generally be said that all nets
achieved a confidence of over 0.75 on the corresponding val-
idation data. The highest value of the class was achieved by the
m-net, closely followed by the l-net.

The 2-3cm class achieved a lower confidence overall with an av-
erage of 0.67. In this class, the m-net also achieved the highest
confidence with a value of 0.7. The other nets slightly lagged
behind.

The neural networks of the next class (3-4cm) achieved an aver-
age confidence of 0.6325. Unlike in the two previous classes, it
was not the m-network that achieved the highest value, but the l-
network. The other three trained neural networks (s, m, x) were
fairly evenly matched with values of 0.62 and 0.63 respectively.
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The neural networks of class 4-5cm achieved by far the worst
results on the associated validation data. The confidence aver-
age here is 0.48. The networks steadily decrease in their con-
fidence values from s (0.51) to x (0.45).

Figure 4. True and false positives.

Figure 4 shows the distribution of false positives and true pos-
itives of all tested neural networks. In general, it can be stated
that the true-positives are best in the GSD ranges 1-2cm and
3-4cm. The nets of the GSD range 2-3cm performed mediocre
in terms of all results. The nets of the last GSD range again
performed worst.

The neural nets of the 1-2cm class achieved a true-positive rate
of 0.755 on average, which was the second highest rate in the
tests. In this class, the m-net had the highest true-positive rate
at 0.81 and the s- and x-nets the worst at 0.72.

The next GSD class (2-3cm) had an average true-positive rate of
0.665. This means that the neural networks performed slightly
worse than the previous class in terms of true-positives by an
average of 5.5 percent. The highest result in this class was
achieved by the m-net with 0.74 and the worst by the x-net with
a value of 0.58.

The class 3-4cm achieved on average the highest results for
true-positives with a value of 0.7775. The top performer in this
class is the l-net with a true-positives rate of 0.83. The worst
result in this class was achieved by the m-net with a value of
0.73.

The neural networks of the last class (4-5cm) had by far the
worst true recognition rates. The average of this class is 0.34.
The best true-positive rate is shown by the s-net, with a value of
0.42. The worst net is the x-net with a rate of 0.29.

NN Size / GSD 1-2cm 2-3cm 3-4cm 4-5cm
S 0.84 0.521 0.53 0.434
M 0.85 0.562 0.5 0.427
L 0.847 0.544 0.514 0.408
XL 0.827 0.515 0.495 0.404

Table 6. mAP 0.5 for Neural Network Size vs. GSD.

The matrix above (Table 6) shows the distribution of the mAP
0.5 values across all tested nets. It is clearly visible that the
neural nets of the GSD range 1-2cm achieved the highest res-
ults. These are followed by the nets of the range between 2 and
3 centimetres. This is followed by the nets of the range between
3 and 4 centimetres and the worst values of this parameter are
shown by the nets which were trained on the largest GSD range.

As with the other parameters above, the neural networks in the
GSD range 1-2 cm perform best and those in the GSD range
4-5 cm perform worst.

The overall picture of all the individual parameters can be seen
very well if you look at the summary below (Figure 5). In this
graph, all parameters for each net in all GSD ranges are plotted
and it is clear that the nets in the first GSD range produce the
best results. The two middle GSD ranges produce good to me-
dium results and the nets of the largest GSD range produce by
far the worst results.

This suggests that there is a dependency related to the GSD.

Figure 5. Summarized results.

4.3 Additional Results - Crosscheck

In addition to examining the nets in the assigned GSD range,
it was also interesting to see how nets of a class, e.g. trained
on 1-2cm data, perform in the validation of a higher class. A
so called crosscheck was done. This idea came up because the
GSD, which is used for the division of the classes, is calculated.
It may well be less accurate than the calculation suggests due
to various factors. Factors that can lead to a deterioration of the
actual GSD are:

1. Smearing due to exposure time during overflight
2. Focus of the lens
3. Demosaicing process

Smearing due to a long exposure time can lead to an increase in
the actual GSD. This is calculated with the help of the camera
and aircraft parameters. These are assumed to be idealised, so
that sharp images are assumed. A blur can therefore increase
the GSD.

As already mentioned in the case of smearing, the GSD is cal-
culated on the assumption that the camera is in focus. If it is
not and the photos are blurred as a result, the GSD will also be
worse here.

For this cross-check, it was decided to use the respective s- and
m- nets, as they were always among the best. Then they were
each tested on a higher GSD class. The results of these addi-
tional tests are as follows:

In the three following tables ”Conf.” stands for confidence
score.
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NN Size / Parameter Conf. True Positives mAP 0.5
S 0.44 0.24 0.418
M 0.49 0.28 0.496

Table 7. Crosscheck I.

4.3.1 1-2cm nets on 2-3cm data It can be seen (Table 7)
that the results are significantly worse compared to the GSD-
assigned use. There are a few detection hits now and then, but
no results that should be relied upon as the true-positive rate
hovers around 0.25. The GSD of the 1-2cm class data were
apparently so accurate that they cannot be applied to the other
classes.

