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Abstract

Unlike current robots, future service robots are expected to exhibit artificial
intelligence to act on their environment autonomously. Such autonomy can
only be achieved if mobile agents are able to plan and navigate freely in indoor
environments. Here a major task is mapping the environment, and a central
aspect of persistent world mapping and interaction is to deeply understand
the environment not only geometrically but also in its semantics. Creating
3D maps of indoor spaces has become therefore increasingly important. Such
scenes provide a basis for the navigation planning of robots.

Creating these 3D scenes, however, is still an open research question, usually
requiring the capture of many pictures of a scene to reconstruct all visible
surfaces well. This demand for multiple views hinders the application in
scenarios where a mobile robot enters a new environment and immediately
requires a 3D map of the scene, as a movement might already lead to a collision.
Furthermore, all the raw data a robot usually receives are depth views from
depth sensors, yielding a partial reconstruction of the scene. Inspired by
nature, however, which shows that successful navigation is possible without
relying on depth sensors, we advocate the sole use of color images to obtain
a complete 3D model of the scene beyond the visible surfaces. For this
reconstruction, we propose to leverage prior information using persistently
trained neural networks. As a by-product, we avoid artificial limitations of
depth sensors like their limited range, varying noise modes depending on the
scene and its illumination, calibration and synchronization issues, and last
but not least, the extra cost or electricity demand of an added depth sensor.

Leveraging deep learning, we propose in this work an approach to tackle the
problem of 3D scene reconstruction from single color images in indoor spaces.
We abstain from using depth sensors to increase cost-effectiveness and reduce



resource demand. We approach this problem by first analyzing two different
ways of representing 3D scenes; at first, we use a volume grid-based approach
storing truncated signed distance values (TSDF) in the voxels. Secondly,
we show how to implicitly encode a 3D space by querying a neural network
for a position in 3D, delivering a TSDF value combined with a semantic
label for this particular position. In order to map a color image to these
3D spaces, we propose to first project the visible camera frustum inside a
cube, aligning it with the pixels in the input image. The projected data
in the cube is a compressed and encoded latent representation of both the
grid-based and implicit compression methods mentioned before, which are
then used as training data. We then design a novel tree net architecture to
map 2D features to 3D, allowing us to reconstruct the encoded 3D scenes,
which can then be decoded into full 3D scenes. This approach enables the
reconstruction of 3D scenes, including the non-visible spaces with only a
single color image, avoiding the use of 3D sensors or the inconvenience of
recording several images of a scene while further providing a 3D semantic
segmentation that can be used in navigation and planning tasks.

Furthermore, we present BlenderProc enabling easy data generation for train-
ing vision-based deep learning methods, ranging from scene reconstruction
over 6D pose estimation to semantic segmentation. BlenderProc has been
warmly welcomed by the community with nearly 2k GitHub stars and is
used in the 2020 & 2022 ECCV Workshop on 6D Object Pose Estimation.
Additionally, we introduce SDFGen, a tool able to create training data for this
challenging problem of TSDF generation of entire 3D scenes. We evaluate the
two presented approaches on the real-world Replica dataset and in the wild
to show that extended 3D scene reconstruction and semantic segmentation
from single images are possible.
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Zusammenfassung

Im Gegensatz zu heutigen Robotern verfügen künftige Serviceroboter über
künstliche Intelligenz: was ihnen erlaubt autonom auf ihre Umgebung zu
reagieren. Diese Autonomie kann nur erreicht werden, wenn diese mobilen
Agenten in der Lage sind, in Innenräumen frei zu planen und zu navigieren.
Wichtig dabei ist die persitente Kartierung der Umgebung um eine Interak-
tion zwischen dem Roboter und seiner Umwelt zu ermöglichen. Um dies zu
erreichen, muss die Umgebung in ihrere Geometrie und Semantik verstanden
werden. Die Erstellung von 3D-Karten von Innenräumen ist dabei immer wich-
tiger geworden. Diese karten bilden die Grundlage für die Navigationsplanung
von den Robotern von morgen.

In der Forschung gibt es bei der Erstellung der 3D-Karten immer noch
offene Fragen: so brauchen bisherige Methoden viele Bilder einer Szene, um
alle sichtbaren Oberflächen rekonstruieren zu können. Dieser hohen Bedarf
an Bildern behindert die Anwendung in verschiedenen Szenarien. So zum
Beispiel benötigt ein mobiler Roboter in einer neuen Umgebung aber sofort
eine 3D-Karte, da eine Bewegung unmittelbar zu einer Kollision führen kann.
Viele Roboter nutzen daher Tiefensenoren, um eine partielle Rekonstruktion
der Szene zu erhalten. In dieser Arbeit zeigen wir, dass - von der Natur
inspiert - eine erfolgreiche 3D Rekonstrukton ohne Tiefensensoren, welche für
eine Navigation eingesetzt werden könnte, möglich ist. Deswegen verwenden
wir ausschließlich Farbbilder, um ein vollständiges 3D-Modell der Szene
jenseits der sichtbaren Oberflächen zu erzeugen. Für diese Rekonstruktion
werden neuronale Netze trainiert; dadurch werden künstliche Beschränkungen
von Tiefensenoren vermieden: es entfallen die begrenzte Reichweite und die
unterschiedlichen Rauschmodi je nach Szene und Beleuchtung, aber auch
Kalibrierungs- und Synchronisationsprobleme. Auch die Kosten und der
zusätzliche Strombedarf werden vermieden.



Der Ansatz dieser Arbeit nutzt Deep Learning, um das Problem der 3D-
Szenenrekonstruktion aus einzelnen Farbbildern in Innenräumen anzugehen.
Wie bereits dargestellt, wird durch den Verzicht auf Tiefensenoren die Kos-
teneffizienz erhöht und der Ressourcenbedarf reduziert. Dabei analysieren wir
zunächst zwei verschiedene Arten der Darstellung von 3D-Szenen; zum einen
verwenden wir einen auf einem Volumengitter basierenden Ansatz, bei dem
truncated signed distance fields (TSDF) in den Voxeln gespeichert werden.
Zu anderen zeigen wir, wie man einen 3D-Raum implizit codieren kann,
indem man ein neuronales Netz an einer Position im 3D-Raum auswertet und
dann einen TSDF-Wert in Kombination mit einem semantischen Bezeichnung
erhält. Um ein Farbbild auf einen 3D-Raum abzubilden, schlagen wir vor,
zunächst das sichtbare Kamerafrustum in einen Würfel zu projizieren und
diesen dabei mit den Pixeln des Eingangsbildes auszurichten. Der Inhalt dieses
projizierten Würfels, in codierter und latenter Form dargestellt, verwenden
wir als Trainingsdaten, die wir durch den Einsatz der Volumengitter und
impliziter Komprimierungsmethode erhalten. Anschließend entwerfen wir eine
neuartige Baumnetzarchitektur, um die Merkmale von 2D auf 3D abzubilden.
Damit können wir die 3D-Szene aus nur einem Farbbild, einschließlich der
nicht sichtbaren Bereiche, vollständig rekonstrukieren. Die Verwendung von
Tiefensensoren oder die Aufnahme mehrerer Bilder einer Szene kann dadurch
vermieden werden. Zugleich wird eine semantische 3D-Segmentierung erzeugt,
die für Planungs- und Navigationsaufgaben förderlich sein kann.

Abschließend stellen wir zwei weitere Möglichkeiten vor, um Daten für das
Training zu generieren: BlenderProc und SDFGen. BlenderProc ermöglicht
eine einfache Generierung von Daten für das Training von bildbasierten Lern-
methoden. Diese Daten können in Ansätzen zu Szenenrekonstruktion über die
6D-Positionsabschätzung bis hin zur semantischen Segmentierung eingesetzt
werden. BlenderProc wurde von der Community mit offenen Armen aufge-
nommen und hat mittlerweile rund 2.000 Github-Sterne. Es wird mittlerweile
auch auf dem 2020 & 2022 ECCV-Workshop zur 6D-Objektposenschätzung
eingesetzt. SDFGen ist ein Tool, das bei der Erstellung von Trainingsdaten
für das anspruchsvolle Problem der TSDF-Generierung von 3D-Szenen zur
Anwendung kommt. Wir evaluieren die beiden vorgestellten Ansätze auf dem
realen Replica-Datensatz und in freier Wildbahn. Hier zeigen wir, dass sowohl
eine 3D-Szenenrekonstruktion als auch eine semantische Segmentierung aus
einzelnen Bildern möglich ist.
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Chapterone

Introduction

Understanding our surroundings is a fundamental skill of human nature.
Transferring this to mobile robots is the primary objective of this work.

1.1 Motivation

Scene reconstruction and mapping of indoor spaces is a meaningful tool for
mobile robots. It will enable them to operate in human homes as they can
understand and memorize their environment. These environments usually
follow strict and reproducible rules, as humans heavily design and structure
indoor spaces [154]. This structuring extends even beyond the shape of a
room to also include the systematic shape of objects. For example, if only a
single image of a chair is provided, we humans can imagine the occluded parts
of this chair. A robot equipped with these implicit rules, which structure
our interior spaces, should be able to learn how to reproduce said objects
and structures on its own. So a mobile robot that enters an entirely new
space can build an internal map with as little prior knowledge as possible.
Such an internal map is divided into occupied and free space. These free
spaces are crucial for planning navigation paths and are necessary to fully
understand the robot’s environment. Such free space is separated from the



Chapter 1. Introduction

occluded space by the surfaces of the objects in the scene, meaning that
the free space is everywhere where no objects occlude the space. In such a
free space, a robot can freely move without colliding with its surroundings,
allowing the usage of such an internal map for collision avoidance. So, it is
almost impossible to plan valuable courses of action without knowing where
this free space is. Most definitions of free and occluded space contain a
distance measure to show for each point in space how far the closest surface
is away. This information can provide a safety measure to tell the robot
how fast it can move. If, for example, our robot Rollin’ Justin [50] is close
to the surface of a table, we will reduce its speed, while if Rollin’ Justin
is surrounded by free space, it can move as fast as we desire. To further
improve the options that a planner in this map has, we strive to include a
semantic segmentation of the environment. In this way, occluded space can
be assigned to a semantic label to which humans can relate, such as a chair,
table, or floor. These can help in a variety of different tasks. Such a task
might be finding a particular object, for example, the remote control of a TV
in a cluttered environment. It would most likely be placed near a television
or a couch, so understanding the surrounding objects can drastically improve
the search speed. This understanding allows Rollin’ Justin to narrow down
the search area and find the desired object more quickly.

1.2 Problem Statement

In fig. 1.1, our mobile robot Rollin’ Justin looks onto a dining table surrounded
by large dining chairs. Constructing such a complete and complex 3D scene
would require dozens of different views to use multi-view scene reconstruction
approaches successfully [45, 102]. We try to avoid this, as a complete 3D
scene reconstruction is highly time-consuming and sometimes even impossible.
Just imagine that Rollin’ Justin is on a rescue mission, where it does not have
the time to reconstruct the whole scene completely. Here our robot needs to
quickly and reliably build up a map of the environment on only limited data.
Furthermore, our robot is limited to one color image of the scene, as objects
might not be static between different shots. Its task is to reconstruct a 3D
environment, including the hidden and occluded free space.

2



1.3. Contribution and Objectives

Figure 1.1: Our mobile robot Rollin’ Justin looks into a scene. The challenge
is now converting the sensory 2D input back to a 3D scene, in which planning
and navigation tasks can be performed. This reconstruction task entails
reconstructing the visible and non-visible surfaces in the scene to separate
free and occluded spaces.

One of the biggest challenges of this task of scene reconstruction is the
underlying understanding of object geometry, which is necessary to reconstruct
a scene completely. So, our approach will have to learn how semantic groups
of objects look like and how they fill the free space. As humans, we can
intuitively guess the shape of a table from a single image and can even fill
in the hidden and occluded parts which are not visible in this one specific
photograph. In order to train a robot to do the same, we have to generate an
extensive dataset, which encompasses all kinds of objects and an enormous
assortment of images of different combinations of those. So Rollin’ Justin can
understand how interior objects look and how they fill the occluded space.

1.3 Contribution and Objectives

Based on this desire to reconstruct a 3D scene based on a single color image,
we derive a plan to avoid taking dozens of images of our scene and train a
neural network to do this task. We employ convolutional neural networks

3
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(CNN) [91, 54] as they have shown promising results on similar tasks like
mono depth estimation or semantic segmentation of images [44, 17, 124, 135].
Our derived plan to reconstruct a 3D scene based on a single color image is
divided into four main stages, depicted in fig. 1.2.

At first, we answer the question of how to represent a 2D image; this question
is straightforward as the vast majority of images are represented as 2D grids.
However, in 3D, no known structure provides all advantages as 2D grids do
for images. Nevertheless, one can use a 3D grid for storing the environment.
Such a representation still suffers from the curse of dimensionality, meaning
that the memory requirements rise quickly for resolutions providing enough
detail. Alternatives, such as implicit representations, point clouds, or meshes,
are also evaluated.

After selecting an appropriate scene representation, one has to consider how
such an entire scene might be loaded into the memory of a graphics card
for training a CNN. In order to achieve this, we decided to compress a 3D
scene into smaller blocks, similar to how image compression algorithms divide
a picture into pieces and store them in a compressed data format [163].
Instead of relying on a known compression algorithm, we followed the idea of
modern approaches using a neural network for the compression of 2D images
[69, 59]. This allows much greater compression factors than possible with
classical methods while ensuring that another neural network can understand
our desired representation, allowing us to use these compressed scenes as
reconstruction targets. Furthermore, it easily allows us to combine structural
information in these created encodings with semantic information.

The third step is to design a neural network to convert a 2D image into
our compressed scene representation designed in the last step. For this, we
designed a novel tree architecture, which separates extracted 2D features
into different 3D slices, dividing the challenging task of creating a 3D space
out of a 2D image into several linked subproblems. This tree architecture is
paired with a novel loss-shaping mechanism to ensure that the attention of
the convolutional neural network is focused on the surface of objects in the
scene. This loss shaping avoids that our method focuses on reconstructing
free areas perfectly while the surface of a chair is only roughly reconstructed.
Furthermore, it allows to increase the loss of more complicated objects like
chairs and tables and reduces it for free or entirely occluded space.
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1.3. Contribution and Objectives

2D Input Image

3D Output Scene

Representation
Scene

Meshes
Point Clouds

Volume
Implicit
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Figure 1.2: This visual representation shows the structure of this thesis. It is
centered around reconstructing a 3D scene based on a color image. To achieve
this, we first select a scene representation, which gets then compressed. This
compressed scene is used as a reconstruction target in the scene reconstruction
section, while lastly, the synthetic data generation is covered.
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The final step of reconstructing a whole scene based on a 2D image is that
we make sure that enough data for training the described methods exist. We
decided to rely on simulated data as it does not require scanning thousands
of homes and mapping them precisely, without error, assigning each object
a consistent category. So, we created BlenderProc, an open-source pipeline
that enables the uncomplicated generation of synthetic images of a 3D scene.
Ensuring that the training of a neural network is possible, as enough image
training data is available. This open-source tool now collected over 2k stars
on Github and is used in the BOP challenge of the European Conference on
Computer Vision (ECCV), demonstrating that synthetic data can be used to
train models employed in the real world [75]. Of course, this only covers half
of the required data as we are interested in reconstructing a 3D scene. Thus,
the output of our network must likewise be a 3D scene, where scene here is
a loose term for defining a function to decide if a given 3D point is either
filled or free and additionally what the category of an occluded point would
be. We created a software suite called SDFGen, which can convert a scene’s
mesh into a 3D representation. These desired representations can be used to
train a neural network.

Our main contributions based on these four structural points plus an extensive
evaluation are:

• A novel compression method for truncated signed distance fields in
explicit and implicit representations

• A novel binary tree architecture that allows the transformation of 2D
features into 3D

• Multiple new loss shaping techniques to ensure that compressing 3D
scenes and reconstructing compressed 3D latent representations is
achievable

• Designing and implementing new tools to create synthetic data for
images (BlenderProc) and for truncated signed distance fields (SDFGen)

The final goal of this work is the complete reconstruction of a 3D
scene in the current camera view of a single color image. This 3D
reconstruction entails the scene’s visible regions but also surfaces in the line
of sight that are occluded by other surfaces. This detailed representation

6
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Input
Surface
NormalsU-Net

Tree-Net

Encoded
space

Grid-based
decoder

Implicit
decoder

3D Output

Figure 1.3: The entire proposed pipeline of our semantic 3D scene reconstruc-
tion method, transforming a color image into an occlusion map that can be
visualized as mesh. The color image is first transformed into a surface normal
with a simple U-Net architecture. Afterward, we rely on our novel tree-net
design to transform a 2D color- and surface vector image into an encoded 3D
space. We then explore two different 3D encodings, grid-based or implicitly,
which enable decoding the entire scene.

enables us to determine the distance to the closest object for an arbitrary
point in space. Finally, producing for each point not just the distance but
also a semantic label increases our approach’s usability and value. A full
overview of the conversion from a single color image to our semantic 3D scene
is shown in fig. 1.3.

1.4 Structure of the Thesis

This dissertation is structured following the pipeline from an input color
image to a complete 3D scene reconstruction, as depicted in fig. 1.2.

Chapter 2 provides an overview of related work to this thesis by emphasizing
how important datasets for the research community are and how such datasets
can be synthetically generated. It also details how objects and scenes can be
reconstructed and how others have tackled the problem of segmenting the
scene into semantic parts.

Chapter 3 overviews possible scene representations and how they could
be used in a scene reconstruction task, highlighting the advantages and
disadvantages of possible mappings from the 2D to the 3D space.

7
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Chapter 4 focuses on the compression of 3D blocks for later use as a
reconstruction target, detailing how truncated signed distance fields can be
compressed in a volumetric grid or in an implicit representation.

Chapter 5 provides a detailed explanation of transforming a 2D color image
to a 3D compressed scene representation via a newly designed binary tree
architecture design.

Chapter 6 discusses how the synthetic training data for the tasks described
in the previous chapters are created while ensuring that all trained methods
can be easily used in the wild.

Chapter 7 extensively evaluates the novel methods presented in previous
chapters. It shows that scene compression is key to be able to increase the
resolution of the 3D reconstruction and that learning the mapping from a 2D
color image to an entire 3D scene is possible.

8
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1.5 Publications

This thesis is in parts based on work that we have published in international
journals and conferences, which we refer to in the respective sections. For
the sake of completeness, find below a complete list of my prior publications.
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• M. Denninger and R. Triebel. 3d semantic scene reconstruction from a
single viewport. In International Conference on Image Processing and
Vision Engineering (IMPROVE), 2022 (Best Paper Award)

• M. Denninger and R. Triebel. 3d scene reconstruction from a single
viewport. In European Conference on Computer Vision, pages 51–67.
Springer, 2020

• M. Denninger, D. Winkelbauer, M. Sundermeyer, W. Boerdijk, M. Knauer,
K. Strobl, M. Humt, and R. Triebel. Blenderproc2: A procedural pipeline
for photorealistic rendering. In The Journal of Open Source Software
(JOSS), 2022

• M. Denninger, M. Sundermeyer, D. Winkelbauer, D. Olefir, T. Ho-
dan, Y. Zidan, M. Elbadrawy, M. Knauer, H. Katam, and A. Lodhi.
Blenderproc: Reducing the reality gap with photorealistic rendering.
In International Conference on Robotics: Sciene and Systems, RSS
Workshop on Closing the Reality Gap in Sim2Real Transfer for Robotics,
2020

• M. Denninger and R. Triebel. Persistent anytime learning of objects
from unseen classes. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4075–4082. IEEE, 2018
(Nominated for Best Paper Award)

• M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir,
M. Elbadrawy, A. Lodhi, and H. Katam. Blenderproc. arXiv:1911.01911,
2019
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• J. Vogel, D. Leidner, A. Hagengruber, M. Panzirsch, B. Bauml, M. Den-
ninger, U. Hillenbrand, L. Suchenwirth, P. Schmaus, M. Sewtz, et al.
An ecosystem for heterogeneous robotic assistants in caregiving: Core
functionalities and use cases. IEEE Robotics & Automation Magazine,
28(3):12–28, 2020

• D. Winkelbauer, M. Denninger, and R. Triebel. Learning to localize
in new environments from synthetic training data. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages
5840–5846, 2021. doi: 10.1109/ICRA48506.2021.9560872

• M. Knauer, M. Denninger, and R. Triebel. Recall: Rehearsal-free contin-
ual learning for object classification. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022

• N. Y.-S. Lii, P. Schmaus, D. Leidner, T. Krueger, J. Grenouilleau,
A. Pereira, A. Giuliano, A. S. Bauer, A. Köpken, F. Lay, M. Sewtz,
N. Bechtel, S. Bustamante Gomez, M. Denninger, W. Friedl, et al.
Introduction to surface avatar: the first heterogeneous robotic team to be
commanded with scalable autonomy from the iss. In Proceedings of the
International Astronautical Congress, IAC. International Astronautical
Federation, IAF, 2022

10



Chaptertwo

Related Work

Reconstructing a scene from different sensory inputs has seen an extensive
amount of research over the past couple of decades. Multiple options exist
to achieve this task of scene reconstruction/completion by using single or
multiple color or depth images. This chapter will present an analysis of
different methods used in the past to understand a scene. Further, an
analysis of possible datasets and how to create new synthetic datasets from
existing ones is presented, as these build the foundation of every machine
learning approach.

2.1 Synthetic and Real Datasets

Datasets are at the center of any machine learning approach of the past
decade [118]. Understanding the difference, especially the advantages and
disadvantages of such datasets, is crucial for the final performance of any
method. One of the first datasets to offer 3D meshes to the public is the
Princeton shape benchmark dataset consisting of 1,814 different objects [136].
It allowed the evaluation of different methods on a standard dataset similar
to what the ImageNet dataset [31] has done for the image classification
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task. Other object-based datasets, such as the IKEA dataset by Lim et
al., focus more on 3D indoor assets [97]. However, these datasets could not
offer a wide variety of object categories. This lack of diversity changed with
the introduction of the ShapeNet dataset [19], comprising of several million
models, where 51,300 models have been cleaned and annotated with category
labels and alignments. These three datasets contain only single 3D objects,
and for a full 3D scene reconstruction, one would need to combine several
objects into an entire scene. This creation has been done by Handa et al. for
the SceneNet dataset, which contains 61 different scenes with various objects
[64]. They even offered a tool to create new scenes automatically. However,
such tools are less realistic than scenes created by human beings. For this
reason, Song used the scenes created by users on the website Planner5D and
their models to build up the SUNCG dataset [143]. It consists of 45,622
scenes created by humans, ensuring that each scene is plausible and realistic.

So far, all the presented datasets consist of simplified 3D models, which have
been purposefully designed to reduce the memory demand, allowing them to
be rendered on a modern GPU. In contrast, 3D-FRONT and 3D FUTURE
contain more detailed objects, allowing the rendering of more realistic scenes
[48, 49]. Even though the objects in 3D FUTURE are more detailed than
those in SUNCG, less work was spent on ensuring that the textures could
be easily swapped. Furthermore, are not all objects in the 3D FUTURE
dataset watertight, making it more challenging to use with a broader range
of tools. The datasets, as mentioned earlier, are all synthetic, while there
are also real datasets that have been recorded with RGB-D sensors. One
of them is the Replica dataset [145]. However, it only contains 18 different
scenes, so it is too limited to be used as a training dataset. Matterport3D by
Chang et al. and the S3DIS by Armeni et al. are also recorded in the wild
and entail 90 and five different buildings respectively [18, 76]. While Replica
is a watertight dataset, Matterport3D still contains many gaps, making it
hard to use as a general scene reconstruction target. We rendered an image
for six of those 3D scene datasets and showed them in fig. 2.1.
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3D FRONT [48] SUNCG [143]

SceneNet [64] Replica [145]

Matterport3D [18] S3DIS [76]

Figure 2.1: A rendered scene of six popular 3D datasets is shown here. The
top row contains two synthetic datasets called 3D-FRONT, and SUNCG
[48, 143]. The small SceneNet and the Replica dataset are depicted in the
middle row [64, 145]. Below that, the Matterport3D and S3DIS dataset are
shown. The last two datasets were recorded in the wild [18, 76].
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2.2 Synthetic Dataset Generation

Having access to a synthetic dataset is only the first step in using it for the
training of a convolutional neural network. Most available datasets must be
converted into a different representation, for example, into images or TSDF
representations. Rendering a dataset like ShapeNet [19] into images can
be done via a simple OpenGL pipeline [11, 139]. Hinterstoisser has done
this rendering in OpenGL, for instance, segmentation [71], Dosovitskiy et al.
for optical flow estimation [39] and Su et al. for viewport estimation [146].
Several works have used such an OpenGL pipeline to render objects, which
are then pasted on a random background image [122, 42, 153]. However,
OpenGL pipelines create artifacts, which are hard to overcome when using
trained approaches in the real world [138]. Similarly to that, much research
has been done exploring the possibility of using a game engine to generate
datasets [127, 128]. However, these rely on the assumption that a game engine
emulates the natural world and is not in fact, a fast simulation that tricks
humans into believing it is real [125]. Furthermore, Movshovitz-Attias et al.
and Hodan et al. demonstrated that photorealistic light transport rendering,
also called physically based rendering (PBR), is better than a simple OpenGL
pipeline with randomized copy-paste backgrounds [111, 74, 36]. Additionally,

Table 2.1: Main features present or not present in different open-source
tools for generating synthetic training data. A meaningful difference is the
availability of physically based rendering (PBR), which does not allow for
real-time rendering but provides more realistic data.

NDDS NViSII Habitat Stillleben Kubric BlenderProc

semantic segmentation

depth rendering

optical flow ⊗ ⊗ ⊗
surface normals ⊗ ⊗ ⊗
object pose ⊗ ⊗
bounding box ⊗ ⊗ ⊗
physics module ⊗
camera sampling ⊗
uses an open-source renderer ⊗ ⊗
real-time ⊗ ⊗ ⊗
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Hinterstoisser et al. showed how crucial a matching in size between the
foreground and background features is [72]. Li et al. has done PBR rendering
for intrinsic image decomposition, and Zhang et al. used it for semantic
segmentation, normal estimation, and boundary detection [94, 184]. Further,
PBR rendering has been used by Hodan et al. for 6D pose estimation [74],
showing that PBR rendering can be used in a variety of scenarios. With
SceneNet RGB-D, McCormac et al. proposed a dataset of five million images
rendered with NVIDIA’s OptiX module [117], providing PBR images for
semantic segmentation [105]. However, these approaches did not use a well-
documented open-source pipeline, making it impossible for future researchers
to use them. This changed with BlenderProc by Denninger et al. [35], one of
the first open-source implementations providing sufficient documentation and
examples to use the included PBR renderer for their own research goals and
the research goals of many others [75, 41, 5, 15, 170, 85, 86]. BlenderProc is
further detailed in section 6.1. Other open-source solutions were proposed,
such as NDDS, NViSII, Stillleben, Kubric, or Habitat, not all relying on a
PBR renderer [156, 110, 134, 131, 55]. For a comparison of those six, see
table 2.1.

2.3 3D Object Reconstruction

Reconstructing 3D objects from raw data has a long history and is a well-
discovered research area. While classical methods could only fill minor gaps
and holes in 3D point clouds, more advanced methods emerged, reconstructing
entire backsides of objects using prior knowledge. Such classical methods
might fit local surface primitives or use continuous energy minimization
[112, 144, 185]. Many such methods would use a point cloud as input and
fit a local surface into missing parts. Curless et al. proposed using a signed
distance field (SDF) stored in a voxel grid, allowing to represent an object in
a structured format similar to images [24]. However, these classical methods
would struggle to predict occluded areas of ordinary objects, such as the leg of
a chair or the lower side of a table. So, approaches have been proposed to fix
this by leveraging symmetries in point clouds, and meshes [155, 140]. Even
though the results are impressive, they are limited to predefined hand-crafted
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priors.

The use of data-driven approaches allowed for a better generalization to more
scenes without defining human-crafted priors, further improving the field of
3D object reconstruction. 3D ShapeNets by Wu et al. is a method designed for
classification, which can also predict the missing shape of presented objects
[172]. This symbiosis improved the overall performance. One problem with
using volume grids as an output is the limited resolution. Several methods
have been proposed to solve this by using different octree levels, predicting
with increasing precision if an octree is filled or free [152, 129, 167]. The issue
is that later layers cannot correct a missed detail during the prediction. In
contrast to that, Matryoshka Networks predict the missing difference to the
last layer of one matryoshka block in finer detail, building up an object as the
output from several blocks. Similar to the namesake of this architecture, an
object is then just the combination of all different matryoshka blocks [126].
Dai et al. proposed to first predict a rough estimate with a resolution of 32
based on a point cloud scan. The finer details of this prediction get then filled
in by combining it with a model from a database filled with detailed objects
[27]. Fully end-to-end Han et al. train a neural network to first predict a
global prediction using an LSTM to incorporate multiple depth images. This
global prediction is then locally refined to ensure that the missing resolution
of the LSTM does not hurt the final output [63]. Alternatively, one can find
the closest CAD model out of a database and deform it into the currently
visible object. A particular challenge here is that this also requires estimating
the camera and object pose simultaneously [158]. Guemeli et al. even use a
differentiable renderer to optimize the pose even further [57]. Nonetheless
are, all of these approaches limited to a single object; even if multiple single
objects in a scene can be predicted, the output does not represent the entire
scene, just a selection of objects.

2.4 3D Scene Reconstruction

Reconstructing an entire 3D scene can be understood as reconstructing a
room layout consisting of fixed structures, such as walls and floors and the
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furniture placed. Many works have been proposed to extract only the room
layout of a single photo [138, 103, 29], neglecting all interior objects in the
scene. This layout and an additional simple object detection approach are
now even possible on mobile phones with RoomPlan by Apple [3]. However,
reconstructing a highly detailed 3D map of the current camera view is still
an open research question. The approaches able to reconstruct a scene based
on a single image can generally be separated into two different sets. One is
more about reconstructing the scene independent of the structures present in
the scene, and the other focuses on solving the subproblems in this challenge
one by one. We will first look at solving the different subproblems, as done
in Im2cad. Here, a room layout is built up, and then an object detection
mechanism is used to find all objects. These objects are found using a
bounding box detector, for which objects from a database are aligned to the
image. In the final step, both are combined in a scene optimization step
[81]. Huang et al. improved this by comparing a rendered image of the final
reconstructed scene with the input, where the rendering also produced an
object mask image, surface normal image, and a depth map [79]. Instead
of relying on rendering the content, Zhang et al. use a novel implicit scene
graph neural network exploiting the implicit local object features for a better
3D object pose [182]. Similarly, Total3DUnderstanding by Nie et al. [114]
uses an AtlasNet [56] to reconstruct the 3D shape of the objects detected in
the 3D bounding boxes, enabling the reconstruction of the scene in several
steps. Mesh-RCNN also uses a two-step process for first extracting bounding
boxes and then estimating the 3D shape of the objects. They, however, do
not propose a way to reconstruct the room layout [53]. Kuo et al. used a
CAD library with a shape embedding to find the closest matching object,
making the predicted furniture pieces appear more realistic even if they do not
entirely match the input image [88, 89]. When relying on a CAD library, one
can go even a step further and ensure that the scene is physically plausible,
ensuring that a mobile robot can be used in it, as is done by Han et al. [62].

The second set of approaches uses an image and converts it into a complete 3D
map of the current view. This map is usually constructed end-to-end, allowing
for a bigger corporation between the single structures in the scene. One of the
first methods to do this is Voxlets by Firman et al., which relies on Random
Forest to reconstruct tabletop scenes [46]. Kim et al. presented then one of the
first methods relying on deep learning to convert an RGB image directly into
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a truncated signed distance field (TSDF). Similarly to this, Shin et al. predict
the multi-layer depth and segmentation maps, reconstructing the scene in the
camera view. Enforcing consistency by using an epipolar feature transformer
rendering the scene from a different view [137]. However, the goal of this
work was more focused on mono-depth estimation than on reconstructing
entire hidden structures. This changed with SingleViewReconstruction with
a grid-based compression (SVR-GC) by Denninger et al., which uses a novel
neural network shaped as a binary tree to allow the direct prediction of
a compressed latent representation. This representation can be converted
with a decoder to a high resolution TSDF volume, allowing the prediction of
hidden and occluded spaces in the current camera view [33]. In an extension
of their first work, Denninger et al. [34] improved on their first results with
SVR-IC by switching the volume-based encoding with a neural network
that implicitly encodes the TSDF value for queried positions. This implicit
representation further allowed the inclusion of semantic labels. Instead of
just predicting the shape of the surface, Dahnert et al. proposed a holistic 3D
scene reconstruction approach, which predicts the instances and semantics of
the present objects. This prediction is made by lifting the 2D features into a
3D space, allowing the backpropagation of the final reconstruction’s loss [26].
In contrast to these methods, Worldsheet by Hu et al. tries to map one single
sheet over the current camera view, allowing for the generation of unseen
views with moderate pose changes [78]. An overview of a selection of these
methods is shown in table 2.2.

These methods, described above, reconstruct an entire scene in contrast to
mono-depth estimation. Early works relied on Markov Random Fields for
the depth estimation [132, 133]. After that, one of the first approaches using
deep learning in this field was by Eigen et al. [44], drastically improving the
estimation performance. A consecutive work by Chakrabarti et al. estimated
depth as a combination of depth derivatives of different orders [17]. The next
evolution after this has been a fully convolutional neural network for mono-
depth estimation [83, 90], allowing for a better flow of information. These
fully convolutional neural networks then got extended to enforce geometrical
constraints using conditional random fields (CRFs) [93, 99, 166, 98, 174].
Most recent works focused on depth contours as CNNs tend to smooth the
edges of objects [123, 124].

A pretty recent addition to this field is the work of Mildenhall et al. called
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Table 2.2: A comparison between different 3D scene reconstruction methods.
We display the input and output used by the various techniques and describe
if the output could be used for a navigation setting, where a TSDF value
is useful. Furthermore, we highlight which methods provide a semantic or
instance segmentation and if the output contains all objects present in the
scene or just objects detected by a bounding box detector.

Voxlets [46] Total3D [114] Panoptic [26] SVR-GC [33] SVR-IC [34]

Input image type Depth RGB RGB RGB RGB

Output TSDF grid Mesh TSDF grid (2563) TSDF grid (5123) implicit TSDF

TSDF availability ⊗

Semantic segmentation ⊗ ⊗
Instance segmentation ⊗ ⊗ ⊗
Full surface reconstruction ⊗ ⊗

Nerf [107], which allows the interpolation between existing camera views of a
scene. This use of existing camera views requires calibrated camera poses
of a set of images to allow any interpolation or extraction of a 3D model.
Nonetheless, many derived works have shown the advantages of such methods
for creating highly detailed 3D models of scenes [6, 20, 104, 108, 176, 147].

2.5 3D Scene Compression

Representing 3D spaces is memory intensive, and many works have been
presented to tackle this problem [33, 16, 150]. While meshes are highly
relevant for computer graphics, they do not work well as reconstruction
targets. Volume representations, on the other hand, define for each point on
a grid if it is inside or outside of an object and can be easily aligned with
an input image [33]. This volume representation can be extended further to
contain the truncated signed distance (TSDF) to the closest surface, which
can then be converted back to a mesh with a marching cubes algorithm
[100]. Such a TSDF volume is used by Denninger et al. to represent an entire
scene seen from one camera viewport [33]. Liao et al. then extend this mesh
generation from TSDF volumes to work in an end-to-end setting by allowing
the gradient to flow through the marching cubes algorithm [95].
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In contrast to strict volume grids, in an implicit representation, a network
can be queried for any location in 3D for a TSDF value, as shown by Park et
al. with DeepSDF [116]. Yifan et al. improved upon this concept by splitting
it into the base SDF, and additional displacement for finer details [180].
Extending this further, Chen et al. use multiple residual outputs to increase
the object reconstruction performance even further [21]. These implicit
representations were used by Denninger et al. [34] to encode an entire scene.
Tackling the computational demand of rendering objects inside of an SDF
approach, Takikawa et al. proposed to use an octree combined with different
levels of details of an object to shorten render times drastically [150]. Most
methods struggle with reconstructing fine details on the inside of objects.
This challenge was approached by Chibane using unsigned distance fields
[22]. Wang et al. add an additional spline positional encoding to improve the
3D input space [168], while Chabra et al. proposed to split the scene into
different parts and encode each part separately, which is similar to the work
of Denninger et al. [16, 33].

Alternatively, Williams et al. presented Neural Kernel Fields, reconstructing
implicit 3D shapes based on learned kernel parameters from data, which
then fit the input points on the fly by solving a simple positive definite
linear system [169]. Another solution was shown by Peng et al., in which
they introduced a differentiable point-to-mesh layer using a differentiable
formulation of Poisson Surface Reconstruction [119].

2.6 3D Scene Segmentation

Three-dimensional scene reconstruction often goes hand in hand with scene
segmentation, as most approaches already need to understand object cate-
gories to reconstruct the hidden parts successfully. Song et al. proposed a
method focusing on the semantic reconstruction of a depth image, producing
an output volume with a resolution of 240 × 144 × 240 [143]. With Scan-
Complete, Dai et al. presented an approach to complete a scan and segment
the complete scenes. This completion and segmentation are done iteratively,
decreasing the voxel size from 18.8cm3 to 4.7cm3 in three steps [28]. 3D-SIS
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does not complete the scan but uses color information to improve the semantic
segmentation results. Furthermore, it can produce instance segmentation
for the objects in a scanned scene [76]. Hou et al. show with RevealNet the
challenge of semantic instance completion, where they focus on completing
detected instances of objects using again color information and an incomplete
scan [77]. Tackling the problem of noisy outputs, Avetisyan et al. propose to
rely on a CAD model database, where objects and the layout get detected in
a 3D scan, and by using a graph neural network, the relationships between
these detected objects can be improved [4].
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Scene Representations

The first step in achieving a scene reconstruction based on a single image is
choosing a well-suited 3D representation, as the 3D representation guides and
structures the whole problem. However, representing a 3D scene is challenging
as different aspects must be balanced. In some representations, for example,
the surface is the centerpiece, while it is only implicitly decoded in others.
These different representations have been intensely discussed in the literature
over the past decades [14, 58, 164, 1]. The most relevant representations for
our purposes are meshes, point clouds, volumes, and using an approximator
for an implicit representation. All four will be discussed in the following
chapter.

3.1 Meshes

The probably most well-known 3D data structure is a two-dimensional embed-
ded Riemannian manifold, also called a mesh [13, 159]. It offers a boundary
representation, which can be easily stored on a disc. It can also be quickly
rendered into images, as most modern GPUs are designed to rasterize meshes
into color images directly. We depict such a mesh in fig. 3.1, where a rendered
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A regular textured object. The underlying mesh of the
chair.

Figure 3.1: The image of a chair is depicted on the left, while the underlying
graph structure building up the chair’s mesh is shown to the right.

mesh is depicted on the left, and the underlying wireframe is shown on the
right. Such a mesh is used in many fields of application ranging from gaming
to architecture visualization [13]. Each mesh here is represented by a set
of vertices P and edges E, which connect them. The edges E together form
the polygons allowing meshes to represent a surface. Here, it is essential
that each vertex has at least two connecting edges and that each polygon
made out of a series of edges is closed. So that the start vertex is reached
again after traversing all edges of this polygon. In most applications, general
polygons are converted to triangles to make the processing easier [115]. This
can be done quickly by repeatedly removing three adjacent vertices from the
current polygon. We repeat this until no points are left in the polygon. This
process then provides us with a set of triangles T.

However, the biggest drawback of meshes is that they are hard to use as a
learning target in combination with color images as an input [165]. Because
there is no natural mapping between the image pixels and the vertices in
the mesh. In contrast, in semantic segmentation, where each input pixel
is mapped to a class, one can design architectures preserving this local
structure. This preservation is done in fully convolutional architectures where
each convolution uses the local neighborhood of an input pixel. While such
a network still uses pooling operations to reduce the spatial dimension, it
also uses skip connections to keep fine details. For meshes, however, this
is impossible as it requires first compressing the entire image content to a
latent representation and then building up a mesh based on the latent vector.

24



3.2. Point Clouds

The difficulty here is representing a whole scene in one latent vector space.
This compression might work for single objects, as shown in several works
[177, 175]. Nevertheless, no work has shown that it is possible to do this
sufficiently for a complete scene, as the latent space complexity gets too big.
Alternatively, one could try to deform an existing ellipsoid-formed mesh into
the desired shape [165]. However, this also does not generalize to complete
scenes, as it assumes that the object is closed and watertight [165].

Some methods can directly work on meshes, as they can also be viewed as
an undirected graph. They achieve this by encoding the position of each
vertex and its relation to the neighboring connected vertices [164]. Here
a convolution dynamically encapsulates the surrounding vertices and their
information together in each network layer. This process is more complex
than the straightforward task of applying a fixed 3× 3 matrix to an input
image. However, as we are trying to reconstruct meshes, we cannot rely on
methods that only take meshes as input.

In conclusion, we do not rely on meshes in this work, as there is no straight-
forward way of mapping them from the incoming input image domain to the
output mesh/graph domain. Without this transformation, we cannot find a
mapping of our 2D image to a 3D scene.

3.2 Point Clouds

Like meshes, point clouds offer a representation that focuses only on the
boundary of the scene objects. However, in contrast to meshes, these are not
watertight and cannot be easily used for rendering or physics simulations.
They contain the same information but do not offer edge information between
different vertices and, therefore, no polygons. In order to make up for that,
they usually have a higher point density than meshes. Using the same graph
methods defined in the last section is much more challenging without these
edges [12, 9, 171]. In general, the neighborhood is assumed by closeness for
each point instead of relying on edges. This can lead to a wrong link, as
seen in fig. 3.2. Here, the knees of a camel are so close that they would be
connected if one relied on just the proximity.
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Figure 3.2: The knees of the depicted camel show that close points in a mesh
do not necessarily mean that those points are connected [65].

In fig. 3.3, we show a point cloud and its corresponding mesh. Such a point
cloud has the same challenges as a mesh as it is hard to use as an input for
a neural network and is not easy to use as an output target. Nonetheless,
point clouds have been used heavily in research, even though they have these
limitations [121], especially in the case where point clouds are the input, and
a classification value is the desired output [109]. However, point clouds are
rarely used as reconstruction targets, except if a point cloud is an input. As
there is no pixel alignment between the input point cloud and output images.
This missing alignment is similar to the mesh case, as one could view the
vertices of a mesh as a point cloud and drop the edges and polygons.

For the same reason as for meshes, we do not use point clouds to describe our
scenes, as the formulation as a reconstruction target would require a latent
compression again, limiting too much the expressiveness of our method.

3.3 Volumes

Volumes offer a dense representation of a given 3D enclosed space, similar
to 2D images. Such volumes are often defined inside of a 3D cube. In this
work, we assume that each volume has an internal grid, where the resulting
voxels have a fixed side length. Each of them might have one of several
possible states. In the simplest version, each voxel only contains a binary
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A regular textured object. The corresponding point
cloud.

Figure 3.3: A point cloud of the regular textured chair on the right is depicted
on the left here. The points are only distributed on the surface of the object.
This distribution can be achieved by randomly sampling points on all the
triangles.

label, where the states are either free or occupied [24]. In a more complex
solution, one saves a truncated distance to the closest polygon in each voxel,
called a truncated signed distance field (TSDF) V : Ωv → [−σtsdf, . . . , σtsdf]
where Ωv = [0, . . . , 511]3 for a side resolution of 512 [24, 113]. It is called
signed as the sign of each value indicates if the space is occluded or free.
Generally, we use a negative value for occluded space and a positive value
for free voxels. Furthermore, these values are truncated to avoid saving the
distance to a surface across the room, increasing the computation demand
to generate these distances without providing more insight. We formulate
the closest distance dx from a 3D point x to every possible triangle T. Here,
in this scenario, this point x is at the center of every voxel v in the TSDF
voxel grid V . This distance dx is clipped by the truncation threshold σtsdf to
be in the range of [−σtsdf, σtsdf], as defined in eq. (3.1). The full definition of
the truncated signed distance function can be seen in eq. (3.2).

clip(x, σtsdf) = max(−σtsdf,min(σtsdf,x)) (3.1)

V [v] = dx = clip
(

min
∀t∈T

[d(x, t)] , σtsdf

)
,∀v ∈ Ωv (3.2)

These TSDF volumes can be visualized by converting the volume into a mesh
by an algorithm called marching cubes, which calculates for each given voxel
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Full TSDF Full flipped TSDF Proj. TSDF Proj. flipped TSDF

1

0

−1

Figure 3.4: The two on the left represent a full TSDF, and the two on the
right are projected TSDF volumes, using a camera that projects beams into
the scene. Both also have a flipped version, where the free and occupied
space is zero.

and its neighborhood one of the 27 possible resulting shapes, which are then
scaled based on the given distance values [100]. We visualize this in fig. 3.5.
Here the mesh of a chair is first converted into a TSDF volume and then
converted to a mesh with the marching cubes algorithm. We do this for a
side resolution of 128 and 512 to show possible differences in the object detail.
The screws on the lower side of the chair are only distinctly visible for a
resolution of 512 and vanish entirely for a comparatively lower resolution of
128.

However, not all TSDF volumes have the same structure; different approaches
have used different setups. In this work, we use a full TSDF representation,
meaning that each voxel contains the distance to the closest surface. This
stands in contrast to a projected TSDF representation, in which the distance
values are only calculated along the camera view line [24, 84]. The advantage
in such a projected representation is that the TSDF calculation is much
more straightforward, as one has only to calculate a distance image from the
current camera viewport and repeat this process several times, removing the
objects one by one. The biggest drawback in the projected representation
is the big possible jump in values in a TSDF volume. These jumps are
harder to learn for neural networks as moving the TSDF volume by just one
voxel generates substantial differences in the loss, even though the actual
change is neglectable. This substantial difference, in turn, increases the loss,
focusing the weight change during training on the wrong parts. This shift
inconsistency does not happen in a full TSDF representation.

One can also use a flipped TSDF representation. Here the distance value is
zero for free and occluded space and gets bigger towards the surface of an
object. This creates a strict boundary on the surface, where values suddenly
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A regular textured
object

A rendered image of
a reconstructed mesh
based on a TSDF vol-
ume with a resolu-
tion of 128

The same as in b but
with a resolution of
512

A detailed shot of the
reconstructed mesh
with a resolution of
128

Similar to d but with
a higher resolution of
512

Figure 3.5: The reconstructed meshes for different resolutions are presented,
which can be computed with the marching cubes algorithm [100]. There is a
big difference in detail on the upper part of the legs between the resolutions
128 and 512.

change from truncated max to its negative self. The biggest challenge with
this representation is the difficulty of using a marching cubes algorithm
afterward. All four combinations of TSDF volumes are depicted in fig. 3.4.

The most significant advantage these TSDF volumes have is that they can be
efficiently mapped from a 2D image space to a 3D image space. Furthermore,
they are used in planning tools as they provide for each point in space a
distance to the closest polygon, which is valuable information if the main
objective is to avoid collision with other objects [40]. Nonetheless, TSDF
volumes have been limited successful in deep learning tasks as the desired
output resolution to achieve satisfactory results is usually too limited. For
example, a space with a resolution of 128 has 1283 = 2.097.152 output values,
roughly double the amount of a 640× 480× 3 image. If the resolution gets
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even higher, up to 512, for example, we already need around 134.2 million
values per space, which means that each scene needs 536 MB. In order to
deal with such a high resolution, we propose to use compression. For more
details, see section 4.1.