NN Size / Parameter Conf. True Positives mAP 0.5
S 0.67 0.57 0.660
M 0.70 0.67 0.663

Table 8. Crosscheck II.

4.3.2 2-3cm nets on 3-4cm data The results of this invest-
igation (Table 8) are less bad. Even though both nets did not
perform as well as in the correlated data domain, they still pro-
duced results that could be worked with. Especially the m-net
achieved relatively high confidence values and a true-positive
rate of 0.7. The deviation of the GSD training data from the
2-3cm class were apparently sufficient to apply the nets at least
partially to data of a higher class.

NN Size / Parameter Conf. True Positives mAP 0.5
S 0.37 0.17 0.468
M 0.31 0.212 0.504

Table 9. Crosscheck III.

4.3.3 3-4cm nets on 4-5cm data The results of this cross-
check (Table 9) are quite plainly poor. Of the three experiments,
all parameters performed worst. With confidence values of 0.37
and less, the results may be usable with human follow-up, but
coupled with the very low true-positive rates, they become use-
less. The GSD classification seems to have been correct again,
because a transfer to a higher class does not make sense.

5. DISCUSSION

After evaluating the results, it can be deduced that there is a
connection between the GSD of the training data and the results
of YOLOv8 neural networks.

It was clearly recognisable that the networks from the lower
GSD ranges achieved better detection results than those from
higher GSD ranges.

Possible explanations for this are:

5.1 Pixels per Object

One reason for the better detection in a smaller GSD range
could be the number of pixels per object. This is higher in
a smaller GSD range and thus an annotated object consists of
more features that can be used in training. This should theoret-
ically lead to annotated objects being better learned as they are
distinguished by more unique features. This should also lead to
a reduction of false positives, as the experiments have shown.
The features of other objects that look similar in nadir images,
such as lampposts or bollards, can be better distinguished from
those of humans during detection. This can also be transferred

to the opposite side. According to the theory stated, fewer
pixels per object should lead to a lower confidence and a higher
false-positive rate. This could be shown in the experiment.

5.2 More precise annotation with lower GSD´s

Annotation on images with a lower GSD is easier because the
object appear bigger, clearer and there is likely less smearing
that hampers the annotation process. Errors in the annotation
are in doubt throughout the entire training process and can con-
sequently also negatively influence the results. This influence
on the results is less pronounced in lower GSD areas, as the an-
notation can be carried out much more cleanly. An example of
this can be seen in the following Figure 6:

Figure 6. GSD Annotation Comparison.

Even if the scenes the images show are similar, the resolution
of a person in the lower GSD range is significantly higher. This
then leads to the aforementioned improvement in annotation ac-
curacy.

5.3 More detailed context

Similar to the object itself, a lower GSD also leads to a better
learning curve in the network for the context or background of
the object. Knowing the background of an object is as import-
ant for a neural network as the object itself, because it helps to
improve the following points:

1. It helps the network differentiate objects from the back-
ground.

2. It enables the network to handle occlusion and clutter.
3. It reduces false positives and false negatives.
4. It enhances the network’s ability to generalize to different

environments.

This also seems to be true when looking at the results of these
experiments.

6. FUTURE RESEARCH

For future or further work, the following things could be done
or are being planned:

6.1 Data preparation tool

The tool used for augmenting the data is to be expanded. The
team around this work has already collected thoughts on this
and these are to be implemented in the near future. The range of
functions is currently limited to the rotations and the associated
colour shifts. This range of functions should grow. Among
other things, it should be possible to:
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1. Convert Images from RGB to Mono
2. Include slight displacements of the bounding boxes to lift

the training from the centre of the image
3. Apply Gaussian blur
4. Apply artificial edge sharpening

These and more functions should lead to a further diversific-
ation of the training data and thus to better results. It should
then also be possible to either activate or deactivate all these
functions via the programme’s GUI.

6.2 Generating training data with neural networks

A second tool is to be created for the post-processing of de-
tection runs. Since a bounding box with image coordinates is
created for each person found in an image, this can be read out
afterwards. This information should be evaluated by a human
in a tool with a viewer. In this way, the image with the re-
spective bounding box could be displayed and the viewer would
then have to indicate, for example, via the various directions of
the arrow keys, whether an object sought is actually located a
bounding box. If so, the box is saved, if not, it is discarded. In
this way, the application of neural networks could be used dir-
ectly for the generation of new training data, which would be
included in the next training run.

6.3 Allround network testing

A neural network is to be created from all training data of the
different GSD areas. This should then be compared with the
results of the confidence matrix and the other parameters. This
would make it possible to determine whether a generalisation
of the training data in the GSD area would improve or worsen
the results.

7. CONCLUSION

In summary, the experiment has shown a dependence of
YOLOv8 networks on different GSD ranges. In general, it can
be said that neural networks trained with training data from a
smaller GSD range produce better results when it comes to de-
tection confidence and the number of true positives.

If this GSD dependency is taken into account, satisfactory de-
tection results can be achieved (see example, Figure 7).

Furthermore, the topic has some future research needs and has
not yet been fully explored.
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