3.4 Viewport Alignment

One of the most significant advantages of our method is the possible alignment
of the 2D input image with the 3D TSDF volume, by transforming our scene
into the camera frame. For that, we transform vertices used for training
from world coordinates xw into the camera frame using the camera matrix
Kextrinsic, i.e., xs = Kextrinsicxw. The camera matrix Kextrinsic is just the
inverse of the rotation and translation of the camera in world coordinates.
Then, to map the camera frustum to a cubical 3D volume, a perspective
projection Kintrinsic is applied to our points xs in the camera frame. The
resulting projection points xp = Kintrinsic are then in the range [−1, 1]3. In
eq. (3.3), the projection matrix Kintrinsic is defined [47].

hnear

hfar

fx

fy

xxxxxxxxxxxxxxxxx

y

z

2

2

2

Kintrinsic

Figure 3.6: The camera frustum depicted on the left is transformed into the
projected cube. For this, we position the camera at the center of the coordinate
system. Here, the opening angles in x and y are shown. Additionally, the
near and far clipping distance hnear and hfar are defined. This frustum gets
then projected with the projection matrix Kintrinsic into a cube with a side
length of 2.
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Kintrinsic =



1

tan(fx)
0 0 0

0
1

tan(fy)
0 0

0 0
hnear + hfar
hnear − hfar

2 · hnear · hfar
hnear − hfar

0 0 −1 0


(3.3)

It uses the horizontal open-angle fx and vertical open-angle fy of the camera.
Additionally, we use a near hnear and far hfar clipping plane. These parameters
are also visually depicted on the left side in fig. 3.6. This projection matrix
allows a direct mapping between the input pixels in an image with the voxels
in our projected cube, as each camera ray starts from the near-clipping
plane and goes to the far-clipping plane. So each pixel can be mapped to
an axis-aligned line in the projected cube. This alignment is crucial as it
allows a convolutional neural network to rely on its local feature extraction.
Without it, it would be necessary to compress the entire scene into one latent
representation. However, one drawback of this projection is that objects
further away from the camera are more compressed in the depth dimension
than objects closer to the camera. This can be seen in fig. 3.7, where the

A scene inside of a camera frustum be-
fore the perspective projection Kintrinsic
is applied.

After the application of Kintrinsic, the
scene is inside a cube with a side length
of 2.

Figure 3.7: An application of the projection matrix Kintrinsic on an exemplary
scene from the 3D-FRONT dataset is shown. Transforming each vertice
into the projected cube with a side length of 2. The compression along the
camera’s viewing direction is stronger for objects further back than for objects
closer to the camera.
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projection matrix Kintrinsic is applied on a selected camera frustum of our
synthetic scenes and maps the content into a projected cube. The objects
closer to the hfar are compressed further in the camera view direction than,
for example, the white chair in the front of the scene. A possible approach to
abate this is discussed in section 6.2.2.

3.5 Implicit

In an implicit representation, a network architecture saves the object in the
weights. The network can then be evaluated for any given 3D coordinate
x, resulting in a signed distance value for that position. This means that,
in contrast to all prior methods, it does not have an explicit representation,
relying on specific positions in 3D space to form the outer hull. Without
this discrete representation, any object could be modeled with arbitrary
detail, as it combines the advantages of point clouds with the more implicit
representation of surfaces in volumes. These distances are valid for any point
in the current query volume, making it more similar to TSDF volumes than
to point clouds or meshes, as these two only represent the surface itself and
not the corresponding volume.

There are two options to visualize this implicit representation. In figure
fig. 3.8, both are depicted. In the middle of the top row, a colored point
cloud is used to visualize the TSDF distance to the surface. These points
can be used to train a neural network, which is done for the right image in
the top row. In order to create this mesh, it is necessary to evaluate the
trained neural network millions of times, which is much more demanding than
rendering a mesh on a modern graphics card. There are several options to do
this. The first one uses the TSDF volume from section 3.3 by evaluating each
grid position. Depending on the chosen resolution, it might require millions
of evaluations before the volume can be transformed into a mesh with a
marching cube algorithm. Secondly, it is also possible to use a ray-casting
approach, in which a ray is cast through the scene for each pixel in an image.
This ray starts at the camera’s location and evaluates the neural network
for this position. We then add the current maximum signed distance to our
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(a) A regular tex-
tured chair rendered
with blender

(b) A TSDF distance
colored point cloud
of the chair

(c) A mesh re-
constructed from
a trained neural
network

(d) A close up of (b) (e) A close up of (c)

Figure 3.8: Two different visualizations for implicit representations are shown
here, as an implicit representation requires the querying of a neural network,
we show the training data and a possible result here. We show the original
mesh on the left, while a colored TSDF point cloud is depicted to its right. The
colors represent the TSDF distance to the surface of the mesh. Additionally,
a neural network was trained with this point cloud, and during inference, a
TSDF volume is filled with its predictions. The TSDF volume can then be
visualized with a marching cubes algorithm.

ray and calculate the TSDF distance for the resulting point. This process is
repeated until the signed distance value is smaller than the threshold value,
indicating that the surface is reached. However, in our tests, the calculations
for one ray took too long to create a real-time rendering application and we
had to resort to the marching cubes algorithm for the visualization.

As mentioned in section 3.4, the alignment with the input image is a crucial
element of this work. We first use the same camera transformation Kextrinsic

and projection matrix Kintrinsic on the point cloud. We then voxelize the point
cloud shown in fig. 3.8 with a fixed resolution. This voxelization enables us to
align the input image with our voxelized point cloud blocks. Furthermore, as
we need to represent this point cloud block in a latent representation to use
it as a reconstruction target later, we can directly and efficiently integrate
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additional information like semantic categories for each point in this latent
representation.

3.6 Semantic Information

Another representation dimension independent of the scene’s general structure
is a human interpretable label. This can be done by assigning semantic labels
to points in our space, enabling us to tell different objects apart based on their
semantic label. This enhances the value of our prediction, as a downstream
task can use this semantic information. Such a semantic label would be
represented as a word. However, such words are human-made and only
roughly describe an object’s nature. They do not have precise definitions. So,
objects might lie on the boundary between different categories. Multiple good
examples highlight how complex this problem truly is: the difference between

Figure 3.9: Possible configurations for a pillow class for one particular couch
are shown here. In the top left, a rendered image created with blender is shown,
and surrounding it, different possible segmentations are presented. These
segmentations illustrate how the pillow class can be interpreted differently,
leading to inconsistent data and, ultimately, wrong predictions in the trained
model. The model is from the 3D-FRONT dataset [48, 49].
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a desk and a table might only be defined by the surrounding objects, not
the object itself. Similarly, the pillow class is hard to define as some pillows
might be part of the couch while others are placed on top for decoration.
This confusion of the pillow class can be seen in fig. 3.9.

Tackling this ambiguity is one of the biggest challenges of semantic segmen-
tation. We are now presented with two options, as highlighted in the last
sections. These are voxel grids and implicit representations, as they have
advantages over other representations in our use case. Therefore, we have
to choose if we incorporate the semantic information into our voxel grids or
in our implicit representation. While theoretically possible to also predict
a category class for each voxel, it quickly poses a problem to the memory
demand of such a system. The reason is that each block would need not
just to predict one TSDF value but multiple additional values depending on
the number of chosen categories. This increase would drastically reduce the
possible output resolution, so we did not pursue this direction. In contrast, in
an implicit representation adding semantic information is a simple matter of
adding a category for each point during the prediction step of the compressed
latent vector. For more details on this see section 4.2.1.

3.7 Scene Representation in Robotics

Each application has different objectives in the extensive field of 3D scene
reconstruction with various methods ranging from SLAM to the methods
described in this work. As we target a 3D scene reconstruction, which can be
applied to future mobile robots, we design our approach with this specific set
of objectives in mind. Our 3D scene reconstruction could be used for planning
a route, in which the distance to the surfaces could be used as guidance for
the safety system. In such a scenario, detecting all occluded areas in the scene
is more important, as missing one might lead to a collision, damaging our
robot. However, if our method by accident predicts free space as occluded,
in the worst case, we are unable to move at all, which is more desirable
than a damaged robot. This means that when evaluating our method on
the precision and recall. We will pay more attention to a higher recall, as
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missing objects, as detailed above, is a much more crucial feature than filling
free space by accident, measured by the precision.
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Scene Compression

„ You’re trying to take something that can be
described in many, many sentences and pages
of prose, but you can convert it into a couple
lines of poetry and you still get the essence,
so it’s that compression. The best code is
poetry.

Satya Nadella

CEO Microsoft

The overarching goal of this work is to achieve highly detailed scene reconstruc-
tions from single images. As we discussed the advantages and disadvantages
of possible scene representations in chapter 3, we focus only on volume grids
and implicit representations in this chapter.

4.1 Truncated Signed Distance Fields

In order to achieve high-resolution Truncated Signed Distance Fields (TSDF),
we propose to compress these volumes. This compression is necessary as
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prior research only works on low-resolution TSDF volumes, reaching only
a resolution of 32 to 128 [177, 173]. In contrast to these works, we reach a
resolution of 512, resulting in 5123 = 134, 217, 728 voxels; this is 512 times
more per scene than for 643 = 262, 144. We have to rely on this compression,
as each volume would need roughly 536.87 MB. Training with such big
targets is impossible on modern hardware as just the last few layers would
already need more memory than most GPUs offer. Our plan is, therefore,
the compression of a 3D scene as a latent representation, which is then used
by a second network as a reconstruction target. This network then converts
a 2D image into this compressed latent representation. Furthermore, as
this compression is built dynamically during the training of the compression
network, we can emphasize the shape of our latent space through loss shaping.
Like image compression algorithms, we break the scene into blocks, and each
block gets compressed into a latent vector. So, we have a grid of unique latent
vectors for a complex scene, where the surface is the most prominent part of
the latent vector information. We focus on the surface while reconstructing
the latent values by increasing the loss for the voxels close to the surface with
a novel loss function.

We propose compressing this huge TSDF volume from a resolution of 5123

to a size of 64× 323, achieving a compression factor of 64. Then each scene
is only roughly 8.38 MB big, making them much easier to be used as a
reconstruction target. As we compress in a block-wise fashion, each block of
size 323 is compressed to a vector of length 64. For the compression of these
blocks, we use an autoencoder.

The first step is to increase the input spatial resolution from 163 to 303 by
including more of the surrounding area. This increased input size ensures that
the boundaries of our output are better reconstructed as it understands what
lies behind the sharp boundary of our block. The block’s input resolution is
determined by our four 3D Convolutions, all performed with no padding. So,
the spatial resolution is reduced by two for every step as we use a filter size of
3. Together with the pooling, we end up with 64 values for our 303 = 27, 000

input values. We use four 3D Convolutions again in combination with
transposed 3D Convolutions, increasing the spatial dimension back to 163.
We then iterate over the whole volume and compress each block to a 64 long
vector. The resulting vectors are stacked again to form a 3D volume.
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303

1
4 × Conv(33)
+ Pooling

····

1
64

reconstruction target

4 × Conv(33)
+ ConvTrans(23)

163

1

Figure 4.1: Approximated structure of the autoencoder to compress TSDF
volumes, which is applied on each 163 block plus padding (303) on the 5123

input space. The result is the encoded latent vector with 64 values in the
middle. With the decoder on the right, we can reconstruct the scene based
on the latent values.

As mentioned in section 3.3, we rely on a complete TSDF volume approach.
This means that there are no sharp jumps in our TSDF volume, making it
easier for the autoencoder, as the output has a natural smoothness, which
only stops at the truncation threshold σtsdf. However, to circumvent that
the autoencoder has to reconstruct the σtsdf value perfectly, we introduce a
clipping of the output values after the last layer olast layer, which does not
have an activation function. This clipping is already defined in eq. (3.1) and
returns the final output o. By clipping, we avoid that a value above the
targeted σtsdf introduces a significant loss and distracts the network of our
desired task of reconstructing the values around the surface well.

−0.2 −0.1 0.1 0.2

200

400

600

y

N(0, σtsdf/4.0)

Figure 4.2: The Gaussian part of eq. (4.1) is depicted, for this visualization,
we set σtsdf to 0.1. This function steadily increases all loss values in proximity
to the boundary.
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As the mean over the 163 = 4096 values does not necessarily indicate how
well the surface is reconstructable with a marching cubes algorithm [100], we
employ a loss shaping on the surface boundaries to focus the attention of the
network. By increasing the loss for values close to the surface of our objects,
we can improve the final surface reconstruction. Here, we rely on a Gaussian
function to strengthen the loss smoothly in relation to the distance to the
surface. In eq. (4.1), we define our used loss Ltsdf for this reconstruction.
Here σtsdf is the threshold at which we clip our TSDF values. In our tests,
we use a value of 0.1, roughly 5% percent, as our world after the projection
spans from [−1,−1,−1] to [1, 1, 1].

Ltsdf (o, y) = ‖o− y‖1 ·
(

1 +N
(

0,
σtsdf

4

)
(y) · 4

σtsdf

)
(4.1)

The variance of our Gaussian of σtsdf/4 was found experimentally. The same
experiments also favored a scaling with 4/σtsdf for the Gaussian. This loss
function is plotted in fig. 4.2. In fig. 4.3, we display the surface normals of a
compressed and then decompressed scene to show the benefits of the Gaussian
loss Ltsdf. Without our loss shaping, the scene compression introduces surface

No surface loss is employed in this scene
compression result.

The surface loss Ltsdf is used in to train
the encoder.

Figure 4.3: The 3D scene presented in the overview figure, see see fig. 1.2, is
blockwise compressed and decompressed. We display here the surface normals
of this resulting decompressed scene, on the left, without the newly introduced
Gaussian loss, and on the right, with the surface loss Ltsdf. Without this loss,
visual artifacts are visible on the surfaces in the scene. Any minor error in
these scene compression results will reduce the final accuracy of our method.
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noise, which will hurt the final performance of the reconstruction. This scene
is the same as in fig. 1.2.

4.2 Implicit Representations

In contrast to section 4.1, we highlight an alternative to a fixed grid structure
by relying here on an implicit representation of our scene [179, 16]. This
means that instead of a 3D grid, we can query our neural network for each
position p in the scene and retrieve the calculated TSDF value. This enables
us to define our resolution depending on the current task and is only limited
by two things. First, by the time we want to spend on querying the network,
and second, the capacity of the network to represent the details of the surface.

4.2.1 Network Design

For this, we design a simple, fully connected neural network, which gets as
input the current query position p and outputs a TSDF value. At first, the
input is transformed with a Fourier transformation from three dimensions
into 128, which is inspired by Tancik et al. [151]. To understand this, we split
this process into two steps. First, we use a basic mapping to transform our
three elements into a Fourier transformed space, with the eq. (4.2). However,
this only produces six outputs, three for the cosine and three for the sinus.
We can increase this by using a Gaussian Fourier feature mapping by defining
a matrix B ∈ Rm×3. Here m is the desired size of our Fourier transformation.
In our experiments, we use 64 as m to achieve 128 final elements. The values
of B are sampled from a normal distribution N (0, σFourier). The resulting
mapping can be seen in eq. (4.3).

Fbasic (x) = [cos(2πx) , sin(2πx)]T (4.2)

F (x) = [cos(2πBx) , sin(2πBx)]T (4.3)
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3

p

128

512

128 1
dtsdf: TSDF output Input

Legend:

Fourier transformation
Fully connected layers
Output

Figure 4.4: The shown network compresses one point p into an implicit TSDF
representation. First, the point gets mapped with a Fourier Transformation
followed by three layers of a fully connected network, producing the TSDF
output. This network itself can only learn one scene representation at a time.

In fig. 4.4, we show our designed architecture. After we transform our p from
3 dimensions into 128 with the Fourier transform, we add two fully connected
layers of size 512 and size 128. Both layers use as an activation function a
ReLU. Finally, we go down to a size of one and use no activation function.
With this, we can train our network for a given scene. However, it would
mean that we need one network per scene. To avoid this, we add a latent
vector at the beginning, which encodes the scene inside our 512-long latent
vector l. We concatenate this latent vector with our Fourier-transformed
input and feed it to the first layer, as shown in fig. 4.5.

We train this network in a two-step process. At first, the latent vector l is
initialized with zeros. We then optimize only the latent vector for a set of
points with their corresponding TSDF values. This optimization is done for
a few hundred steps, after which we freeze the latent vector l and perform
the second step, in which we train the network weights with the same points,
corresponding TSDF values, and newly generated latent vector l. These
two steps are now repeated until the network converges. As highlighted in
section 3.6, our goal with this architecture is to additionally predict semantic

512

l

3

p

128

512

128 1
dtsdf: TSDF output

Input
Legend:

Fourier transformation
Fully connected layers
Output

Figure 4.5: This model has an additional latent vector l as an input to our
network defined in fig. 4.4. Allowing us to save the scene representation inside
the latent vector and not exclusively inside the weights of the network itself.
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Figure 4.6: Our final compression network can convert a given point and
latent vector to its TSDF value and semantic label represented as a probability
distribution over several categories.

segmentation. So, we added another head to our network by adding another
hidden layer just for the class output c. This layer has a size of 16 and
connects with the class output c, which has as many elements as we have
classes. Our final architecture can be seen in fig. 4.6.

This newly designed network allows us to compress scenes into a single latent
vector. So the next step is to voxelize an entire scene into different blocks
and compress each block. This voxelization has several reasons; for one,
our designed network cannot represent an entire scene inside our 512 long
latent vector l, as this would remove any possible mapping between the
input image domain and the output reconstruction domain. This mapping is
crucial to ensure that the information can flow in a localized way through the
network without additionally learning to propagate the information to the
correct positions. Additionally, using only one latent vector per scene would
mean that our reconstruction network must map everything down into one
latent vector. Breaking it up into several blocks makes it easier for the scene
compression network as the blocks contain fewer details and can be seen as
building blocks of our scenes. The final reconstruction network mapping an
image to this result can also exploit this as it only has to predict a specific
block for a particular location. So, our scene is divided with a side resolution
of 16, giving us 163 = 4096 single blocks. The points in each block are scaled
to the interval between -1 and 1.
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4.2.2 Loss Shaping

To guarantee that the surface in each block is well reconstructed, we use
a similar loss shaping technique as in section 4.1. So, we first define the
difference between the TSDF output value dtsdf and the TSDF target value
ytsdf as Ldist in eq. (4.4). The error is defined as an absolute loss, which
minimizes the difference between our predicted value dtsdf and our target
value ytsdf.

Ldist = |ytsdf − dtsdf| (4.4)

The Gaussian distribution presented in section 4.1 has one drawback, through
its wide range of values around zero, which have equally high loss strength
values, the attention is not focused too sharply on the boundary. We fix this
by using a sharper distribution defined in eq. (4.6). Here, the focus lies on the
higher values close to zero, increasing the focus more on the object’s surface
rather than values just close to the surface. This focus is rather beneficial as
we still try to have a high resolution, meaning that the critical points used in
the marching cubes algorithm have a small distance to the surface.

−0.2−0.15−0.1−0.05 0.05 0.1 0.15 0.2

500

1,000

1,500

2,000

dtsdf

Wsurface

Figure 4.7: This graph represents in blue the Wsurface of eq. (4.5), we use a
θsurface of 37.27 and a ε of 0.001. We also depict the Gaussian distribution in
yellow from fig. 4.2.
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4.2. Implicit Representations

Wsurface =
θsurface · σtsdf
|ytsdf|+ ε

(4.5)

Lsurface = Ldist · Wsurface (4.6)

We compare the Gaussian distribution defined in eq. (4.1) to our new distri-
bution in fig. 4.7. The Gaussian distribution is depicted in yellow, and the
new distribution is in blue.

This voxelize process creates sharp boundaries between the different voxels.
To guarantee that these boundaries of each block are reconstructed well,
we change two things. First, we increase the input range for each block by
incorporating points from neighboring blocks. So, we increase the size of each
block by a factor of b. This increases the side length of each block in our
case for b = 1.1 from 2 to 2.2. These points give the network an indication
of what happens beyond the current block’s boundary and ensure that the
final reconstruction has smooth transitions. On top of that, we introduce
a boundary shaping loss to ensure further that the accuracy of the surface
reconstruction at the boundary is higher than without it. This loss also helps
in the final scene reconstruction as it increases the gradient on these points
and, with that, also increases the corresponding gradient relative to the latent
vector l, raising its magnitude during training. Moreover, higher latent values
during our scene reconstruction mean a higher loss and an additional focus
on the boundaries ensures a smooth transition between blocks. To construct
this boundary loss Lboundary, we start by calculating the closest distance
distboundary(p) for each point p to one of the six sides of our boundary cube.
The maximum absolute value of our cube is b. This can be seen in eq. (4.7).
Our distboundary(p) is now inverted by subtracting it from one. After that,

distboundary(p)

distinverse(p)

Lboundary
-1.1 -0.9 -0.7 -0.5 -0.3 -0.1 0.0

point value p[i]
0.1 0.3 0.5 0.7 0.9 1.0 0.00

0.25
0.50
0.75

1.10

Figure 4.8: The different weights for the three parts defined in eqs. (4.7)
to (4.9) are shown here, where we use a boundary size b of 1.1.
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we square it to sharpen the loss around the boundary even more, which can
be seen in eq. (4.8). The final value then scales the Ldist in eq. (4.9). The
change of these values can be seen in fig. 4.8.

distboundary(p) = min

(
b+ min

i∈[1,2,3]
p[i], b− max

i∈[1,2,3]
p[i]

)
(4.7)

distinverse(p) =
(

1− distboundary(p)
)2

(4.8)

Lboundary = Ldist · distinverse(p) (4.9)

Lastly, we need to add the category loss Lcategory to predict the class correctly.

Lcategory =

‖C‖∑
i=1

yc[i] · log(c[i]) (4.10)

This category loss gets then combined with the others in:

Lcombined = Ldist + Lsurface + Lboundary + θcategory · Lcategory (4.11)

Here the θcategory is set after extensive tests to 30.32.

One last challenge remains, our network could overfit on the TSDF values as

-0.75

-0.5
-0.3

0.15

0.8
1.0

1.3

Figure 4.9: Possible overfitting on the TSDF values in a one-dimensional
scenario if the gradient is not restricted. On the bottom of the figure, a dark
blue block depicts our object, and the distances to the object’s surface are
depicted above. The negative TSDF points are red, while the positive points
are blue. In yellow the optimal TSDF prediction values are shown, in green a
best-case prediction, while in purple a failed prediction is shown. This failed
prediction contains high-frequency signals and has overfitted to the data.
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shown in fig. 4.9. As our space is only as densely sampled as our input data,
we want to avoid that TSDF values between two arbitrary points show any
sign of high-frequency changes. These high-frequency changes could arise as
the network tries to overfit on the TSDF values and is not limited to a specific
gradient. So, we introduce a loss on the gradient Lgradient with respect to
the input point p itself. Thus, we subtract from our gradient δLcombined / δp

the maximum value g the gradient should take. This maximum value g is
the maximum change between two points in space, defined in eq. (4.12).
This change relates precisely to the TSDF change disttsdf(pi, pj) defined in
eq. (4.13), as the TSDF values get clipped and have an orientation towards
the surface. Additionally, the change in TSDF space can be smaller than the
one in euclidean space, as seen between the two points on the right in fig. 4.9.

distEuclidean(pi, pj) = ‖pi − pj‖, ∀pi, pj ∈ P (4.12)

disttsdf(pi, pj) = |ytsdf[pi]− ytsdf[pj ]]|, ∀pi, pj ∈ P (4.13)

disttsdf(pi, pj) ≤ distEuclidean(pi, pj), ∀pi, pj ∈ P (4.14)

So, we set the maximum change of distEuclidean(pi, pj) as the upper bound,
which is the same as the δLcombined / δp. After the subtraction, we apply a
ReLU to remove all negative values, indicating a gradient smaller than the
distance between two points. In the end, we scale this loss with our gradient
factor θgradient, as seen in eq. (4.15).

Lgradient = θgradient ·ReLU
(
δLcombined

δp
− g
)

(4.15)

4.2.3 Compressing Millions of Blocks

The final challenge of this implicit representation is the required computation
time. As we use these blocks as reconstruction targets, we need to compress
at least 90,000 scenes, where each scene consists of 163 blocks, meaning we
need to compress 163 × 90, 000 = 368, 640, 000 blocks. Each block takes 1,15
seconds on an NVIDIA Geforce RTX 3090. For all blocks, this would then
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take roughly 12.6 years. As this was beyond our time budget, we needed to
improve this drastically. Nevertheless, the challenge is that each latent vector
needs to be optimized as described in section 4.2.1. So, we perform 1, 400

optimization steps per latent vector l, to get from a zero-initialized vector to
our compressed latent representation.

Our first optimization focuses only on reusing common blocks. So, we split
our scene into three parts based on a TSDF volume grid with a resolution
of 256, created simultaneously with the semantic TSDF point cloud. These
three parts are the boundary, the non-boundary, and the free and filled
voxels. We then spend most time compressing the boundary voxels, as they
contain a surface inside them. For the non-boundary voxels, the process is
more straightforward, as the precision of the reconstructed TSDF values or
semantic classes is not as crucial as for the boundary voxels. For the free
and filled voxels, we precalculate the latent vectors l once and use them.
Correspondingly, all of them get the same ‘void‘ class assigned.

This splitting into different parts already avoids compressing a big chunk
of the data, but we still need to improve it further. Thus, to compress the
boundary voxels faster, we first calculate a database of 1, 483, 472 blocks,
which equates to 750 scenes with the whole 1, 400 steps. We then search
for the block in the database most similar to our current block and use its
latent vector as initialization instead of the zero vector we used before. This
comparison of two blocks is made by voxelizing our TSDF points with a side
resolution of four, giving us 64 different sub-blocks, and for each sub-block,
we calculate the mean TSDF value. Then we add the probability distribution
of the points’ categories to these 64 values, giving us 74 elements in total for
ten categories. The resulting vector characterizes our current block. Now, we
only need to find the block in our database closest to our new 74-long vector
and use it as initialization. This search is done via KD-Tree [8].

By finding and reusing these precalculated latent vectors, we can reduce
the number of necessary optimization steps from 1, 400 down to 750 steps.
Further, we check every 125 steps if the absolute average error over the
reconstructed TSDF values is below 0.02 and the average class accuracy is
above 95%. If that is the case, we conclude this compression and move on to
the next block. We also build up a database for the non-boundary blocks.
This database enables us to reduce the number of steps drastically to 160;
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here, we check every 20 steps if the reconstructed TSDF value is below 0.03.

Luckily, we only have to predict half of the blocks, as most are free or
filled voxels, and secondly, we can speed up the single prediction of a latent
compression by using a closer initialization, increasing the compression speed
per block to 0.3 seconds. So, the time on a single NVIDIA Geforce RTX
3090 is reduced to only 1.27 years or roughly nine days on 50 GPUs. This
speed-up approach gives us a compressed latent representation, which we can
use in our scene reconstruction as a target.
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Chapterfive

Scene Reconstruction

„ Vision is the art of seeing what is invisible to
others.

Jonathan Swift
Poet

Reconstructing an entire 3D scene based on a single color image is challenging,
as the solution space is enormous. This work focuses solely on indoor scenes
in an attempt to limit the solution space; as such indoor spaces are highly
structured and constrict the possible range of solutions. This chapter will
highlight how a single color image can be transformed into a 3D scene
representation, including occluded areas in the scene, e.g. behind a table. We
use the encoded 3D scene representation discussed in chapter 4.

5.1 Tree Architecture

In order to reconstruct an entire scene based on a single color image, we
proposed in prior sections to first project our camera frustum into a cube. This
cube then gets voxelized into single blocks, and each block gets compressed
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into a latent vector, either using the voxel grid or the implicit compression.
So, we are left with a compressed 3D volume of latent representations. The
task is now to convert a color image into a 3D latent representation.

Our first naive approach is to use a general convolutional neural network that
converts at some point in the network the 2D content into 3D by transforming
the 2D feature channels into a new axis in 3D. This transformation can be
done by reshaping a 323 tensor to a 323 × 1 tensor. However, this approach
has one major drawback it requires the network to learn the transformation
of 2D features to a specific 3D location in one step. This is difficult as single
convolutional layers are conceptually designed to perform single easy-to-do
operations [92, 87]. Only combining several of those convolutions makes it
possible to target complex problems [92]. We try to solve this by introducing
intermediate steps into this 2D to 3D conversion. This conversion is done by
splitting a convolutional neural network’s usual linear path into two different
ones. The idea here is that we create two paths for the information to flow,
similar to AlexNet [87], where in our version, one path takes care of the front
of the scene and the other one of the back. So, after some initial 2D feature
extraction layers, their feature output is used as the input to two different
branches. In the end, these two branches are joined to form a 3D volume,
while each branch is responsible for either the front or the back of our scene.
So, in the fusing step of these two branches, one branch forms the front from
the start to the middle of our newly created Z-axis or depth axis, while the
second branch is used for the middle to the end part. This splitting allows
the first branch to be responsible for detecting features closer to the camera,
while the second one does the opposite. We show this architecture in fig. 5.1.

2D Conv

Input 2D Conv

2D Conv

2D Conv

3D combined

3D Conv

Output

Figure 5.1: A simple branch splitting is displayed in this figure, enabling 3D
reconstruction. The upper branch in this image is responsible for the rear
end, and the lower branch is for the front part. Each 2D Conv block can
consist of multiple 2D convolutions, while a 3D Conv block has multiple 3D
convolutions. The output is the encoded latent representation from chapter 5.
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2D Conv

Input

2D Conv

2D Conv

2D Conv

2D Conv

2D Conv

2D Conv

2D Conv

2D Conv

3D combined

3D Conv

Output

Figure 5.2: This depiction combines eight different branches of 2D convolu-
tions into eight depth slices. This combination allows a more granular depth
feature prediction, as the two-branch network shown above.

We can improve this further by using more than just two branches. In fig. 5.2,
we show this for eight different branches, which then learn to represent a
particular depth slice. Making each depth slice smaller enables the network to
separate specific features into particular depth slices more smoothly. However,
the drawback is that we need four times more computations than the two-
branch network. So, we can combine certain parts of this process to reduce
the computational overhead and streamline the process. This reduction is
achieved by combining the two-branch network with the idea of multiple
branches by applying a simple binary tree structure. At first, the input path
is split into two branches, conceptually representing the front and back of our
scene. Then, this process is repeated to create a binary tree with different
layers, so each node is split further, allowing the network first to tackle the
problem of separating a scene into front and back and then progressively into
smaller depth slices. This binary tree can be seen in fig. 5.3.

One last drawback of the proposed method is that the binary tree only creates
a 3D volume with a feature channel size of one. In order to remove this
bottleneck, we create a multi-path mapping of the 2D features to the 3D
volume. This mapping is done by increasing the output of each leaf node so
that we can separate the feature channels of one leaf’s output over the 3D
outputs. So, each 3D combined volume uses the same path from the tree
root to the leaf for a particular slice along the Z-axis but uses a different
slice of the leaf node. In fig. 5.4, we show this for only two 3D volumes with
eight leaf nodes, meaning that each leaf node has to split its feature channels
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2D Conv

3D Combination

Figure 5.3: Our tree-branching architecture: After the feature extraction on
the color image is done, the features are the input to two branches. These
branches are then split several times sequentially to form a binary tree. The
feature channels of the leaves are then combined to form a new axis in 3D.
This splitting divides the mapping problem from 2D to 3D into several smaller
problems, making it easier for a neural network to learn.
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5.2. TSDF Volume Reconstruction

Figure 5.4: This figure illustrates how the multipath approach in the last
leaves of the tree works. Here, the upper row represents the leaves of our tree
architecture. Each leaf has eight feature channels in this example, which are
evenly split over the resulting volumes. In this case, only two volumes are
used.

over the two 3D volumes. We then use the first half of each 2D result in
the left 3D volume, while the second half is used in the right one. These
multiple paths allow us to increase the amount of 3D volumes and remove
the bottleneck.

5.2 TSDF Volume Reconstruction

We start by designing an architecture capable of reconstructing the compressed
TSDF grid-based volume, presented in section 4.1. We coin this architecture
Single View Reconstruction with an TSDF grid-based compression (SVR-GC).
It uses a color image and a surface normal vector image to reconstruct a
323 × 64 encoded TSDF volume. Both images have a resolution of 5123. The
surface normal image has a corresponding normal vector for each pixel in the
image. These surface normal images have been successfully used in mono
depth estimation tasks, as they provide continuity information about the
current scene [183]. These are usually not available in the real world, so we
train a simple U-Net architecture [130] to infer the surface normal image for a
given color image. The compressed output can be decoded after the network
is applied to the image using the autoencoder to achieve a final TSDF volume
with a resolution of 5123.

We assume for now that the training data is already generated for details;
see chapter 6. In the first step of our architecture, we reduce the spatial
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Conv3D
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Figure 5.5: A compressed form of our proposed architecture is shown here.
An exemplary RGB and normal image are used as input to the network on the
left. On them, several convolutions and pooling operations are done to the
spatial size down to 322. We then split the path of the network in two, where
one represents the front and the other the rear part of our scene. This split
is done two more times. The resulting depth slices are then combined into a
3D structure with 64 channels. On that, we perform some 3D convolutions
and use the auto decoder to decode the output of the tree net. Note that
our real model has an additional tree layer, where we repeat the second tree
layer once more.

dimension of the input down to the output dimension of 32 by using four sets
of 2D convolutions, each combined with a max pooling.

Our network’s task is scene reconstruction, which requires the network to
understand the relationship between different objects in the scene, even if
these objects are far apart in the image. We solve this by increasing the
receptive field of general 2D convolutions. Our alteration is inspired by an
inception layer, in which each input is forwarded through several independent
convolutions [149]. These results are then concatenated, and an activation
function is applied. Usually, each path of an inception layer has a different
filter size. As we do not want to increase the computation further, we only
increase the dilation rate and keep the filter size the same for all convolutions.
So, we split the desired amount of feature channels into three parts with a
size of 50%, 25%, and 25%, with corresponding dilation rates of 1, 2, and 4.
This splitting ensures that, for example, 25% of the used feature channels use
a dilation rate of four. All convolutions in this network use a same padding,
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5.3. Implicit TSDF Reconstruction

which appends zero values in the outer frame of the features.

After extracting the 2D features, we use the newly introduced tree architecture
from fig. 5.3. The root node uses two ResNet blocks [70] with a feature
channel size of 128. Each ResNet block contains two convolutions, with a skip
connection skipping these two. The result of the two convolutions and the
block’s input is summed up and passed through a ReLU. Using these ResNet
blocks here allows the network to more easily get trained with more layers
as the loss can be better backpropagated. Each convolution in a ResNet
block uses our inception layer-inspired dilated convolutions to ensure a proper
combination of spatial features. The rest of the layers in the tree use a feature
channel size of 64, primarily to reduce the architecture’s memory footprint.
In the fourth layer, we use the same feature channel size but increase the
number of ResNet blocks from two to three. The final layer consists of a total
of 16 leaf nodes. Again it uses three ResNet blocks, and after those, a last
2D convolution with filter size one is used to increase the filter amount to
128. This is necessary to use our multi-path splitting shown in fig. 5.4. After
combining the 2D features into a 3D volume with the multi-path splitting,
we perform four sets of 3D convolutions paired with a planar 2D convolution
in all directions. All with the same feature channel size of 64. The final 3D
convolution added does not have an activation, as every other layer uses a
ReLU as an activation function [51]. A compressed form of the architecture
for transforming an input image into a reconstructed 3D scene can be seen in
fig. 5.5.

5.3 Implicit TSDF Reconstruction

After discussing how to transform a 2D image to a TSDF voxel grid, we
want to repeat this for the implicit representation, which we call Single View
Reconstruction with an implicit compression (SVR-IC). Here, we need to
slightly adapt the architecture from section 5.2, as the output has a lower
resolution of 16 instead of 32. This resolution decrease makes each block
bigger. To compensate, we increase the feature channel size from 64 to 512,
reaching the same total number of feature values as SVR-GC. This decrease
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Figure 5.6: This presents our proposed architecture going from a single
color image to a compressed implicit scene representation, which is then
decompressed with a decoder. A simple U-Net architecture produces the
surface normal image from the color input image. In contrast to SVR-GC,
the compressed latent resolution is only half as big at 16, while the feature
channel size is eight times bigger.

in spatial resolution also means we have one additional 2D convolution plus
max-pooling before the tree net architecture. Additionally, we also store
semantic information in each block. So, our input image with a resolution
of 5123 is passed through five convolutions with max-pooling operations to
reduce the spatial size to 163 and increase the feature channel size to 256. We
also use one less tree layer as we only need to get to 16 depth slices, resulting
in three tree layers with eight leaf nodes. Each node in the tree uses two
ResNet blocks. Finally, we only use conventional 3D convolutions. These
changes result in the architecture seen in fig. 5.6.

5.4 Loss Shaping

The regression on 4D volumes is a challenging problem, as the number of
values to regress is exceptionally high. In both architectures for SVR-GC and
SVR-IC, the output has 323 × 64 = 163 × 512 = 2, 097, 152 values to regress.
For comparison, the input only has 5123 × 3 = 786, 432 values. So, a focus
has to be set to ensure that the essential values are better reconstructed than
the unimportant ones. By essential values, we refer to the latent values of the
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vectors representing surface boundaries in contrast to a latent vector, which
represents free or occluded space. The goal is to shape the loss so that the
reconstruction of latent vectors representing boundary blocks is prioritized
higher than for free or occupied blocks. In order to achieve this loss shaping,
we propose to increase the loss on blocks in which more complex content is
stored.

5.4.1 TSDF Volume Grid

For the loss generation in SVR-GC, we use the 5123 TSDF volume grid as
starting point. At first, we search for the free blocks in the camera’s line of
sight. For this search, we only have to walk along the Z-axis away from the
camera and check if each voxel is free, meaning their TSDF value is above
zero. All free blocks in the camera’s line of sight before any surface is detected
are set to the status ρ Free. The first block, which TSDF value is below zero
on this ray, gets a value of ρ Surface. This surface loss ρ Surface is much higher
than the ρ Free, as can be seen in the legend of eq. (5.1). We then employ a
flood fill algorithm [142] to find more free blocks which are reachable from
any of the already defined free and visible blocks. These get a value scaled
by the distance to the closest free visible block, called ρNonVisibleFree. Blocks

Camera

ρ Surface : 100 ρ Free : 2 ρ NonVisibleSurface : 0.15

ρ NonVisibleFreeUpper : 0.5 ρ NonVisibleFreeInterpolated : 0.25 ρ NonVisibleFreeLower : 0.15

ρ NotReachable : 0.01

Figure 5.7: In this top-down 2D map of a scene, two objects are depicted.
The two objects in dark blue depict different structures in the scene. For
these two objects, the loss factors are set by the symbols defined in the legend
below. It also contains the weight values used in our approach. The only
exception is the ρNonVisibleFreeInterpolated, which is interpolated between the
upper and lower value based on the distance to the closest ρ Free.

59



Chapter 5. Scene Reconstruction

close to the visible blocks get a higher value than blocks further away. We
argue that it might be more straightforward to predict the free space behind
a small object rather than a larger one. So, we decline the value linearly
starting from the ρNonVisibleFreeUpper down to the ρNonVisibleFreeLower for at
most 7% of the spatial resolution, which correlates roughly to 36 blocks. All
surface blocks that the flood fill algorithm reaches, which are not visible, are
set to ρNotVisibleSurface. As the loss grid is averaged down to match the output
resolution of 323, settings only one value to ρ Surface would not significantly
affect the loss. To fix this, we propose to change the 64 values before and 32
values after it to the same loss of ρ Surface, significantly increasing the amount
of ρ Surface values and, therefore, their importance. All unchanged values are
set to ρNotReachable.

That defines our training loss Lscene for the output o with the ground truth
y in eq. (5.1).

Lscene =

32∑
i

32∑
j

32∑
k

WGC
scene[i, j, k]

64∑
c

‖o
[
i, j, k, c

]
− y

[
i, j, k, c

]
‖ (5.1)

Each summed value of the absolute distance between the output o and
the ground truth y is weighted with the WGC

scene. The normalizing factors
are removed as they only change the magnitude of the loss. An example
of this can be seen in fig. 5.7, where a camera looks into a scene with two
different objects colored in dark blue. W e also mention our used values in
it, indicating that a visible surface ρ Surface should get a high loss value of
100 compared to non-reachable space ρNotReachable with only 0.01. The free
space on the right, which is not visible but reachable from the camera on the
left, gets decreased values compared to free space. As mentioned before, the
final 5123 loss grid is averaged to a resolution of 323. This reduction makes
it possible to use it without additional memory overhead while also shaping
the loss during training to focus on the essential parts of the scene.

5.4.2 Tree Loss Shaping

This loss shaping is used not only on the final output of SVR-GC but also
inside the tree. This loss shaping inside the tree speeds up the training,
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Figure 5.8: The application of the tree-loss is depicted here. For each node in
the tree, the corresponding depth layers from the output are averaged in the
depth dimension. The result is then compared to a reshaped tensor from the
tree node. This process already enforces a sense of the encoded 3D structure
in the tree.

as we already enforce the depth splitting described above during training.
So, for the first split in the layer below the root, we take the result of the
left node and branch it into a 1 × 1 convolution to change the number of
feature channels to 64, so they can be matched to the target output. We then
take the target’s output, use only its first half corresponding to the depth
slice of that left node and average it in the depth dimension. After this, the
L1 loss is computed between the averaged target and the averaged feature
output. Before averaging the 323 × 64 to one value, we first average them
across the feature dimension, reducing it to 323, on which we can add the
averaged loss shaping weights produced in the last section. This weighting
already strengthens essential features during the tree splitting. We show
this in fig. 5.8. This process is then repeated for each tree layer and each
node, where each node is responsible for a different depth slice. Nodes further
down the tree and closer to the leaves get smaller depth slices, while nodes
more to the right in our tree get depth slices further in the back of our scene.
We then sum the losses per layer level in the tree to one value and weigh
them according to their layer height. In the tests, we used the following
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weights [0.2, 0.3, 0.5, 0.8], where the smallest value was for the top level, and
the highest value was for the leaf nodes. The resulting value is scaled by 0.4

and added to the final loss.

5.4.3 Implicit Representation

The implicit representation is stored as a compressed grid for our SVR-IC
approach so that each latent vector represents a different compressed scene
block. In order to keep the focus of the network on the essential blocks, we
use a similar loss shaping as proposed in the TSDF volume case. However, we
perform some changes to improve the loss weights further. The first change
is that we only use a resolution of 256 for the loss grid to save computation
time. We then increase the non-visible free space range from 7% to 59%,
which corresponds to 150 values at a resolution of 256. We further separate
between ρ surface and ρ true surface, where the ρ true surface is reserved solely for
the first voxel in the camera’s line of sight, which is occupied. The ρ surface

is then filled in for 32 values before and 16 values after a ρ true surface value.
Additionally, we do not only consider the camera’s line of sight but use a
sphere with a radius of 16 around each ρ true surface value and set them to
ρ surface as well. This additional step increases the loss on thin objects in all

Camera

Z-axis

sofa surface sofa surface n.v. free half free n.v. wall surface

wall surface n.v. not reachable true sofa surface true sofa surface n.v. upper free n.v.
lower free n.v. true wall surface true wall surface n.v. n.v.=non-visible

Figure 5.9: A top-down 2D map of a scene is shown. The yellow shape on the
left is a sofa, and the blue block on the right is a wall. They determine the
loss values. In contrast to before, the surface values are independent of the
camera direction and spread in all directions, increasing the loss, particularly
around thin objects.
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directions equally instead of just in the viewing direction. The exact process
is repeated for the ρ non-visible surface values, splitting into ρ non-visible true surface

and ρ non-visible surface and also relying on the sphere to get a better and
broader loss shaping in all directions.

Finally, we also combine each loss value with a category label, allowing us to
focus the attention of the network on specific categories. For example, we
increase the loss shaping around objects by a factor of five and keep it the
same for structures like walls or floors. Furthermore, this loss is computed
on the fly during training, allowing these values to change after generation.
In the end, the 2563 generated loss values are replaced by the designated
weights and averaged to a resolution of 163. So, our training loss Lscene for
the output o with the ground truth y is defined in eq. (5.2).

Lscene =

16∑
i

16∑
j

16∑
k

WIC
scene[i, j, k]

512∑
c

‖o
[
i, j, k, c

]
− y

[
i, j, k, c

]
‖ (5.2)

We take the sum of the absolute difference between each output o and
ground truth y and weigh it without dynamic loss weight WIC

scene, which we
generated prior to the training. This loss weight is only used on the final
output and not on intermediate results inside of the tree, as in the SVR-GC
variant.

63



Chapter 5. Scene Reconstruction

64



Chaptersix 010
1011
0100
0101

Synthetic Data Generation

„ Data is a precious thing and will last longer
than the systems themselves.

Tim Berners-Lee
Computer scientist

6.1 BlenderProc

Before our method is trained, we need to create a dataset. This dataset
must allow us to learn to reconstruct an entire 3D scene from a single color
image. Sadly, we cannot rely on existing datasets such as the Matterport3D
dataset [18], in which 90 buildings have been recorded, or five buildings for
the S3DIS dataset [76]. The issue with these is that they are not hole-free and,
therefore, unsuitable for use as a reconstruction target, as it is impossible to
estimate the distance to a surface that does not exist. Furthermore, manually
matching color images with real scenes is exceptionally labor-intensive when
capturing a wide range of various interior spaces. This process is particularly
labor-intensive as we need a complete 3D scene reconstruction of the visible
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Figure 6.1: A possible output from BlenderProc: The rendered color image is
depicted in the top left. The distance image is shown to the right, and below
both, the surface normal vector image and a possible semantic segmentation
are shown.

and occluded areas in the scene for each color image. This 3D model must
contain all surface areas reachable from the camera, and their quality would
set the upper boundary for our approach. So, even the backside of a chair
or a couch visible in the image has to be modeled. As there are no real
datasets available fulfilling our requirements and the effort to create a dataset
in the real world is too tedious, we decided to rely on simulation. One of
the biggest challenges there is simulating realistic color images. Thus, we
created BlenderProc[10], a new open-source tool that allows the generation
of synthetic photorealistic images, as shown in fig. 6.1.

6.1.1 BlenderProc 1.X

The first public release of BlenderProc is designed as a modular-based frame-
work, which gets configured via YAML config files. A typical BlenderProc run
would start with an initialization phase, which starts by downloading Blender
[10]. After the download, all required pip packages inside Blender’s python
environment get installed. This process is entirely automatized to make the

66



6.1. BlenderProc

usage independent of the chosen platform. This independence means that
BlenderProc supports Linux-based systems, Windows, and Mac OS. After
this automatic setup, Blender’s internal state machine is set up to render
our scenes. This setup entails configuring the camera and setting Cycles
[10] as our used rendering engine on all available GPUs. After completing
the setup, an object or an entire scene is loaded into Blender via Blender-
Proc’s API. For this, we offer various loaders for standard formats like OBJ ,
PLY , or STL . On top of that, it is also possible to load complete scenes
from datasets like SUNCG, SceneNet, 3D-FRONT, IKEA, Pix3D, Replica,
ShapeNet, AMASS, and all eleven datasets supported in the BOP challenge
[143, 64, 48, 49, 97, 148, 145, 19, 101, 73, 75]. Furthermore, BlenderProc
supports non-standard datasets like all assets, which can be downloaded from
BlenderKit, PolyHaven, or AmbientCG [38, 181, 30]. After the objects have
been loaded via BlenderProc’s API, we offer options to place them in the
scene. Allowing the loading of an interior scene from the SUNCG dataset,
SceneNet dataset, or 3D-FRONT dataset and then adding an object from
the ShapeNet dataset to it. The ShapeNet object could be randomly placed
above a bed in mid-air, from where it is dropped onto the bed with the
integrated physics [23], see fig. 6.2. This use of multiple objects dynamically
to build a scene allows for the creation of a variety of different datasets for a
multitude of various problems. The original goal was to generate images for
the scene reconstruction task, but a tool like BlenderProc can be easily used
for multiple problems. Ranging from 6D pose estimation, as BlenderProc is
used for a challenge in the European conference on computer vision (ECCV),
called Benchmark for 6D Object Pose Estimation challenge or short BOP
challenge [75], to object segmentation [41, 5, 15] and camera localization
[170].

After placing all objects, we must position a camera in the scene. This
positioning can be done in numerous ways. For example, for the basket on
the bed, the camera could be positioned on a sphere centered around the
basket while focusing on the basket itself. We also check that the basket
is visible and that no walls obstruct the view. Finally, we can render the
scene; for this, BlenderProc offers various renderers. Besides rendering color
information, with a physical-based lighting simulation [120, 10], it is also
possible to render the surface normals, the depth information, the optical
flow, or semantic segmentation. This rendering is done for each camera pose,
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Figure 6.2: A basket from the ShapeNet dataset [19] is first placed above the
bed and then dropped with the physics capabilities of BlenderProc onto the
bed’s surface, resulting in a random placement. The scene with the bed is
from the SceneNet dataset. [64].

and all data related to one pose is saved in an HDF5 container, ensuring no
mixups.

A significant focus of BlenderProc 1.X lies on the specific YAML config
files, which are used to control the flow of the program. Before any of these
modules can be used in the YAML config file, BlenderProc has to be set up,
and it only requires the blender_install_path and the required pip
packages. This setup can be seen in code snippet 6.1.

Code 6.1: The setup for BlenderProc in the YAML config files.

1 "version": 3,
2 "setup": {
3 "blender_install_path": "/home/<env:USER >/ blender/",
4 "pip": ["h5py"]
5 },

After that, the modules are defined in sequential order. Each file starts with
the Initializer Module, which sets up Blender for rendering with Cycles. We
also define a global value accessible in all modules, namely the output_dir .
This global variable makes it easier for each writer to access the desired
output_dir . The input value to the output directory variable is controlled
via the arguments handed over in the command line. We also use such
command line arguments in the next module called the Object Loader, which
loads an OBJ file specified via the first given argument: <args:0> . This
loading can be seen in lines six and seven in code snippet 6.2. After loading,
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we need to position the camera using the camera sampling module. It samples
the camera’s location uniformly in a box, where the camera is rotated to look
at the mean center of all objects. This rotation is achieved using the config
files’ getter and setter system. After setting the five camera poses, we need to
render them, as shown in lines 24 to 28 in code snippet 6.2. We additionally
specify to render the surface normals and the distance images in the same
step. In the end, we store all collected information in HDF5 containers.

Code 6.2: Loading an object, placing a camera and rendering a scene in the
YAML config files of BlenderProc.

1 "modules": [
2 { "module": "main.Initializer",
3 "config":{
4 "global": { "output_dir": "<args:1>" }
5 } },
6 { "module": "loader.ObjectLoader",
7 "config": { "path": "<args:0>" } },
8 { "module": "camera.CameraSampler",
9 "config": {

10 "cam_poses": [
11 {
12 "number_of_samples": 5,
13 "location": {
14 "provider": "sampler.Uniform3d",
15 "min": [-10, -10, 12], "max": [10, 10, 8]
16 },
17 "rotation": {
18 "format": "look_at",
19 "value": { "provider": "getter.POI" }
20 }
21 }
22 ]
23 } },
24 { "module": "renderer.RgbRenderer",
25 "config": {
26 "render_normals": True ,
27 "render_distance": True
28 } },
29 { "module": "writer.Hdf5Writer" }
30 ]

As shown here, it is possible in the YAML config files to refer to internal states
using the getter.Entity and the EntityManipulator . A getter
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can generally return a list of entities or just a single one. It can also return
the attribute of an entity in the scene. However, these getters still have
multiple drawbacks. They are often overly complex and are not adaptable
to all circumstances, requiring the user to set custom properties for loaded
objects to find them later. So, we decided to depart from our specific YAML

config files and move to a more accessible API via python. In python, we
can work with newly designed object classes, which is more straightforward
and familiar to the average user than relying on our custom-designed YAML

config files.

6.1.2 BlenderProc 2.X

As highlighted in the last section, BlenderProc 1.X was designed to have
a rigid sequential pipeline configured via YAML files. For BlenderProc 2,
the goal was to remove those obstacles and liberate the possible use cases.
However, this meant restructuring the entire project, away from fixed modules
that execute a particular task down to functions that influence Blender’s
state machine. So, the setup is now done by executing the bproc.init()

command, making BlenderProc much easier to use. Furthermore, we released
BlenderProc as a pip package, allowing to pip install BlenderProc. After
which, one can directly use our command-line tool named blenderproc .

The code snippet 6.2 from above in the YAML config style boils down to the
code snippet 6.3 in python:

Code 6.3: The setup for BlenderProc with a python config file.

1 import blenderproc as bproc
2

3 bproc.init() # set up blender for BlenderProc
4

5 objs = bproc.loader.load_obj("SCENE_PATH")
6

7 # define a light and set its location and energy level
8 light = bproc.types.Light()
9 light.set_location ([5, -5, 5])

10 light.set_energy (1000)
11

12 # Find point of interest , all cam poses should look towards it
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13 poi = bproc.object.compute_poi(objs)
14 # Sample five camera poses
15 for i in range (5):
16 # Sample random camera location above objects
17 location = np.random.uniform ([-10, -10, 8], [10, 10, 12])
18 # Compute rotation going from location towards poi
19 rot_matrix = bproc.camera.rotation_from_forward_vec(poi -

location)
20 cam2world_matrix = bproc.math.build_transformation_mat(

location , rot_matrix)
21 bproc.camera.add_camera_pose(cam2world_matrix)
22

23 # activate surface normal and depth rendering
24 bproc.renderer.enable_normals_output ()
25 bproc.renderer.enable_depth_output(activate_antialiasing=False)
26

27 # render the whole pipeline
28 data = bproc.renderer.render ()
29 # write the data to a .hdf5 container
30 bproc.writer.write_hdf5("OUTPUT_DIR", data)

We rely on the same principles but give users more freedom of choice. For
example, they can add their own sampling method for the location and are
not bound by the prior defined modules. That means any sampling method
offered, for example, by NumPy [67], can be used. Furthermore, a user can
design their own writer, as the data is just a dictionary mapping each image
type to a list of images for each camera pose.

These design goals make BlenderProc an open-source success, which enabled
us to find bugs more efficiently and get feedback on our new features. Addi-
tionally, the community added their own requested features to BlenderProc,
making it a more accessible and better tool overall. One of our users, for
example, added the possibility to save an image sequence directly as GIF ,
while another provided Windows support. Since October 28, 2019, Blender-
Proc has been an open-source project, and over the years, we have collected
over 1700 stars on Github. The progression gain can be seen in fig. 6.3.
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6.1.3 Advanced BlenderProc Features

BlenderProc is a versatile tool that can generate synthetic color images of
interior scenes. In this section, we highlight some of the most valuable and
more advanced features.

6.1.4 Camera Sampling

To ensure that the rendered images generalize well to the real world and close
the sim2real gap, we need to sample camera poses realistically. We start by
sampling a random location on one of the floor objects in our scene and add
a randomly sampled height and viewing direction. For this pose, we check
if any objects are too close to the camera and if the average distance for
the current view is acceptable. In this work, we set this minimum required
distance to 1.25 meters and the interval for the average distance to be 1.5
to 3.5 meters. This distance check ensures that the camera is placed not
too close to any object avoiding collisions and that there is more than just
empty space in front of it. Some scenes might not have windows or doors, or
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Figure 6.3: GitHub stars over time for the open-source project BlenderProc,
showing how the popularity grew long after the first version’s release.
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sometimes an entire wall is missing, so we remove all camera views, which
look out into the open space. We further improve the realism by detecting
objects in the camera view at a low resolution of 10 by 10, mapping each
pixel to a specific object. We assign each object a score and sum these up
for the generated image; objects which are part of a priorly selected set of
interesting objects get a score of four, and the other a score of one. These
interesting objects enrich the likelihood that a camera pose is chosen. We
have used these categories as interesting: bed, table, sofa, or chair. All those
objects are more likely to be photographed by a human than a blank wall.

σinteresting score =
1

Iheight × Iwidth

Iheight∑
i=1

Iwidth∑
j=1

1(I[i, j] ∈ Cinteresting) (6.1)

Additionally, we calculate a scene variance score σscene score by multiplying
the inverses of the class’s probabilities in our 10× 10 image together, as can
be seen in eq. (6.2). Here, a pixel from the image grid is denoted as I[i, j],
with i and j being the indices and Cpresent contains all classes presented in
the image.

σscene score =
∏

c ∈ Cpresent

 1

Iheight × Iwidth

Iheight∑
i=1

Iwidth∑
j=1

1(I[i, j] = c)

−1 (6.2)

This product of inverse probabilities is high if there are a lot of different classes
and low if one class dominates the scene. So, we try to maximize this value
as it indicates that many different types of categories are present. In the end,
this scene variance score σscene score is multiplied by the averaged interesting
score from above. We use the camera poses, which have a combined score of
σinteresting score and σscene score above 0.8. This value was found experimentally
and gave enough camera poses per scene while excluding shots with few
individual objects.

As this check favors parts of the scene with a high density of interesting
objects, we wanted to strike a balance between these and getting the scene
covered. So, we convert a depth image with a side resolution of 15 pixels into
a point cloud for each new camera pose and check its chamfer distance to
all previous camera poses. For a full definition of the chamfer distance, see
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Figure 6.4: Camera sampling in the 3D-FRONT dataset. Half-transparent
red camera frustums depict the camera poses, only sampled viewing furniture.
Rooms that do not contain any furniture do not get any cameras.

section 7.1.1. We first try to find a new camera pose with a maximum overlap
of 0.5 meters. If this fails for 50,000 tries, we reduce this overlap to 0.25
meters. This sampling might fail in more miniature scenes, with insufficient
space for more camera views.

Combining all of these measurements ensures that we look at the interesting
parts of a scene and not at an empty white wall while also ensuring that
we do not take 20 images of the same couch from the same viewpoint. An
example of this can be seen in fig. 6.4, where the cameras are depicted as
half-transparent red short camera frustums. These only appear in rooms
with objects; additionally, they point at the interesting objects in the scene
while covering the whole room.

Texture Sampling

Geirhos et al. have shown that convolutional neural networks often have a
bias towards textures in contrast to the shape of an object [52]. An example
of this behavior is shown in fig. 6.5. In it, the content image, namely a cat, is
overlayed with a texture image of an elephant. Now, a network pre-trained on
Image-net will classify this cat with the texture of an elephant as an Indian
elephant. However, changing the texture does not change the perceived class
for humans, as the shape is a more vital semantic indicator than the texture.
Based on these results, we try to generate a scene in which the texture is
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Texture image
81.4% Elephant
10.3% indri
8.2% black swan

Content image
71.1% tabby cat
17.3% grey fox
3.3% Siamese cat

Overlayed image
63.9% Elephant
26.4% indri
9.6% black swan

Figure 6.5: An example of the importance of texture randomization. Here, a
cat is overlayed with an Indian elephant skin texture, producing a texture
shape cue conflict. The network uses the texture to classify the instance, not
the shape itself. The images and results are from Geirhos et al. [52]

not directly linked to the semantic category of an object. By removing the
tail for the network to assign a category based on a texture, we force the
network to evaluate the shape, bringing it closer to how humans evaluate our

Figure 6.6: BlenderProc can randomly switch objects’ materials in a scene.
The top left image shows the original image, and the other three shots show
the same content but with randomized materials. This randomization removes
any texture correlation between the image and the output categories.
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surroundings. Therefore, narrowing the gap between how convolution neural
networks interpret the world and how we do it.

For this, we use two different datasets collected from two public domain
web pages, the first being ambientCG and the second one being poly haven
[30, 181]. BlenderProc offers download scripts for both. From these, we
sample a new material, relying on a bidirectional scattering distribution
function (BSDF) shader [7]. This BSDF shader allows us to model real
materials as closely as possible. These sampled materials are replacing
existing materials randomly in the scene. Such a replacement can be seen
in figure fig. 6.6, where the wooden floor is replaced by a brick, cobblestone,
or black wood material, removing all texture cues a network could use and
forcing it to learn the shape of an object.

Randomizing Material Properties

Instead of swapping the material, it is also possible to randomly change
the properties of the existing materials. Figure 6.7 shows an extreme case
where all surfaces are made reflective. Below, we show an instance where
all materials are randomly made reflective with different roughness values
assigned to the BSDF shader. These small changes increase the network’s

Figure 6.7: Different shader properties: Only reflective surfaces are used in
the top right, and on the bottom, a mix of reflective and rough surfaces is
shown.
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resilience against lighting and material changes in the real world.

6.2 SDFGen

In sections 4.1 and 4.2, we compress a scene based on the given TSDF values
and available category labels. The generation of these TSDF spaces required
the development of a new algorithm, as existing methods only worked for
water-tight objects and not a combination of objects forming a scene.

6.2.1 TSDF volume

In section 4.1, we compress a scene based on a given TSDF volume. The
goal is to calculate a full TSDF volume as mentioned in section 3.3. So,
the distance to the closest surface has to be calculated for each voxel in
our voxel grid V : Ωv 7→ [−σtsdf, . . . , σtsdf] where Ωv = {0, . . . , 511}3. For a
resolution of 512, we then have 5123 = 134, 217, 728 TSDF values to calculate.
If we do this for 100, 000 scenes and assume that each TSDF value takes ten
nanoseconds, we would need roughly 425 years to calculate all TSDF values,
assuming each scene has 100, 000 triangles. In this test, we used a NVIDIA
Geforce RTX 3090. So, our main objective is to make this algorithm as fast
as possible while ensuring that each calculated distance is the smallest to all
triangles in a scene.

Distance to a Triangle

We start by optimizing the distance calculation between a point to a triangle,
as the most time is spent on it. If each scene only contains 100,000 triangles,
we need to perform this calculation 1018 times. So, we define our set of 3D
triangles as T, which we map into our camera frame using our predefined
transform Kintrinsic ×Kextrinsic mentioned in section 3.3. We then calculate
for each center point p of each voxel v the distance dtsdf to the closest point
on a triangle t ∈ T and truncate the absolute distance at a maximum value
σtsdf with the clipping function defined in eq. (3.1), i.e.
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dtsdf [p] = clip
(

min
∀t∈T

d (p, t) , σtsdf

)
(6.3)

At first, we precompute ten vectors for each triangle t, namely the normal
vector n of the triangle plane P, and the vectors n⊥ that are orthogonal to
the edges of t and lie inside P. The last six vectors are the n+ and n− that
are parallel to the edges of t and lie inside P . These vectors are displayed in
fig. 6.8, where a triangle t with all corresponding normals is depicted.

To determine the distance dtsdf, we first project our point p into the triangle
plane P. We check with the normals on the triangle’s edges n⊥ if the point
is inside the triangle t or outside. If the point is inside, the distance is simply
the distance between the triangle plane P and the point p. If it is not, it is
either closest to one of the triangle’s edges or closest to one of its corners.
As we need to check each edge with its corresponding n⊥ on its own, we
immediately know which edge border normals n+ and n− to use. If a point is
now between two of these border planes, we know that the closest distance is
now to one of these sides. If it is not, we need to check the distance to the two
points on either side of an edge. This method is also shown in algorithm 1.

We evaluate the speed of our newly designed algorithm by comparing it to
the open-source GeometricTool box designed by David Eberly [43]. So, we
replaced our distance measurement algorithm presented in algorithm 1 with
their suggested algorithm and can report that it now takes 8.586 ns for each
distance calculation instead of 14.951 ns with their method. This reduction
is a speed improvement of roughly 74 %. The main reason is that we use

n⊥2

n⊥1
n⊥3

n+
1

n−
1

n+
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2
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3
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n

Figure 6.8: Triangle t with all normals in yellow that are used to efficiently
compute d (p, t). The corresponding orthogonal planes are shown in blue and
dashed.
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Algorithm 1 In this distance calculation algorithm we use three different
variable colors, which correspond to the main, the edge and the border planes.
1: procedure CalculateDistance(Point p)
2: plnDist←mainP ln.distTo(p)
3: for nr ∈ [1,2,3] do
4: if edgeP ln[nr].distTo(p) < 0 then
5: # Outside, check border planes
6: if borderP ln[nr][1].distTo(p) < 0 then
7: # Dist to left point
8: return sgn(plnDist) · ‖p− borderP ln[nr][1].p‖2
9: else if borderP ln[nr][2].distTo(p) < 0 then

10: # Dist to right point
11: return sgn(plnDist) · ‖p− borderP ln[nr][2].p‖2
12: else
13: # Dist to edge
14: return sgn(plnDist) · edgeLine[nr].distTo(p)

return plnDist

far fewer if-branches in our designed method, as in the approach by David
Eberly, and each if-check on a modern CPU, where the branch prediction
fails, takes much longer. Furthermore, we precalculate the normal vectors of
the plane and the edges beforehand, removing some overhead.

After generating these 134 million TSDF values, they have to be saved to
disc. However, each file would roughly have a size of 536 MB, meaning that
a dataset of 100,000 scenes would need 53 TB of storage. As this is massively
inefficient, we decided to quantize the data and store the TSDF values in
signed 16-bit int values. This quantization only reduces the size by half, so
we further used a "GZIP" compression ending up with 28.8 MB on average
for a file. This size reduction allows us to store 246,000 files in 7.14 TB.

Flood Fill and Octree Splitting

We use some heuristics to speed up the TSDF calucation, avoiding the
processing of the 135 million voxels. At first, we calculate the intersection
between all triangles and voxels in our scene using an octree [106]. We then
use a flood fill algorithm [142], starting from the voxels that intersect with
at least one triangle. For each new voxel, we visit all the closest triangles of
the already visited voxels in a 5 × 5 × 5 area around the current voxel. If
any of these voxels have an intersecting triangle, they are also added to the
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collection. Based on this collection of triangles, we compute the closest one
and its distance to the current voxel. We further improve the efficiency by
setting it to the truncation threshold σtsdf if all visited neighboring voxels
have their distance also set to the truncation threshold. Additionally, every
voxel must get the correct sign to tell if it is inside or outside an object. We
use the normal of each triangle to determine if the point is above or below
our polygon indicating if the point is inside or outside of an object. However,
one corner case does not work, which is illustrated in fig. 6.9. Here, the
closest point is on the edge of the upper and lower triangle. However, for the
inside-out check, the upper one is used. The given sign would be incorrect
as the point lies below the upper triangle but is still outside the object. To
avoid this wrong assignment, we go over all triangles with the same closest
distance. If one of those triangles marks the point as outside, we also mark
the voxel as outside and give it a positive sign.

Instead of comparing each of the 135 million voxels with the 20,000 triangles,
we only need to check roughly 18.1 polygons per voxel. This speed-up makes
the entire process over a thousand times faster and ensures that we only need
a few minutes per scene. As this can be run efficiently in parallel on multiple
CPUs distributed over many nodes, we can generate enough scenes to train a
network in a few days.

p

Figure 6.9: Two polygons in a top view, which share the circled edge. The
distance to this edge in blue shows the distance to the closest point on both
polygons. The area in gray shows where the object is filled.
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6.2. SDFGen

6.2.2 Implicit TSDF

In this section, we create the training data for the implicit representation.
As mentioned before, we do not have a strict grid guiding where all points
are located. This increases the resolution and means that the network’s
architecture is the only limiting factor. Now to train such a network, a
set of points with the corresponding TSDF value and semantic label are
required. The goal is to sample points around all reachable surfaces in the
scene. Each point knows how far it is away from the closest surface and the
surface’s category. Furthermore, we want to decompress the projection in
the Z-direction so that objects are not compressed to the back of the cube.

We first create a TSDF volume grid with a low resolution of 128 using the
method described in the last section, which is depicted in a) of fig. 6.10. The
resulting TSDF volume grid is used to sample 400 so-called anchor points.
Each anchor point has to be in the free space of our TSDF volume. It also
cannot be too close to a surface, requiring that the distance is at least 10%
of the truncation threshold σtsdf. With these anchor points, we can sample
points on the surface of all triangles in our scene. Here, we require at least
three anchor points to be visible for each new point. This visibility check
ensures that only surface parts are included, which are reachable from the
current camera position. So, complete triangles are discarded, while there
might be triangles that are only used partially. An example might be a wall
behind a couch, the parts of the triangle surrounding the couch are reachable,
and the parts in close contact with the sofa are not. This check allows us to
separate these surfaces without splitting them into different pieces.

Our next step corrects the Z-compression introduced through the camera
projection projectionMatrix. The camera projection projectionMatrix

defined in section 3.4 warps the scene inside a cube with a side length of two.
Here, objects further away from the camera experience are compressed while
objects closer to the camera are expanded. We deal with this compression by
first transforming the content into the range of zero to one and then applying
a square root function in Z-direction, i.e.

p[2] =
√

(p[2] + 1) /2 · 2− 1 =
√

2 · p[2] + 2− 1 (6.4)

81



Chapter 6. Synthetic Data Generation

After that, we transform it back to a range of minus one to one. We do
not change the values for X and Y, as these should align with the pixels
in the color image. This decompression can be seen in d) in fig. 6.10. One
disadvantage of this correction is that all flat surfaces are converted into
curved ones. It does not hurt the scene compression, as a network can easily
learn curved structures. Still, it makes the generation process more tricky, as
we can no longer use the triangles for the distance calculation, as they are
only defined by their points and not by their curved surface.

To create our final TSDF points, we take random surface points and add a
random direction vector with a maximum length of 2 · σtsdf, see e) in fig. 6.10.
For each resulting point, we need to estimate the closest distance to a surface,
defined by our surface points. This is done by a nearest neighbor search,
where we find the closest point on the surface for each randomly placed point.

a) Meshed voxelgrid 128 b) Anchor points c) Surface points d) Surface points
Z corrected

e) Sampled points f) TSDF sampled points g) Blocked TSDF sampled points

Figure 6.10: Creating a blocked TSDF point cloud around the reachable
surface. First, the tool described in section 6.2.1 creates a low-resolution voxel
grid a), and in its free space, anchor points are sampled b). These anchor
points are used to determine if a sampled point on the surface is reachable
c). We then remove the Z-compression d) and sample new points around our
surface points e). Finally, we determine the distance to the curved surface f)
and divide it into different blocks g).
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We cannot use the surface point for the distance calculation as it is highly
likely that another point on the surface will be closer than the starting point,
and this distance vector will not be perpendicular to the surface. Thus we
sample around this surface point on the corresponding curved triangle to
find a closer point. This search is done until the distance converges, and the
result is shown in f) in fig. 6.10. The category for this TSDF point is copied
from the corresponding triangle. The result of this algorithm is a point cloud
that stores the TSDF value and category per point shown in fig. 6.11.

The scene compression presented in section 4.2 needs a block of the current
scene as input. So, we voxelize the scene with a resolution of 16 while
expanding each block by a factor of b, including more of the neighboring
voxels. This voxelized input is depicted in g) in fig. 6.10

6.3 Generated Datasets

With BlenderProc and SDFGen, we are equipped to generate the necessary
synthetic training data for this work. This creation entails a detailed process
of how the different kinds of data, such as images, volume grids, encoded

Figure 6.11: The output of the implicit TSDF generation is shown here. We
visualize the TSDF values on the left, while on the right, the categories for
each point are displayed. Each color represents its own category.
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volume grids, and point clouds, are produced.

6.3.1 External Datasets

This work heavily relies on the SUNCG [143], the 3D-FRONT [48, 49], and
the Replica dataset [145]. The SUNCG dataset as mentioned in section 2.1
was created by users of the Planner5D website and consists of 45, 622 scenes,
which the users themselves designed. These users used 2, 550 unique objects
to design various interior scenes. Additionally, we employ the 3D-FRONT
dataset [48] as a training dataset, which consists of 6, 812 different scenes and
uses 16, 563 unique objects from the 3D FUTURE dataset [49]. 3D-FRONT
was designed by Alibaba for the purpose of synthetic data generation. In
contrast, the SUNCG dataset models were designed to be useable in a web
application, drastically limiting each object’s detail level. These different
design goals lead to very different average amounts of vertices and faces,
shown in table 6.1. The amount of vertices and faces for the 3D FUTURE
objects is nearly four times as high, creating much finer detail on each object
and closing the sim2real gap further.

Both training datasets needed refinement to be useable in our complex data
generation pipelines, as our methods require the normals of the objects
to point outwards and the models to be watertight. This meant we fixed

Table 6.1: The SUNCG dataset [143] is compared here against the 3D-FRONT
dataset [48], which uses the 3D FUTURE [49] models. While the SUNCG
dataset has drastically more scenes, the object models have fewer vertices
and faces on average, indicating a lower detail level compared to the 3D
FUTURE models.

Dataset SUNCG 3D-FRONT

Amount of unique objects 2,593 16,563

Amount of scenes 45,622 6,814

Average amount of vertices 2,509.4 9,338.4

Average amount of faces 1,917.1 10,382.0
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38 models in the SUNCG dataset by hand to ensure that they work with
our pipeline. For the 3D-FRONT dataset, we removed 4619 objects from
the 16, 563 objects as the normals of the objects did not consistently point
outwards, therefore breaking the TSDF generation. A manual repair was
impossible as too many objects were broken. Furthermore, we fixed the
categories of 711 objects, which were mislabeled, e.g. a flower pot was labeled
as a childbed. As the main objective is scene reconstruction with added
annotations, we reduced the number of categories to ten, removing the need
for a distinction between, for example, pillows and the couch they are on.
This also means that we combined all types of chair, such as a lounge chair,
book-chair, computer-chair, footstool, sofa stool, bed-end stool, stool, classic
Chinese chair, and dressing chair, etc. in our chair category. Resulting in ten
different categories: void , table, wall , bath, sofa, cabinet , bed , chair , floor ,
lighting , where we use void for all objects, which do not fit in the rest.

For the evaluation, we rely on the Replica dataset. In contrast to the other
two datasets, it is a recording of the real world and does not consist of
simulated objects in synthetic 3D scenes. As it only has 18 different scenes
with 35 rooms, it is impossible to use it to train our method. However, it has
enough variety for a real-world evaluation, allowing us to test our methods in
a realistic setting. These 18 rooms have been recorded with a custom build
rig with an IR projector and four cameras, the resulting images have been
fused with KinectFusion [113], and the resulting TSDF volume was converted
to a mesh with the marching cubes algorithm [100].

6.3.2 2D Images

Using BlenderProc, we need to create six different types of image sets. At first,
we focus on creating color images with the SUNCG dataset. The resulting
dataset is called ISUNCG . In order to render any information in a scene, a
camera has to be positioned in the SUNCG rooms. We rely here on the
SUNCGToolbox [143], which samples camera poses at a camera height of
1.55 meters, while the horizontal opening angle of the camera is fixed to
57.2958◦. Furthermore, the camera’s tilt is fixed to 78.69◦, making the scene
reconstruction problem easier as the floor always has the same slope in the
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final reconstruction. With the fixed hyperparameters, new camera poses are
sampled. Each pose gets a scene coverage score σSUNCG

scene score, which is defined
in eq. (6.5) [143].

σSUNCG
scene score =

∑
c ∈ Cpresent

log

(∑Iheight
i=1

∑Iwidth
j=1 1(I[i, j] = c)

0.1× Iheight × Iwidth

)
(6.5)

This σSUNCG
scene score is the sum over all instances c in the current scene Cpresent.

For each instance c, the logarithm of the relative amount of pixels in the
image I is divided by the number of 10% of all pixels. Each image I has
a resolution of Iwidth = 640 and Iheight = 480, and only camera poses with
more than three instances in the camera view are considered [143].

Using this scene coverage score, we generate 127, 706 camera poses. For each
camera pose, we render with BlenderProc the color images and call this set of
images ISUNCG . In the same run, we also create the surface normal images and
call them I

SUNCG
. One of the generated color images with the corresponding

surface normal image is shown in fig. 6.12.

We also generated camera poses in the 3D-FRONT dataset, now using
BlenderProc to sample poses inside the rooms. For a full definition of the
camera sampling, see section 6.1.4, especially eq. (6.1) and eq. (6.2). Using
this scene variance score σscene score, we can generate 84, 508 color images.

A rendered color image of a SUNCG
scene. The glass windows are frosted to
avoid rendering the outside as well.

The corresponding surface normal im-
age.

Figure 6.12: A color image with its corresponding surface normal image in a
SUNCG scene is shown here. The color image was rendered with BlenderProc
and will be the input to the scene reconstruction network.

86



6.3. Generated Datasets

Table 6.2: The generated different image datasets are defined here. They are
split into three different types of images: color, surface normals, and color
images with swapped textures. They are generated for the SUNCG dataset,
the 3D-FRONT dataset, and the Replica dataset.

Dataset SUNCG 3D-FRONT Replica

Color image I ISUNCG I3D-FRONT IReplica

Surface normal image I I
SUNCG

I
3D-FRONT

I
Replica

Textured swapped color image I − I
3D-FRONT

−

These generated images define our 3D-FRONT color image set I3D-FRONT ,
and for each color image, we generate four different versions with different
sampled textures from the ambient CG textures [30]. So, this generation
produces 422, 540 images for the swapped texture image set I

3D-FRONT
for

the 3D-FRONT dataset. Each can be mapped to one of the 84, 508 surface
normal images I

SUNCG
.

To evaluate our approach, we generate 360 color images IReplica and surface
normal images I

Replica
on the Replica dataset. This generation leads to 20

images per scene. We generate a point cloud from the depth image for each
camera pose and compute the distance to all existing camera poses, rejecting
those too close to existing ones. This removal allows us to spread the camera
poses around the whole scene while still focusing the attention on the more
interesting objects. We rely on the same sampling variance score as for the
3D-FRONT dataset. The five created image-based datasets are depicted in
table 6.2.

6.3.3 TSDF Scene Information

We now need the corresponding 3D scenes represented as TSDF information
for the color image sets defined in the past section. Using SDFGen, we use
the camera poses defined before for SUNCG and 3D-FRONT and generate
the corresponding TSDF information based on the meshes provided in both
datasets. For the TSDF calculation, we use the projection matrix Kintrinsic
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defined in eq. (3.3), where we set the near plane hnear to 1 meter and the far
plane hfar to 4 meters. This setting gives a sufficient range for reconstructing
indoor spaces.

The SUNCG dataset camera poses are converted with SDFGen into voxel
grids, containing the TSDF distance to the closest surfaces. The set of
127, 706 voxel grids is named VSUNCG , where each voxel grid has a resolution
of 5123, resulting in roughly 135 million values per scene, which are stored
as detailed in section 6.2.1. With the autoencoder defined in section 4.1, we
can compress these voxel grids to encoded voxel grids with a resolution of
323× 64, which are used as the scene reconstruction regression targets. These
compressed and encoded voxel grids are called V

SUNCG
.

For 3D-FRONT, we use the implicit encoding strategy as compression, which
is described in section 6.2.2. This implicit compression would require we
sample the TSDF distance for arbitrary points during training. As this is
technically infeasible, we sample first points around the surface, for which
the closest TSDF distance and category of the nearest surface are saved. We
do this for 2, 000, 000 points for 89, 029 scenes. The resulting set of point
clouds with TSDF value and category label is called T3D-FRONT .

For the evaluation of our approach, we rely on the Replica dataset. We use
the 360 camera poses defined for the color images IReplica and surface normal
images I

Replica
to create the TSDF volume with a resolution of 5123 VReplica

and the 2, 000, 000 TSDF distance points with semantic segmentation TReplica

for each scene.

Table 6.3: The two different input modalities, firstly a TSDF voxel grid using
the SUNCG dataset and secondly a point cloud with TSDF and category
values for the 3D-FRONT dataset, are shown here. Both are processed in a
block-wise fashion to produce an encoded volume. For the Replica dataset,
we only need the voxel grid and the point cloud, as a compressed form is
unnecessary.

Dataset SUNCG 3D-FRONT Replica

TSDF voxel grid V VSUNCG − VReplica

TSDF and category point cloud T − T3D-FRONT TReplica

Encoded TSDF volume V V
SUNCG

V
3D-FRONT

−
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Experiments

This chapter will highlight the experimental evaluation of the methods pre-
sented in this work. We will start by evaluating the scene compression
approaches and look closely at their strengths and weaknesses. After this,
we first focus on a TSDF grid-based 3D scene reconstruction followed by a
similar architecture where the focus is to include semantic information. This
inclusion is done by implicitly representing the input space, allowing the
querying of any position for a distance and semantic value while this implicit
space is still encoded in blocks.

All our methods presented in this work use TensorFlow 2.6 and are trained
on the cluster in the Institute of Robotics and Mechatronics of the German
Aerospace Center (DLR). This cluster contains 46 different GPUs ranging
from 8× NVIDIA Geforce GTX 1080 to 16× NVIDIA Geforce RTX 3090.

7.1 Scene Compression

To evaluate the entire pipeline from image to 3D scene reconstruction, we first
start by evaluating the scene compression. In particular, the TSDF volume
grid, which is compressed with an autoencoder, and afterward the gridless
implicit space representation, which relies on a simple neural network.
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Firstly, we show that a voxelized TSDF volume can be compressed by using
an autoencoder. Each 163 block gets compressed into a 64 long latent
vector, later used as a reconstruction target. Secondly, we demonstrate
how to use an implicit representation for encoding such a scene, where
arbitrary query positions are possible instead of fixed query positions like on
a grid. This implicit representation removes the resolution requirements set
by using a voxelized TSDF volume. So, the resolution is bound only by the
neural network’s capacity to compress the scene. Furthermore, it allows the
inclusion of additional information, such as semantic information, into the
latent encoding.

7.1.1 Metrics

A general metric over TSDF volume grids is the IOU, which is the same as
the Jaccard similarity coefficient [82]. Here, we divide the intersection where
all target and output values have the same sign through the union of the
same. We define the IOU between the prediction dtsdf and ground truth ytsdf
of the TSDF values as eq. (7.1).

IOU (ytsdf, dtsdf) =
‖(ytsdf ≤ 0) ∩ (dtsdf ≤ 0)‖
‖(ytsdf ≤ 0) ∪ (dtsdf ≤ 0)‖

(7.1)

This IOU is a good indication of the reconstruction ability, as the sign in a
TSDF volume indicates if we are inside or outside of an object. The goal is
to have a high IOU, which indicates that the occluded space was correctly
estimated for points in the grid. Furthermore, the precision Prec, recall Rec,
and F-score are evaluated; all three are depicted in eqs. (7.2) to (7.4).

Prec(ytsdf, dtsdf) =
‖(ytsdf ≤ 0) ∩ (dtsdf ≤ 0)‖

‖(dtsdf ≤ 0)‖
(7.2)

Rec(ytsdf, dtsdf) =
‖(ytsdf ≤ 0) ∩ (dtsdf ≤ 0)‖

‖(ytsdf ≤ 0)‖
(7.3)

F-Score(ytsdf, dtsdf) =
2× Prec(ytsdf, dtsdf)× Rec(ytsdf, dtsdf)
Prec(ytsdf, dtsdf) + Rec(ytsdf, dtsdf)

(7.4)

The precision indicates how well the correctly predicted space is part of the
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total predicted space, including the wrong predictions. So, a high precision
means that not much of the free space was wrongly classified as occluded.
In contrast to precision, recall measures how much of the occluded area
was correctly detected. This recall value is crucial for any application of
this method, as missing objects in the reconstruction can lead to damaging
collisions, while wrongly predicting free space as occluded only limits the
possible range of movements of a robot in such a space. The harmonic
mean between this recall and precision is called F-Score. It combines the
measurement of the occluded area with attention to the correctly predicted
free area, see eq. (7.3).

One last metric to evaluate the TSDF values in the grid is the �L1 loss:

�L1 = ‖dtsdf − o‖ (7.5)

which indicates how far away each TSDF value from the ground truth is.
This loss is the absolute average difference over the 323 values per block, and
we only perform this check on the voxelized TSDF grid. Minimizing this
value to zero is the overall goal of the compression method. The �L1 and
IOU indicate the performance of the compression method. A high IOU shows
that the method can reconstruct the overall surface, while a low �L1 loss
shows that each value in the block is well reconstructed.

In order to assess the surface reconstruction, we first have to decode the
surface of the scene and then calculate the distance between the ground truth
mesh and the en- and decoded mesh. This mean distance is calculated by
averaging the distance of the ground truth mesh vertices PGT to the closest
point in the predicted mesh Ppred, as shown in eq. (7.6).

CDGT(PGT,Ppred) =
1

‖PGT‖
∑

y∈PGT

min
x∈Ppred

‖x− y‖2 (7.6)

CDpred(PGT,Ppred) =
1

‖Ppred‖
∑

x∈Ppred

min
y∈PGT

‖x− y‖2 (7.7)

CD(PGT,Ppred) = CDGT(PGT,Ppred) + CDpred(PGT,Ppred) (7.8)

The CDGT metric is part of the chamfer distance CD [2], defined in eq. (7.8).
We are more interested in this chamfer distance CDGT as we concentrate
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more on how well the predicted mesh reconstructed the ground truth mesh.
The reason for this is similar to the focus on the recall instead of the precision,
as we are more interested in correctly reconstructing the occluded space than
accidentally predicting free space as occluded. We, therefore, omit predicted
parts which are not in the ground truth; one extreme example of this might
be an entire predicted chair, which is not in the ground truth data. As the
overarching goal of this work is an application in robotics, missing occluded
areas is much worse than occluding more areas than in the ground truth. We
still evaluate the correct occlusion rate with the IOU, the prediction-focused
chamfer distance CDpred, and the full chamfer distance CD. This chamfer
distance focused on the ground truth CDGT can also be viewed as an averaged
Hausdorff distance [68], in which the maximum distance between one point
cloud to another is searched. The chamfer distance for the prediction CDpred

is defined in eq. (7.7). These metrics will enable the validation of our methods
and will show what changes enable them to perform that well.

7.1.2 Truncated Signed Distance Fields

We start by evaluating the performance of compression methods used on the
TSDF volume grids and validate how the changes we have done improve the
performance.

Setup

The autoencoder described in section 4.1 is trained on the SUNCG TSDF
voxel grids VSUNCG described in section 6.3.3 . Here, we use a subset of 270

different TSDF voxel grids, as each contains 323 = 32768 blocks, even though
we remove 99% of the filled and empty blocks. This removal ensures a better
distribution between blocks with a surface or which are filled or empty. We
train the autoencoder for 45 epochs with an Adam Optimizer with a learning
rate of 0.0003 and a batch size of 256. As data augmentation, we rely only
on using a random flip in one of the three axes of the input block, which gets
encoded. This random flipping mainly increases the variability in the data
and stabilizes it against unusual encoding targets.
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Table 7.1: Results of our TSDF grid compression method evaluated on the
SUNCG dataset. These results are obtained by evaluating the voxel-based
metrics, which show that the combination of our proposed improvements has
the best result. Even though the average L1 distance is smaller if our Ltsdf
is removed, the surface performance measured by the recall and the IOU is
more important.

Method Precision Recall F-Score �IOU �L1

Without Ltsdf 99.59 99.75 99.67 99.35 6.128e-5

Without added border 99.31 99.90 99.60 99.22 10.74e-5

Without random flip 99.72 99.61 99.66 99.33 9.371e-5

default 99.64 99.77 99.71 99.42 9.521-5

Results

In order to evaluate the TSDF grid compression, we train several networks
and evaluate these on the SUNCG dataset; we use 68 scenes for validation,
giving us around 2.2 million blocks to compress correctly. Our first training is
the default configuration proposed in section 4.1, which relies on our Gaussian
loss defined in eq. (4.1). As seen in the last row of table 7.1, it achieves an
IOU of 99.42% and an F-Score of 99.71%.

Without this Gaussian loss Ltsdf, the IOU performance drops to 99.35% and
the F-Score to 99.67%. For the IOU, this increases the error from 0.58%

to 0.65%, which means that not using our proposed Gaussian loss increases
the error by 12%. However, using the Gaussian loss increases the overall
�L1 loss over all grid points. Nevertheless, our surface reconstruction has a
higher priority than the correctness of voxels far from the surface. If instead
of relying on a 303 input TSDF voxel grid, we reduce it to the same size
as the output of 163, we can see how the IOU is even more affected than
when removing the Gaussian loss Ltsdf. Then the IOU drops from 99.42% to
99.22%, corresponding to an error increase of 34.4%. The reason for this is
the missing continuity information on the borders of the 323 blocks. Lastly,
we check the effects of removing the data augmentation of randomly flipping
the TSDF voxels. Here, the IOU and F-Score changes are comparable to
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Table 7.2: Our TSDF grid compression method evaluated with surface-based
metrics on the SUNCG dataset. These results show that our proposed
approach improves through the added suggestions, resulting in an overall
surface error of less than 1.417 millimeters. Especially the random flipping
drastically improves the results.

Method CDGT CDpred CD

Without Ltsdf 0.001537 0.001279 0.001408

Without added border 0.001860 0.001681 0.001770

Without random flip 0.001800 0.001597 0.001699

default 0.001417 0.001258 0.001337

removing the Gaussian loss Ltsdf, but the precision slightly improves. One
reason might be that the training data more closely resembles the validation
data, as the most prominent effect is on the blocks, where the surface points
away from the camera. These blocks are under-represented in the training
data and are more represented when randomly flipping the blocks, resulting
in a possible performance drop of blocks facing the camera.

In table 7.2, the chamfer distances for the default method and three ablation
results are presented. The results are similar to the voxel grid-based evaluation.
So, adding a border to the autoencoder brings the biggest improvement overall.
On the other hand, the gain of the Gaussian loss is more focused on the
ground truth-focused chamfer distances CDGT. However, the overall error to
the ground truth is below 2 millimeters and is far better than any application
we desire to work on will need. For the final compression of our proposed
method, the error is even below 1.5 millimeters, as seen in the last row of
table 7.2.

Besides evaluating the quantitative results, we also provide qualitative results
on the scene presented in the main overview in fig. 1.2. We focus on our
proposed default method and its three ablation results, as seen in fig. 7.1.
The scene presented here was first TSDF voxelized with SDFGen and then
compressed and decompressed with the different autoencoders presented in
tables 7.1 and 7.2. On the decoded TSDF voxel grid, we used a marching
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No surface loss Ltsdf is used in this
scene compression result

The random flipping as augmentation
is removed here

The additional borders are not used,
reducing the input to 163

Our default scene compression
method

Figure 7.1: The 3D scene depicted in the overview figure is blockwise com-
pressed and decompressed; see fig. 1.2. We display the effects of our proposed
approaches and show how using our introduced methods improves the re-
sults. Removing the suggested Gaussian loss as shown in the top left or not
adding data augmentations in the form of random flipping the TSDF blocks
introduces visible artifacts in the reconstruction. The same can be said for
reducing the size of the input space from 303 to 163.
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cubes algorithm to extract the surface, which we rendered in BlenderProc,
focusing on the surface normals of the reconstruction to see every minor
detail. In particular, the zoomed-in bit on the coffee table shows evident
artifacts on the boundary of the voxel, which are lessened when using the
final method.

These results show that it is possible to compress a 5123 TSDF volume by a
factor of 64 down to 323 × 64 without introducing major artifacts or losing
finer details. For comparison, JPEG, a standard image compression method,
offers a compression factor between 10 and 15 without more significant losses
[162]. Even more recent image compression methods, such as AVIF [25] and
HEVC [80], only offer compression factors between 20 and 30. This TSDF
grid scene compression enables us to reconstruct full 3D scenes at a high
resolution, as seen in section 7.2.1.

7.1.3 Implicit representations

In this subsection, we want to evaluate the performance of the surface
reconstruction and classification of compressing a scene with an implicit
representation and give evidence for our design choices.

Setup

We use 100 different scenes recorded in the 3D Front dataset T3D-FRONT ,
described in section 6.3.3, each containing a point cloud with 2.000.000 points.
Each point has a corresponding TSDF value and category assigned to it.
This point cloud gets split into a grid with a resolution of 16, resulting in
163 = 4096 blocks, roughly 1.600 blocks of those need to be compressed. The
rest is either completely filled or empty. This splitting process is done by a
small program called TSDFBlocker, allowing us to define overlapping blocks,
as defined in fig. 4.8. The data is then loaded and forwarded through the
compression network defined in section 4.2.1.

We use an Adam optimizer with a learning rate of 0.00627, a batch size of
eight different blocks, and 2048 points per block. Each point is considered
a single batch with a shared latent vector l, giving us a total batch size of
8× 2048 = 16384. After 250 iterations of optimizing a batch of latent vectors
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and data blocks, the training is done, and no further changes can be expected.
The validation is done on 500 scenes from the 90,000 generated scenes from
the 3D-FRONT dataset T3D-FRONT , which are not in the training set.

Hyperparameter Sampling

One crucial step of this network design is the hyperparameter choice. The
reason for this is the needed time to compress an entire scene in the end,
as highlighted in section 4.2.3. This compression can take several years if
not done correctly. So, to ensure that we have the best hyperparameter set
possible for the lowest computational demand, we set up a C-MAES black
box sampler [66] and trained 7.259 networks. This vast amount of networks
is only possible as the training of one network does not take longer than 2
hours. To ensure a quick validation, we used five different scenes to validate
the compression score in this hyperparameter tuning.

The final design choice is presented in section 4.2.1. In order to achieve
this, we show in fig. 7.2 how certain hyperparameters affect the validation
performance. In the top row, the latent dimension of the latent vector l is
changed. We report the IOU and class accuracy for a latent dimension of
128, 256, and 512. The difference for the IOU is greater than for the class
accuracy, indicating that the segmentation can be done without a high latent
dimension. As the results for 256 and 512 are comparable, we evaluate the
256 variant further in table 7.3. In the second row of fig. 7.2, we evaluate
the number of hidden layers on the network accuracy, while one layer is
not enough. A third layer does not provide any benefit under the current
limitation of total multiplications per latent optimization. Lastly, we show
how big the first layer has to be to get satisfactory results. In this scenario,
it is also clear that 512 is the optimum number of weights. The same was
done for the size of the second layer, the size of the Fourier mapping, the
learning rate for the generator, and the latent optimization, the number of
optimization steps for the generator, and the latent vector, and the number
of weights in the hidden layer before the classification is done. Lastly, we also
tried SIREN [141] as an activation function but did not find any improvement
over RELU, especially as SIREN is considerably more computationally heavy.
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Figure 7.2: Results of our hyperparameter optimization. Each row contains a
different hyperparameter. Starting from the top to the bottom, we show the
dimension of the latent vector l, the number of layers in the network, and the
number of weights in the first layer. On the left, the IOU is displayed on the
validation set, and the corresponding classification result is on the right. For
the IOU, the results show how certain hyperparameters limit the possible
accuracy, while for the class accuracy, the effect is neglectable.

98



7.1. Scene Compression

Table 7.3: Results of our implicit segmentation TSDF method are evaluated
on the 3D-FRONT dataset. They show that our proposed changes improve
the outcome, resulting in a IOU reconstruction of 97.93% and a classification
accuracy of 99.67%. If the class accuracy cannot be computed, we denote
this with X.

Method Precision Recall F-Score �IOU �L1 Class Acc.

Without Lsurface 95.76 95.49 95.62 91.74 0.00339 99.57

With Ltsdf 97.08 97.53 97.30 94.81 0.00304 99.65

Without Lboundary 98.98 98.94 98.96 97.92 0.00149 99.65

Without Lgradient 98.93 98.95 98.94 97.91 0.00133 97.73

With ‖l‖ = 256 98.83 98.76 98.79 97.63 0.00195 98.94

No categories 98.82 98.75 98.78 97.68 0.00129 X

default 99.00 98.96 98.98 97.93 0.00130 99.67

TSDF autoencoder 99.59 99.75 99.67 99.35 0.00061 X

Results

The evaluation of the implicit TSDF surface compression and classification is
done as described in the setup on 500 validation scenes. We first create 163

latent vectors for all 163 blocks in the 500 scenes for a given network. The
network described in section 4.2, is called default in the following. Based
on this default network, we made some ablations to highlight the strength of
our design choices. Our first change is the removal of the surface loss Lsurface,
which means that all TSDF values are only optimized after a simple L1 loss.
Compared to the default method, this decreases the average IOU in a 5123

voxel grid spanning the scene from 97.93% down to 91.74%, as displayed in
table 7.3. The error increases by a factor of four as it goes up from 2.07% to
8.26%.

Similar results are obtained if we switch the Lsurface with the Gauss loss Ltsdf
described in eq. (4.1). The IOU performance is better than without any
surface loss but considerably worse than with our proposed exponential loss
Lsurface. On the other hand, if we remove the boundary loss Lboundary or the
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Table 7.4: The implicit compression method is evaluated by comparing the
reconstructed mesh to the ground truth mesh. We compare the chamfer
distance on the ground truth CDGT, the prediction CDpred, and the com-
bined one CD. These results show that our changes improved the surface
reconstruction to a difference between the ground truth and the compressed
version of 8.7 millimeters.

Method CDGT CDpred CD

Without Lsurface 0.017750 0.033747 0.025748

With Ltsdf 0.011579 0.026540 0.019060

Without Lboundary 0.009075 0.009644 0.009360

Without Lgradient 0.009129 0.010270 0.009699

With ‖l‖ = 256 0.008987 0.023282 0.016134

No categories 0.008768 0.010861 0.009814

default 0.008283 0.0091423 0.008712

TSDF autoencoder 0.001715 0.001577 0.001646

gradient loss Lgradient, the changes are less pronounced. We also show the
results for the scenario in which we increase the possible compression further
by reducing the latent dimension to 256. This decreases the F-Score from
98.98% down to 98.79 an 18.6% increase in error. On the other hand, if we
train a method without the possibility of classifying the input points into
our ten different classes, we obtain a marginally better average L1 distance
but lose the option to classify the output. We further evaluate how the
TSDF grid-based autoencoder compares to the implicit method in the last
row of table 7.3. The compression performance is considerably higher with
the autoencoder than with the implicit method, but it does not provide an
easy way to represent a classification label. The advantage of the implicit
method is the unbound possible precision, which in the TSDF grid-based
approach is bound by the input’s resolution.

In table 7.4, the created voxel grid was compared to the ground truth.
However, in table 7.4, the reconstructed mesh created with the marching
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No surface loss Lsurface is used in this
scene compression result The latent space is limited to 256

This example uses the Gauss loss Ltsdf
instead of the Lsurface

Our default scene compression
method

Figure 7.3: The 3D scene depicted in the overview figure is blockwise com-
pressed and decompressed; see fig. 1.2. We display the effects of our proposed
approaches and show how using our introduced methods improves the re-
sults. Removing the suggested Gaussian loss as shown in the top left or not
adding data augmentations in the form of random flipping the TSDF blocks
introduces visible artifacts in the reconstruction. The same can be said for
reducing the size of the input space from 303 to 163.
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cubes algorithm is compared to the ground truth mesh, focusing more on
the mesh than the filled and empty space. The same ablation methods as
before are used. The chamfer distance CD on the reconstructed surface has
an error of 8.7 millimeters in the default setting, while without any surface
loss, the error goes up to 25.7 millimeters. The Gauss loss Ltsdf reduces this
error from 25.7 millimeters down to 19.0 millimeters but is still double as
high as the exponential loss Lsurface. The focus on the surface also shows
the importance of the boundary and gradient loss, as both increase the error
roughly by a millimeter. Reducing the latent dimension down to 256 doubles
the chamfer distance from 8.7 to 16.1 millimeters. These results show how
vital our changes are to ensure that the scene is well-compressed to offer a
valid starting point for the scene reconstruction task.

Besides a quantitative evaluation, we offer in fig. 7.3 a qualitative evaluation,
where we compress and decompress the scene presented in fig. 1.2. The
surfaces in this figure are colored-coded based on the encoded category.
Without the surface loss, the reconstructed mesh dramatically decreases in
quality, especially the couch in the background losses all details, as seen
in the top left of fig. 7.3. Reducing the latent dimension introduces flying
artifacts in the scene and visible surface imperfections on the objects. While
performing better as no surface loss, the Gauss loss still focuses too much on
the neighboring area instead of directly on the points closest to the surface.
If this had been used for the scene reconstruction task, it would have been
the upper limit of the output and, therefore, considerably degraded the
approach’s performance.
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7.2 Scene Reconstruction

In this section, we will evaluate the 3D scene reconstruction from single
color images. We focus here on two approaches, relying on the same tree
net architecture, as described in section 5.1. At first, we will focus on the
volume grid-based 3D scene compression as encoding, named SVR-GC. Then
we show how the results change when we switch to the scene reconstruction
method using the implicit and semantically segmented surface representation,
called SVR-IC. We then compare our approaches to the related work of
Total3DUnderstanding [114] by Nie et al. and P3DSR [26] by Dahnert et al..
Finally, we will evaluate this on images in the wild.

7.2.1 TSDF Volume Grid Compression (SVR-GC)

Setup

Our novel tree network relying on the TSDF volume-based compression
SVR-GC is trained on 128, 005 images ISUNCG from the SUNCG dataset with
the corresponding encoded TSDF volumes V

SUNCG
. During training, we do

not use the generated surface normals, only the ground truth ones. The
model is trained with the Adam optimizer using a learning rate of 1e−4 for
200, 000 steps with a batch size of four.

Results

We evaluate our trained method on 1, 000 images from the SUNCG dataset
and 360 images from the Replica dataset. As highlighted in section 6.3.1,
the limited amount of scenes in the Replica dataset restricts the number
of possible images. We only rely on the color image in these experiments
using our trained U-Net for the surface normal generation. We first evaluate
our method on the SUNCG dataset and report the volume-based results in
table 7.5 and the surface-based results in table 7.6.

Besides the results for our default method SVR-GC shown in the second-to-
last row, we also show some ablation results. Our default SVR-GC achieves
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Table 7.5: Results of SVR-GC on the 1, 000 scenes from the SUNCG dataset.
This table contains the volume-based metrics evaluated on the 5123 TSDF
volume. Our default method performs best in IOU and recall, which we deem
most important in this work.

Method Precision Recall F-Score IOU

No augmentations 85.77 74.93 78.38 66.67

No surface normals 74.34 62.00 64.07 49.62

Reduced no. of 3D layers 84.91 74.75 77.92 66.01

Tree height of three 84.92 73.30 77.00 64.91

Tree height of five 84.20 73.70 76.83 64.59

Default SVR-GC 84.65 77.00 79.21 67.54

No loss shaping WGC
scene 86.65 78.12 80.66 69.67

an IOU 67.54% and a recall of 77.00% while only having a chamfer distance
to the ground truth of 13.15 centimeters on average. Removing the color
augmentations reduces the IOU while more drastically affecting the recall
performance, which is crucial for an application in mobile robotics. We want
to be sure which areas of a scene are really occupied, measured by the recall,
as it can lead to collision damages when occlusions are missed. Interestingly,
while the IOU is reduced, the chamfer distance to the ground truth CDGT is
smaller at 12.85 centimeters. The removal of the surface normals as an input
drastically decreases the performance on the volume-based and surface-based
metrics, as the guidance for flat surfaces is missing and cannot be learned
indirectly through the data. If we reduce the number of 3D layers in the
tree network from 13 to seven, we only see a minor drop in performance,
indicating that speeding up the prediction is possible without hurting the
prediction. We also looked into adapting the height of our tree network by
either removing one tree layer or adding the second layer again. However,
this change does not improve the accuracy, indicating that four is the best
tree height for this use case, except for the chamfer distance CDGT, which
decreases to 12.70 centimeters. Lastly, we remove the loss shaping WGC

scene

from the loss calculation as done in eq. (5.1). This removal slightly increases
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Table 7.6: The surface-based metrics are evaluated here on the SUNCG
dataset. The meshes are reconstructed from the 5123 grid via the marching
cubes algorithm and are then compared to the ground truth.

Method CDGT CDpred CD

No augmentation 0.1285 0.1482 0.1383

No surface normals 0.2406 0.3127 0.2766

Reduced no. of 3D layers 0.1417 0.1528 0.1473

Tree height of three 0.1513 0.1909 0.1711

Tree height of five 0.1270 0.2017 0.1643

Default SVR-GC 0.1315 0.1626 0.1470

No loss shaping WGC
scene 0.2644 0.0893 0.1768

the IOU and even the recall but drastically hurts the chamfer distance CDGT

by doubling it.

In fig. 7.4, we perform a visual ablation study, where we change certain
aspects of our method and evaluate the effect on the performance. The top
row of the figure contains the color input image and the ground truth scene.
In the row below that, our default SVR-GC result is presented; to the right,
we removed the loss shaping techniques. This removal smooths the output as
each compressed block gets treated the same, even if they contain valuable
information. In this instance, the gap between the kitchen island and the
stove is filled. If we remove the color augmentations, we see no significant
difference in prediction strength. However, if we reduce the number of 3D
layers, the finer details are lost, like the indentation for the sink. Removing
the normals as an additional input ruins the scene reconstruction. The main
reason for this is likely the small feature extractor at the beginning of the
network. Changing the height of our tree architecture from four to three or
five does not affect the reconstruction of this scene much.

In fig. 7.5, four scenes from the SUNCG dataset are qualitatively tested with
our SVR-GC model. We selected scenes from four different room types to
show the wide variety of scenes in the SUNCG dataset. These results show
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Input image Ground truth

Default SVR-GC No loss shaping WGC
scene

No color augmentations Reduced no. of 3D layers

No normals Tree height of three

Tree height of five

Figure 7.4: The scene reconstruction with the volume-based compression
SVR-GC tested on one scene from the 3D-FRONT dataset. The top row
contains the input image and the corresponding ground truth. Below the
input image is the prediction of our default SVR-GC approach. The other
six reconstructions are ablation results for the same scene.

106



7.2. Scene Reconstruction

Input image
Ground truth Prediction

Input image
Ground truth Prediction

Input image
Ground truth Prediction

Input image
Ground truth Prediction

Figure 7.5: Four example scenes from the SUNCG dataset reconstructed
with the SVR-GC method. These show four different types of rooms and
how the model performs well in each. The filled bathtub in the first image
is reconstructed well, even though it struggled with the finer details of the
curtain. SVR-GC managed to reconstruct the frosted table inside the kitchen,
even though it is paper-thick. The reconstruction of the living room shows
how it can work with unusual table shapes, even though it omits the armrests
for the chair in the back. The beds in the last row are well-reconstructed.
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Table 7.7: In this table, the volume-based metrics on the Replica dataset are
evaluated. Our default SVR-GC method performs best in IOU and recall on
this challenging dataset. Only the method without the loss shaping performs
better than the default method. However, as the results without loss shaping
contain no fine details, they cannot be compared to the others.

Method Precision Recall F-Score IOU

No augmentation 87.08 64.33 72.37 58.04

No surface normals 73.57 60.06 63.34 47.38

Reduced no. of 3D layers 87.53 65.54 73.36 59.29

Tree height of three 86.62 65.03 72.66 58.28

Tree height of five 86.19 65.95 73.17 58.89

Default SVR-GC 86.79 67.30 74.10 60.01

No loss shaping WGC
scene 89.58 68.44 75.31 61.71

how our model can reconstruct the overall shape of the objects well, even
though it sometimes struggles with thin or dynamic objects such as curtains
or table legs. However, in the second row, a kitchen scene is shown, in which
the reconstruction contains the thin frosted table in the front.

After evaluating the test images from the SUNCG dataset, we now evaluate
SVR-GC on the real world Replica dataset. A quantitative evalatuion on
the 360 images is done in table 7.7 and table 7.8. Our SVR-GC method
achieves an IOU of 60.01% with a recall value of 67.30% with a chamfer
distance of 51.68 centimeters. The augmentations improve the results, as,
without them, the IOU is at 58.04% and the recall at 64.33%. Similarly
to the SUNCG dataset, removing the surface normals as an input reduces
the IOU drastically. Reducing the number of 3D layers slightly increases
the precision while worsening everything else. Changing the tree height has
similar effects as for the SUNCG dataset. Such that a network with a tree
height of five decreases the IOU while also slightly improving the chamfer
distance. In fig. 7.6, we show some quantitative results on the Replica dataset.
The image in the first row contains a couch, which is correctly reconstructed,
even though the coffee table before is neglected. Below is another couch
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Input image
Ground truth Prediction

Input image
Ground truth Prediction

Input image
Ground truth Prediction

Input image
Ground truth Prediction

Figure 7.6: Some quantitative results on the Replica dataset are depicted
here. The reconstruction performances on the two couches in the first two
rows are good. However, the couch table is only reconstructed in the lower
one and forgotten in the upper one. In the third row, a scene with a bed
is reconstructed, impressively it assumes the space next to the bed to be
free, even though this space is not visible. A failure case is presented in the
last row, where the table and chairs are not correctly predicted, most likely
because they are too thin.
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Table 7.8: The surface-based reconstruction is evaluated on the Replica
dataset in this table. Our SVR-GC method only performs 0.85 centimeters
worse on the chamfer distance CDGT than the best-performing ablation
method. Not using our novel loss shaping increases the error by more than
46% on the chamfer distance to the ground truth.

Method CDGT CDpred CD

No augmentation 0.5499 0.3665 0.4582

No surface normals 0.4806 0.4337 0.4571

Reduced no. 3D layers 0.5189 0.3749 0.4449

Tree height of three 0.5373 0.4373 0.4873

Tree height of five 0.4639 0.4076 0.4358

Default SVR-GC 0.4654 0.3962 0.4308

No loss shaping WGC
scene 0.6803 0.3443 0.5123

from an office space, where the more sturdy coffee table and a blue couch are
well-reconstructed. Even though the reconstructed gap between the couch
table and the couch is tiny. The reconstruction of the bed in the third row
correctly detects the free space behind the bed and reconstructs it well, even
though the floor is not visible in this image. A failure case is shown in the
last row, where a table with some chairs misses entirely in the reconstruction.
As SVR-GC sometimes struggles with thin objects, especially if they are too
dissimilar to objects in the simulated SUNCG dataset. Nonetheless, these
results show how well a reconstruction of real-world scenes is possible when
training only on synthetic data.

7.2.2 Implicit Representation (SVR-IC)

Setup

The tree network (SVR-IC) described in section 5.3 is trained on the 89, 029

encoded implicit TSDF volumes V
3D-FRONT

with the corresponding color
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I3D-FRONT and surface normal I
3D-FRONT

images. We do not use the generated
surface normal images for training only during testing. The batch size is set
to two, while the learning rate of the used Adam optimizer is 1e−4. We train
the network for 600, 000 steps and evaluate the resulting approach on the
3D-FRONT dataset T3D-FRONT and on the Replica dataset TReplica .

Results

Our final tree net architecture (SVR-IC) described in section 5.3 is evaluated
on 1, 000 images I3D-FRONT from the 3D-FRONT dataset and on the 360

images from the Replica dataset.

In fig. 7.7, we show four different scenes from the 3D-FRONT dataset. The
tree network only gets the color image and a predicted surface normal image
from the U-Net. The final prediction is presented in the right column,
while the ground truth is depicted in the center. This ground truth is the
decompressed scene created with the implicit TSDF network evaluated in
section 7.1.3. The first row in this figure contains the scene presented in the
main overview in fig. 1.2. In its prediction, the room is well reconstructed,
even though the armchair is incorrectly labeled as a couch, while the ground
truth is labeled as a chair. It appears the closest matching object to this
armchair the network has seen before was labeled as a couch. One noteworthy
thing is the struggle with thin objects, most notably in the second row, where
the stand of the table behind the green chair is not reconstructed. The issue
is that the compression algorithm already struggles with thin objects as only
the space inside an object gets negative TSDF values, which is quite limited
for delicate entities. This struggle can be seen in the first row, where the
white couch table at the wall is not well depicted in the ground truth.

The last two rows of fig. 7.7 show the successful reconstruction of a scene with
a bed and one with an L-shaped couch. These four scenes already highlight
that most objects in the 3D-FRONT dataset are more commonly found in
living and bedrooms, as it provides a wide range of couches and beds but
lacks a good collection of kitchens or bathrooms.

Evaluating our proposed tree network with the implicit encoding quantita-
tively on the 1, 000 images from the 3D-FRONT dataset leads to the results
presented in table 7.9 and table 7.10. We show the voxel-based evaluations for
our default method in the second-to-last row of table 7.9 and the evaluation
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Input image
Ground truth Prediction

Input image
Ground truth Prediction

Input image
Ground truth Prediction

Input image
Ground truth Prediction

Figure 7.7: This figure shows the reconstruction performance of the tree
architecture combined with the implicit TSDF encoding. These four examples
are taken from the 3D-FRONT dataset. On the left, the input to the
reconstruction network is shown, while in the center, the ground truth is
depicted. The reconstructed mesh of the predicted TSDF latent space is
shown in the right column. We used the default method with the predicted
surface normal image. The surface colors represent the categories.
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on the reconstructed mesh in the same row in table 7.10. For the voxel-based
results, we sample the implicit space with a resolution of 512 along each axis
and calculate the precision, recall, F-Score, IOU, and class accuracy as defined
in section 7.1.1. The reconstructed mesh is the back-projected marching
cubes result of this TSDF voxel grid. We report the values for the ground
truth surface normals and surface normals predicted with the U-Net. We
can see that using the predicted normals decreases the performance, but only
in a small range, while still allowing an application in robotics. Our default
approach gets a recall value of 86.3%, while the IOU is at 77.8% and the class
accuracy at 81.8%. However, the consistency of the class predictions can be
seen in fig. 7.7, where instances are consistently labeled as the same category
even if the predicted category is wrong, not showing much random label noise.
On the other hand, the reconstructed mesh closely matches the ground truth
and has an average distance error of 7.2 centimeters for the CDGT with the
predicted surface normals. The combined chamfer distance is slightly worse

Table 7.9: The voxel-based evaluation on the 1, 000 images from the 3D-
FRONT dataset are presented in this table. In the second to last row, we
show our default configuration described in section 5.3. The evaluated metrics
used here are defined in section 7.1.1. We particularly focus on the Recall
and the IOU, as described above. Further, each column contains the values
for using the ground truth surface normals and the predicted surface normals.
We also provide an ablation study for some selected hyperparameters.

Method Precision Recall F-Score IOU Class Acc.

Surface Normal GT pred GT pred GT pred GT pred GT pred

reduced 3D filters 89.2 88.1 90.7 86.5 89.6 86.4 82.2 77.6 86.2 82.7

no inception 88.6 87.0 89.6 84.3 88.7 84.9 80.9 75.2 84.0 79.3

no tree loss 89.5 88.2 88.7 85.8 88.7 86.4 80.8 77.4 84.4 81.3

no wall weight 90.8 88.3 90.9 86.0 90.5 86.5 83.4 77.6 88.1 83.0

tree height 2 90.9 89.4 89.8 84.7 90.0 86.4 82.9 77.4 86.8 82.4

tree height 4 91.0 88.6 88.9 83.5 89.6 85.3 82.3 75.9 86.4 80.2

default SVR-IC 90.1 87.8 91.3 86.3 90.4 86.5 83.5 77.8 86.7 81.8

no loss shaping 92.8 90.5 91.5 85.8 91.9 87.4 85.8 79.0 89.7 84.7
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at 11.6 centimeters. This is because surfaces behind the walls and objects
are sometimes mispredicted, increasing the CDpred. A small example of this
incorrect prediction can be seen in the last row of fig. 7.7, where the floor
is partially reconstructed below the couch. This reconstruction of the lower
side is challenging as some objects have gaps below them, like the bed in the
row above this couch, forcing the network to learn if such a gap exists and
then propagate it properly.

These tables also contain some ablation results, where we changed the archi-
tecture slightly to show the strength of our design choices. In the first row,
we reduce the number of filters per layer in the 3D convolutions from 512 to
256. Therefore, reducing the necessary amount of multiplications. Comparing
the results for the voxel-based evaluation to the default configuration, we
see no major differences. The same is true for the results for the chamfer
distance calculations in table 7.10, where we see the CDGT reduces by a few
millimeters. We further evaluate the effect of our inception layers increasing

Table 7.10: The results on the reconstructed surface of the implicit TSDF
scene reconstruction method on the 3D-FRONT dataset are shown here.
Each predicted mesh is compared to the scene decoded with the implicit
compression network. Our focus is more on the CDGT than on the entire
chamfer distance, as we are more interested in how well the ground truth is
predicted and less in how well the prediction matches the ground truth.

Method CDGT CDpred CD

Surface Normal GT pred GT pred GT pred

reduced 3D filters 0.050 0.074 0.120 0.152 0.085 0.113

no inception 0.050 0.080 0.137 0.180 0.093 0.130

no tree loss 0.052 0.073 0.144 0.164 0.098 0.118

no wall weight 0.047 0.074 0.115 0.163 0.081 0.118

tree height 2 0.049 0.077 0.121 0.155 0.085 0.116

tree height 4 0.047 0.076 0.129 0.175 0.088 0.125

default SVR-IC 0.045 0.072 0.114 0.160 0.080 0.116

no loss shaping 0.077 0.111 0.050 0.094 0.063 0.103
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Input image Ground truth

Default No inception

No wall weight No loss shaping

Layer 3D reduction No tree loss

Tree height of two Tree height of four

Figure 7.8: The different ablation study results are shown here. The first
row contains the input image to the network and the ground truth. Each
row below shows the ablation and the default method results. Our default
method reconstructs the scene best while maintaining minimal surface noise
and ensuring that the green tables are reconstructed well.
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the receptive field using dilated convolutions. Here, we see a more consid-
erable drop in performance as the IOU drops from 77.8% on the predicted
surface normals down to 75.2%, indicating how vital our inception layers
are. On the other hand, removing the inner tree loss defined in section 5.4.3
reduces the IOU slightly while increasing the error on the chamfer distance by
more than a centimeter. If we instead remove the additional loss on non-wall
and non-floor objects, we only see a slight drop in performance. We further
evaluated the effects of the tree’s height on the performance and can show
that a tree height of three the IOU and CDGT is better than for trees with a
height of two or four.

At last, we evaluate the effect of our loss shaping on the performance. While
it increases the IOU and the precision by a considerable margin, it decreases
the recall and deteriorates the CDGT, which is more important in this work
as we want to reconstruct the ground truth mesh correctly. We are less
concerned about predicted objects or surfaces not present in the ground truth.
We also depict the effects of our ablation study on one example of the 3D-
FRONT dataset in fig. 7.8. The default settings show superior performance,
particularly when evaluated on the green tables to either side of the orange
couch. The top surface of the table is only well reconstructed in the default
settings case. While for the no inception test, the no wall weight, and the no
tree loss test, the main criticism is increased surface noise. The importance
of the loss shaping can be seen here too. Without it, all sharper boundaries
of the objects are smoothed over, and finer details are lost entirely, such as
the table or the armchair’s shape. Changing the network architecture only
has little effect on the total performance, even though for the tree with layer
height two, the network predicts random surface noise behind the wall in the
non-reachable space.

After the evaluation, on the 3D-FRONT dataset, we assess the performance
on the real-life Replica dataset. This is done, to ensure that the simulated
data we used for the training transforms well into the real world. Again, we
evaluate the voxel-based metrics in table 7.11 and the surface-based metrics
in table 7.12. Our default method has the best performing IOU and recall
value, which are only slightly worse than for the 3D-FRONT dataset. The
class accuracy is worse than before, based on the qualitative results in fig. 7.9.
The main reason is that many objects are not correctly classified in the
ground truth. The reason for this is the mapping between the Replica classes
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Table 7.11: The volume-based metrics are evaluated in this table on the
360 images from the Replica dataset. This table contains the results for the
ground truth and predicted surface normals while comparing the results of
our default method in the second-to-last row against some ablation results.
The best IOU and best recall value are achieved for our default method.

Method Precision Recall F-Score IOU Class Acc.

Surface Normal GT pred GT pred GT pred GT pred GT pred

reduced 3D filters 83.0 85.9 86.8 78.3 83.7 80.6 73.3 69.0 64.9 67.1

no inception 84.2 85.1 84.4 77.0 83.3 79.3 72.6 67.2 62.9 63.6

no tree loss 83.1 83.9 83.6 79.2 82.2 80.1 71.1 68.3 64.9 64.9

no wall weight 83.1 84.1 83.9 76.7 82.3 78.6 71.3 66.4 70.8 68.9

tree height 2 84.5 85.5 83.5 76.7 82.8 79.4 72.1 67.5 67.5 67.0

tree height 4 84.2 85.0 82.8 75.3 82.2 78.2 71.2 65.9 67.0 65.8

default SVR-IC 84.2 85.3 85.5 79.4 83.6 80.9 73.3 69.5 68.0 66.8

no loss shaping 87.1 87.2 85.7 78.0 85.3 80.8 75.5 69.4 77.5 75.5

and the reduced class set we use. All surfaces in red could not be mapped
to one of our ten categories. It is also apparent that the coffee tables in the
3D-FRONT dataset are usually classified as cabinets in purple, while in the
Replica dataset they are green tables.

Nonetheless, the reconstruction quality is exceptionally high, even though the
network has never seen any of these instances during training. So, it learned
a fundamental understanding of 3D space and interior objects and was able
to reconstruct the main furniture pieces in the scene. This is especially
interesting for the tables and chairs in the last row, where it was even able
to reconstruct the sitting area of the chair, where only the backrest is visible.
However, it estimated the table length wrong and tried to fit the chair at the
end of the table into the reconstruction.

Some of the hyperparameters evaluated on the ablation study are more
important on this dataset than on the training 3D-FRONT dataset. In
particular, removing the wall weight reduces the IOU performances from
69.5% to 66.4%. Interestingly, the difference is less prominent if the ground
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Input image
Ground truth Prediction

Input image
Ground truth Prediction

Input image
Ground truth Prediction

Input image
Ground truth Prediction

Figure 7.9: Four images from the Replica dataset, show the performance
of our approach on real-life data. The reconstruction performance is only
slightly worse than on the 3D-FRONT dataset, indicating that our method
can bridge the gap between the simulation and the real world. The ground
truth surfaces in red do not have a matching category in our reduced class set.
Especially the results on the chairs and table in the last row are impressive,
showing how the network learned to predict the shape of an object in 3D
based only on the color information and the predicted surface normals.
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7.2. Scene Reconstruction

Table 7.12: The surface-based reconstruction metrics in meters are evaluated
on the 360 images from the Replica dataset in this table. We provide the
results of the default approach and some ablation methods. When using the
ground truth surface normals, the chamfer distance on the ground is only 8.4
centimeters, while it only decreases to 10.5 centimeters when relying on the
predicted surface normals. The higher error for the chamfer distance on the
prediction can mostly be attributed to flying surface noise behind the objects
or inside the objects.

Method CDGT CDpred CD

Surface Normal GT pred GT pred GT pred

reduced 3D filters 0.088 0.107 0.211 0.229 0.149 0.168

no inception 0.085 0.110 0.214 0.253 0.149 0.182

no tree loss 0.085 0.096 0.244 0.254 0.164 0.175

no wall weight 0.092 0.111 0.226 0.262 0.159 0.187

tree height 2 0.086 0.112 0.234 0.248 0.160 0.180

tree height 4 0.088 0.111 0.235 0.261 0.162 0.186

default SVR-IC 0.084 0.105 0.206 0.233 0.146 0.169

no loss shaping 0.148 0.168 0.125 0.161 0.136 0.165

truth normals are used, indicating that the wall weight is crucial when the
normals are not perfectly accurate. Furthermore, the reduction of 3D filters
reduces the recall on the predicted surface normals from 79.4% to 78.3%.
As this is not the case for the ground truth surface normals, we can assume
that more 3D filters help correct errors made in the network’s prior layers.
The other hyperparameters behave similarly as on the 3D-FRONT dataset.
When evaluating the surface reconstruction performance, we can see that the
chamfer distance on the ground truth CDGT is worse than on the 3D-FRONT
dataset. The main reason is that the object instances are all unknown, while
in the simulated case, the instance can be learned by heart. We still achieve
a chamfer distance of 8.4 cm for the ground truth surface normals and 10.5
cm for the predicted surface normals. These distances are small enough for
any navigation and planning application on a real robot, as Rollin’ Justin
would usually not navigate through open space with only 10 cm of free space
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between itself and surrounding objects.

7.3 Our Approach compared to Related Work

In order to evaluate the performance of our proposed methods, we compare
the tree net architecture relying on the TSDF volume grid compression,
and the implicit position representation to Total3DUnderstanding [114] and
P3DSR [26]. For this evaluation, we use the Replica dataset as it contains
real-world scenes while providing a dense and hole-free mesh. As the TSDF
volume grid scene reconstruction network and the P3DSR approach were only
trained on scenes with a fixed height and tilt, we repositioned the camera by
adapting the height and tilt of the existing camera poses. We then rendered
new camera images and created the appropriate TSDF volumes. As we need
a category label, we rely on the decompressed scene from the implicit method
as ground truth data.

The results for this are collected in table 7.13. We first evaluate the four
methods on the images from the Replica dataset with different camera heights
and tilts ranging from 45◦ to 80◦. We can only present the volume-based
metrics for our methods, as Total3D and P3DSR do not create a 3D TSDF
volume grid at the end, only a reconstructed mesh, on which we use the
chamfer distance to evaluate the reconstruction accuracy. In this scenario,
our method with the implicit encoding SVR-IC performs best with an IOU
of 69.45% and a chamfer distance of the ground truth mesh with 10.53

centimeters. The second best method in this scenario is P3DSR, which was
not trained for this range, but still performs well. Total3D does not perform
great, with an average error of 30.57 centimeters, even though we provided the
ground truth 2D annotations to reduce the error from the used 2D detector.
Even though we provide the perfect categories for the pixel positions, they are
not transformed well into 3D, leading to only half the performance in class
accuracy. Our method SVR-GC was only trained with a fixed tilt of 78.69◦

and a height of 1.55 meters. So, the performance drops to 41.89 centimeters,
as the range is now between 1.45 and 1.85 meters and 45◦ and 80◦ degrees.

In fig. 7.10, our methods SVR-GC and SVR-IC are compared visually against
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Total3D and P3DSR. Both our presented methods perform better on the
Replica dataset, as either Total3D or P3DSR. In the office scene in the first
row, with a couch and a sturdy coffee table, our methods can reconstruct the
couch and coffee table. At the same time, Total3D got the information about
the couch being presented via the ground truth bounding box but placed the
couch incorrectly in the scene, as it collides with the table in front of it. Our
method SVR-IC miscategorized the coffee table for a cabinet, which might
be a close match. For the bed scene, Total3D placed the bed below the floor
and added small structures next to it, which might be the cabinets. P3DSR
reconstructed the rough shape of the bed, even though it labeled the bed as
floor. SVR-GC reconstructed the bed but could not detect the free space
behind it, most likely because it was not trained on this camera tilt. The
performance for a fixed camera tilt is better (see fig. 7.6). With our method
SVR-IC, we can reconstruct the bed and label it correctly. The ground truth
has a blanket on top, labeled as the void class. For the challenging scene

Table 7.13: Our own two methods and two related works evaluated on the
real-world Replica dataset. We compare the volumetric-based metric on our
methods and the surface-based ones on all of them. In this comparison, it is
clear that our method works best in its designed tilt range with a chamfer
distance to the ground truth of only 10.53 centimeters on average. Methods
that do not provide a class accuracy are denoted with an X.

Angle Method Precision Recall �IOU CDGT CDpred
Class

Acc.

[45◦980◦] Total3D - - - 0.3057 0.3545 32.77

[45◦980◦] P3DSR - - - 0.1728 0.3144 17.49

[45◦980◦] SVR-GC 75.62 60.85 48.28 0.4189 0.4319 X

[45◦980◦] SVR-IC 85.30 79.41 69.45 0.1053 0.2331 66.78

78.69◦ SVR-GC 86.79 67.30 60.01 0.5168 0.3926 X

78.69◦ SVR-IC 82.84 76.65 65.46 0.1081 0.2526 64.86

90◦ P3DSR - - - 0.1858 0.2692 10.74

90◦ SVR-IC 79.97 48.41 41.67 0.3051 0.3751 48.19
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with the multiple chairs around the dining table, all methods except SVR-IC
perform poorly. Even for a fixed camera tilt, SVR-GC does not perform
much better. SVR-IC, on the other hand, can detect the chairs, even though
they are only a few centimeters thick. The only error in that prediction is
that the chair at the back of the table should not be in the prediction as it is
further away than our four-meter boundary. Lastly, we have an image of a
white couch; again, only SVR-IC delivers satisfactory results.

In order to evaluate P3DSR correctly, we need to adapt the evaluation data,
as its training data was created at a camera height of 90 centimeters and a
fixed tilt of 90◦ degrees. On a side note, the authors of P3DSR also relied
on BlenderProc and the 3D-FRONT dataset to generate their training data.
On these adapted views, the performance for our method SVR-IC drops,
as 90◦ is beyond the range of the training data. The main reason is that
reconstructing a scene at a 90◦ angle is more complex than at a tilt. As the
surfaces in the scene are now planar to the camera, making it more difficult

Input SVR-ICTotal3D P3DSR SVR-GC GT

cam tilt 69.9◦

cam tilt 62.4◦

cam tilt 64.9◦

cam tilt 58.1◦
With GT

bounding boxes no segmentation

Figure 7.10: Results on the Replica dataset for four different color images.
All methods only use a color image as an input. Our method SVR-IC shows
the best reconstruction, followed by our other presented method SVR-GC.
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to detect them correctly. This can be seen in table 7.13, as the couch in the
top row of fig. 7.11 was correctly predicted. However, its depth could not
be adequately estimated based on this frontal view; the table and chair are
entirely neglected. In contrast, P3DSR struggles with correctly classifying the
objects even though both methods were trained on the 3D-FRONT dataset.
Nonetheless, is it able to predict the shape of the couch and chair better than
with SVR-IC. We did not create another dataset to evaluate if retraining
with another angle would help, as the creation of the dataset for the training
of SVR-IC takes around 1.3 years of GPU hours.

The same data adaption has to be done for SVR-GC. So, we repositioned the
camera to a height of 1.55 meters and a fixed tilt of 78.69◦ and recreated the
360 images. This adapted data only slightly changes the results for SVR-IC,
as this camera tilt and height are covered in the original training data. On
the other hand, it improves the volume-based result for SVR-GC, while
decreasing the performance for the chamfer distance. The main reason might
be that the output produces so much surface noise when the camera tilt is too
different. So, the closest matching point is closer than with a proper surface
reconstruction. An example of this can be seen in the last row of fig. 7.10,
where the output surface is extremely noisy. Some qualitative results can

Input SVR-ICP3DSR GT

cam tilt 90◦

cam tilt 90◦

Figure 7.11: Four reconstructed scenes for images taken at a tilt of 90◦, similar
to the training data from P3DSR. Both methods only use the color image
shown in the left column. Even though the reconstruction of the objects in
P3DSR is acceptable, the classification of the objects failed. Both the bed
and the couch were classified as floor.
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Input SVR-ICSVR-GC GT

cam tilt 78.69◦

cam tilt 78.69◦

no segmentation

Figure 7.12: Results on the Replica dataset for four different color images.
All methods only use a color image as an input. Our method SVR-IC shows
the best reconstruction while providing a semantic segmentation. Only the
detection of the backside wall in the upper row works better with SVR-GC.

be seen in fig. 7.10 and fig. 7.12. The input images, which have a camera
tilt close to 78.69◦ are well reconstructed, while the image in the last row of
fig. 7.10 has a big difference in tilt, breaking the prediction. However, if the
camera tilt is at 78.69◦ degrees, the segmentation of large objects works well,
like the bed in the first row of fig. 7.12. The SVR-GC method still struggles
with finer objects, like the chair and table in the same figure.

These results show that our methods SVR-GC and SVR-IC can produce 3D
scene reconstructions of different scenes in the Replica dataset.

7.4 Scene Reconstruction in the Wild

After evaluating our approach on the Replica dataset, where we can easily
create a ground truth scene to compare, we want to see now how well SVR-IC
works in the wild. For this, we recorded images in homes all around Bavaria.
This means that after evaluating them on scenes from the Replica dataset,
which has been recorded in the USA, and the 3D-FRONT dataset, which
Alibaba, a Chinese company, designs. We now see how well SVR-IC works
on German interiors. This work will not highlight the architectural difference
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Figure 7.13: These are ten images recorded in five different homes and the
SMiLE lab [160, 60] at the German Aerospace Center (DLR). We have a
collection of different couches that have been reconstructed successfully. The
image of the table and chair on the left in the second row is particularly
difficult, as all objects are made only of thin pieces of wood. Nonetheless,
they appear in the final reconstruction. The image below shows a glass
coffee table, which was not present in the training data and is therefore not
reconstructed well, even though it detected the small stand holding the table
up.
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and interior styles between different cultural zones; we refer to [61, 178, 157]
for this. In fig. 7.13, we show the results on different images recorded in
five homes and the SMiLE lab [160, 60] in the German Aerospace Center
(DLR). These reconstruction results show that with our method SVR-IC it is
possible to reconstruct 3D scenes. In particular, they show that our method
can understand the nature of objects and how they occupy the scene. This
understanding can be seen in the left image in the second row, where a dining
set is reconstructed. Even though SVR-IC failed to reconstruct the back
of the chair right behind the table, it still managed to detect the chair and
place a sitting surface in mid-air. This reconstruction is remarkable, as the
sitting surface is not visible in the single input image. In the last row on the
right, we show an image of the SMiLE lab, where we reconstruct the couch
and parts of the cabinet on the left. Our method slightly struggles with the
curtains in the background as the reconstruction of its surface is particularly
challenging. Overall, these results show that it is possible to reconstruct a
3D scene and segment it simultaneously using only one color image.
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Chaptereight

Conclusion

In pursuit of economic well-being, the number of tasks solved by robots is
growing without ceasing. These robots need to understand and reconstruct
their environment to perform any kind of human task. For the most demand-
ing tasks concerning scene interaction or understanding, it is necessary to
equip the robots with the capability of semantic 3D scene reconstruction.
These 3D scene reconstructions must be quick and precise while using as little
information as possible. To enable the use in everyday systems, it would be
preferable to use only color images without relying on depth images obtained
by advanced cameras. In this thesis, we successfully produce a system capable
of reconstructing 3D scenes using single color images in indoor environments.

So, we started this work by tackling the problem of single-view scene re-
construction, going beyond just reconstructing single objects from images.
By going at it holistically, we were able to combine the full information in
an image to reconstruct every object and structure in the scene. For this,
we selected TSDF grid-based volumes and encoding a surface implicitly as
our scene representations and compressed them as a latent vector using a
neural network. We then designed a novel tree-net architecture enabling us
to learn the transfer of 2D features into 3D while reconstructing the encoded
3D scenes.

Concretely, we highlighted in chapter 3 the possible scene representations and
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discussed the difficulty of aligning meshes and point clouds pixelwise with
a 2D image. We then explained how this could be done for TSDF volume
grids and an implicit representation, encoding a scene in the weights of a
neural network. This alignment between the color image and the scene could
be achieved by projecting the 3D scene into a cube.

In chapter 4, we demonstrated how 3D scene information could be encoded
in a latent representation using a neural network. We showed how such
an autoencoder could compress a TSDF volume grid by a factor of 512.
Additionally, a neural network is explained that can implicitly represent
a surface by allowing the querying for positions in space and returning a
TSDF value and segmentation label for them. This compression enabled
us to encode highly detailed models while reducing the data size of our 3D
scenes to fit them in the memory of a GPU. Furthermore, we could enrich
such encodings with semantic labels, allowing us to reconstruct a scene and
segment it simultaneously.

Chapter 5 established our novel tree-net architecture, allowing the trans-
formation of learned 2D features to 3D, enabling the reconstruction of an
entire 3D scene based on a single color image. We further provided a novel
loss-shaping technique that allows the optimizer to focus on particular 3D
surfaces that are more relevant to the task at hand.

In chapter 6, we described how we created the synthetic data necessary
to train our proposed methods. At first, we detailed how the open-source
software BlenderProc [35, 37] was invented and explained the difference
between the first and second releases. We then elaborate on how TSDF
values can be generated for non-water-tight objects in 3D scenes.

Lastly, we evaluated in chapter 7 our two novel methods for scene compression
and scene reconstruction on the SUNCG, 3D-FRONT, and the real world
Replica dataset. Furthermore, we assessed the quality of our reconstruction
on images taken in the wild without the constraints typically imposed in a
lab environment.

The results of this thesis enable the 3D reconstruction of scenes based on
single color images. Our presented methods allow future robots in new
environments to obtain a metric 3D reconstruction of the scene, removing
the need to record multiple images from different vantage points. We can
now imagine a world in which robots enter homes for the first time and are
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able to plan and navigate freely in them without needing a team of engineers
who first create a detailed map of the environment.

In the presented work, we are mere forerunners in the vast area of research
of single-view whole-scene reconstruction. Future works might focus on
improving the reconstruction precision, especially on delicate objects, by
improving the scene compression or they extend the number of known classes.
Lastly, one could imagine including a color reconstruction for non-visible
surfaces by relying on a NeRF for compressing a scene. One could also
imagine replacing our scene representation with meshes, even though their
alignment to the color image using a deep neural network poses an unsolved
problem. The question of how to represent a 3D scene for deep learning is
fundamental and remains open for future researchers to tackle. We believe
this area has the highest chance of possible innovations to make further
progress in the field of scene reconstruction.

129



Chapter 8. Conclusion

130



AppendixA

Surface Normal Generation

In chapter 5, we use a U-Net architecture [130] to predict a surface normal
image for each color image. We design two U-Net architectures, one for the
SVR-GC approach and the other for the SVR-IC method.

Surface Normal Prediction for SVR-GC

For the training of SVR-GC, we rely on the SUNCG dataset, which we also
used to train this U-Net. We start with our color image with a resolution of
5122, on which a convolution is applied to raise its feature channels to eight.
The output of each convolution before a pooling operation is later used to
be merged with the up-part in the U-Net. We then add a pooling operation
to reduce the spatial size to 256, followed by two ResNet blocks [70]. Each
ResNet block contains two convolutions, where both can be skipped. The
used convolutions rely on the same inception layer defined in section 5.2.
Here we use the first half of the feature channels with a dilation rate of
one. The second half is equally split with a dilation rate of two and three.
This inception layer increases the receptive field, ensuring the entire image is
used. We then perform another pooling followed by three ResNet blocks with
64 feature channels each. Followed by another pooling reducing the spatial
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Figure A.1: Our U-Net architecture for SVR-GC. It transforms a color
input image into its corresponding surface normal image, enabling a scene
reconstruction approach that only relies on color images.

Table A.1: Surface normal results on the on SUNCG and the Replica dataset.
In the top row, we show the results on the SUNCG dataset, where we
achieve that 78.20% of the predicted pixels have an angle difference below 5◦.
However, this drops for the real-world Replica dataset to 39.85%.

Testing dataset Mean Angle Angel Difference

5◦ 11.5◦ 22.5◦ 30◦ 60◦

SUNCG dataset 5.30◦ 78.20 85.40 90.98 93.28 98.98

Replica dataset 15.28◦ 39.85 62.65 78.40 84.07 94.90

dimension to 64, we use another three ResNet blocks without any Inception
layers, as the spatial size is already relatively small. We use another last
pooling operation for the lowest layer, followed by three ResNet blocks with
a feature channel size of 512. From this lowest layer, we apply a transposed
convolution with a stride of two to increase the spatial resolution back to
64 with 256 feature channels. The result of the transposed convolution is
concatenated with the input to the lowest layer. We then apply three ResNet
blocks followed by a transposed convolution with 256 feature channels. This
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Figure A.2: Four examples of our U-Net on the Replica dataset. Even though
we trained with the swapped texture dataset, the texture on the bed in the
first row produces tiny details on the bedspread.

gets done once more with three ResNet blocks now using dilation again, as
the spatial size is 128, followed by a transposed convolution up to a spatial
size of 256. Our last layer contains two ResNet blocks followed by the last
transposed convolution, which gets concatenated with the output of the first
convolution. Its output gets passed through a ResNet block with eight feature
channels, which are then finally mapped to three to produce our predicted
surface normals. This entire architecture is shown in fig. A.1.

In table A.1, we compare the performance of our U-Net on the SUNCG
training dataset, using the color ISUNCG and surface normal I

SUNCG
images,
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with the real-world Replica dataset. The images in both datasets are recorded
with a fixed tilt of 78.69◦ and a height of 1.55 meters, making the task more
straightforward as the floor’s surface normal is always the same. Our trained
U-Net then achieves an accuracy of 78% on predicting the surface normals
of pixels that have an angle difference below 5◦ on the SUNCG dataset,
indicating a high accuracy and prediction performance. However, this does
not translate from the synthetic data to the real-world Replica dataset, where
the performance drops drastically to 39.85%. Below an angle of 11.5◦, our
network still manages to get 62.65% correct on the Replica dataset, which is
enough for our scene reconstruction network.

Besides a quantitative evaluation, we show a qualitative evaluation in fig. A.2.
Our network manages to reconstruct the surfaces of the objects in the scene
well, such as the bed or couch. However, it struggles with the blinds in front
of the window or the changes in color on the white wall as shown in the third
row. Our U-Net manages to predict the surface normals on the challenging
chairs in the lowest row in fig. A.2, enabling a scene reconstruction of these
chairs.
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Surface Normal Prediction for SVR-IC

We use a similar U-Net architecture to predict surface normale images for
our SVR-IC method. It uses as an input a squared RGB image with a side
resolution of 512, where we rely on our dilated inception layers defined in
section 5.2. Each inception layer splits the input in three and uses the first
50% with a dilation of one, while the other half is split in two and uses a
dilation of two and four. Using such an inception layer, we increase the
feature size from 3 to 32 in the first layer. After it, we use max pooling to
reduce the spatial size to 256. The output of each convolution before the
pooling operation in this U-Net will be later concatenated with the result
of the transposed convolutions with the matching spatial resolution. After
the pooling, we perform two inception layers with a feature channel size of
64, ending with another pooling operation. This setup gets repeated for the
subsequent lower spatial resolution of 128 to reach 64. At a spatial resolution
of 64, we only perform one inception layer with 128 feature channels. A
pooling operation is then used as start in our deepest layer; here, we use
six inception layers, the first and last two use 256 feature channels, while
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Figure A.3: Our U-Net architecture. It predicts the input for the surface
normals in the SVR-IC method, enabling a method that only relies on color
images.
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Table A.2: Surface normal results on the 3D-FRONT dataset. The upper
row shows the results using our proposed texture swapping, while the second
row only uses the color and surface normal images for the training. In the
last row, we reduce the inception layer capacity.

Training dataset or Mean Angle Angel Difference

ablation 5◦ 11.5◦ 22.5◦ 30◦ 60◦

I3D-FRONT and I
3D-FRONT

5.96◦ 75.65 89.30 94.69 96.26 98.70

Only I3D-FRONT 7.78◦ 66.26 85.64 92.35 94.40 97.95

Reduced inception layer 6.65◦ 68.17 87.80 94.30 96.04 98.64

Table A.3: Surface normal results on the Replica dataset. The upper row
uses both the normal color and texture-swapped color images, while the
second row relies on the color images without texture-swapping. The last
row contains the results for a reduced inception layer capacity.

Training dataset or Mean Angle Angel Difference

ablation 5◦ 11.5◦ 22.5◦ 30◦ 60◦

I3D-FRONT and I
3D-FRONT

13.64◦ 44.08 67.72 81.48 86.36 95.63

Only I3D-FRONT 17.61◦ 35.03 59.36 74.66 80.42 92.74

Reduced inception layer 15.43◦ 37.11 63.13 78.92 84.34 94.61

the two in the middle have 512 feature channels. After this reduction to a
spatial size of 32, we use a transposed convolution with a stride of two to
increase the spatial resolution to 64. The output is concatenated with the
result of the downstream part. We then use the same amount of inception
layers and features channels as on the way down while replacing the pooling
with a transposed convolution. These transposed convolutions have a fixed
dilation rate of one. The output is an image with three channels containing
the surface normal vector for each pixel in the input image. This architecture
is visualized in fig. A.3.

In tables A.2 and A.3, we compare the effects of randomizing the textures,
as described in section 6.1.4. For this evaluation, we rely on the same color
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Color Input Prediction Ground Truth

Figure A.4: Four examples of our U-Net on the Replica dataset. Even though
we trained with the swapped texture dataset, the texture on the bed in the
first row produces tiny details on the bedspread.

images as for evaluating the SVR-IC method in section 7.2.2. Our proposed
texture swapping mechanism increases the performance on the 3D-FRONT
dataset and the Replica dataset, enabling a mean angle of 13.64◦ while
ensuring that 67% of all predicted surface normals have an error below 11.5◦.
On the training dataset, the performance is remarkable. On average, the
error is below 6% while 75.7% of all vectors have an error below 5◦. We
also trained a network with reduced dilation rates inside the inception layers.
Here, we only use the dilation rates one and two and split the features by
half over the two values. This reduces the performance on the 3D-FRONT
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dataset and the Replica dataset, which shows the importance of our dilated
layers.

In fig. A.4, we demonstrate the performance of our trained U-Net. Even
though our network was only trained on synthetic data, it performs well on
the real-world Replica dataset. Nonetheless, the training with the I

3D-FRONT

does not remove all texture bias, as in the first row, the texture of the
bedspread influence the surface normals. The texture of the blinds behind
the bed confuses the normal prediction completely, leading to a broken scene
reconstruction of this part, as can be seen in the third row of fig. 7.9. Strong
textures on objects are hard to handle; another example is shown in the
third row, where the screen on the wall and the images on the pillow confuse
the network. Even with these minor mistakes, the overall surface normal
reconstruction performance is excellent and is a valuable input to the scene
reconstruction network. It is even capable of capturing fine details, such as
the table and chair legs in the last row of fig. A.4.
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