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Collaborative processes are of increasing importance in many engineering disciplines,
particularly in design and simulation. However, developing an integrative, consistent software
architecture for collaborative applications remains a significant challenge in industry, research,
and education teams. As digitalization progresses, the efficient processing of ever larger and
more complex datasets becomes increasingly important. While various dedicated software
platforms support the exchange and traceability of data as well as the interoperability of tools
and workflows, the efficient integration of large amounts of data into such architectures is still a
significant issue. This paper presents an innovative approach to integrate large datasets utilizing
the HDF5 data format into a collaborative software framework for aircraft engine design and
simulation. The application of the methodology is demonstrated by a practical example from
the field of structural mechanics in part B [1].

I. Nomenclature

CFD = Computational Fluid Dynamics
CGNS = CFD General Notation System
CSM = Computational Structural Mechanics
DLR = German Aerospace Center
GTlab = Gas Turbine Laboratory
GUI = Graphical User Interface
HDF5 = Hierarchical Data Format

II. Introduction
The evolving complexity and interdisciplinary nature of modern engineering applications make collaborative and

multidisciplinary processes increasingly indispensable. Combining expertise from different disciplines is essential
to address many of today’s engineering challenges [2, 3]. However, the exchange and processing of data and the
communication between the individuals involved in these processes can easily become complex and confusing.
Nevertheless, not only the application of heterogeneous design and simulation tools with different levels of detail makes
data processing and ensuring consistency of data even more challenging, the trend towards generating ever larger and
ever greater amounts of data increases the complexity [4].

Various software strategies are employed to overcome these challenges. The approach of a central data model
allows the integration and coupling of tools and enables the regulated exchange of data. This is achieved by providing
standardized data schemes and interfaces. Examples for a central data model include the Common Parametric Aircraft
Configuration Schema (CPACS) [5] and the data model of the Gas Turbine Laboratory (GTlab) framework [6, 7].
Additionally, data provenance is a promising solution for providing and ensuring data consistency. Embedded into a
collaborative architecture, data can be tracked throughout its lifecycle. Changes, including metadata about who modified
what data and why, are noted. This allows the identification of affected data, that must be updated, and processes, that
must be reevaluated [8].
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However, a critical problem arises when dealing with simulation workflows such as high fidelity Computational
Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM) analysis that are executed on clusters or outside
the collaborative architecture. As outlined by Cui et al. such workflows may be considered as opaque black-box-
transformations in which each output element may depend on any combination of input elements [9]. Consequently,
individual data modifications are difficult or even impossible to track with existing data provenance approaches, and
data consistency cannot be guaranteed. Moreover, the substantial amount of data generated by these processes poses a
significant hurdle. Typically, large datasets are stored in binary formats such as Hierarchical Data Format 5 (HDF5).
Due to their format, these datasets are opaque and cannot be easily searched, indexed or compared. The exchange of
large datasets or even subsets becomes impractical due to the increased amount of data that must be handled. This is of
particular importance when applying the approach of a central data model and within collaborative environments.

This paper presents a methodology to overcome the challenges associated with managing large datasets, particularly
those generated by black-box simulations. The proposed approach focuses on reducing the complexity of these datasets
and effectively integrating them into an existing collaborative architecture. Data consistency is achieved even for large
and opaque datasets without requiring changes to the existing framework architecture. In particular, data solely based
on the binary format HDF5 is examined. The data format was chosen due to its prevalence for high-fidelity analysis,
particularly in the area of collaborative simulation and design in engineering applications. A detailed application of the
methodology presented is depicted in part B, in which a compressor blisk is examined using three-dimensional (3D)
finite element analysis [10].

III. Hierarchical Data Format
HDF5 is a binary data format that is optimized to store and manage large data [11]. Internally, such data is organized

in a tree hierarchy consisting of groups and datasets. Groups represent nodes in the hierarchy, which may have groups and
datasets as child nodes. A dataset represents a leaf node and cannot have any child nodes. A simplified representation
of an HDF5 file is depicted in Fig. 1a. For accessing the internal structure and data of an HDF5 file, a variety of
programming interfaces in the most common programming languages are available.

A dataset stores a set of data, defined by its dataspace and datatype. The dataspace denotes the layout of the data
which may range from a single entry to any multidimensional layout. The datatype in turn describes the data stored in a
single entry. Examples may include a plain integer, a floating point, but also complex compound types with variable
length entries are possible. Further, a dataset may be chunked and compressed to improve the access to data or decrease
its disk usage.

All nodes are associated with metadata. This includes the dataspace and datatype in case of a dataset. Additionally,
each node may contain user-defined metadata, also known as attributes. An attribute is similar to a dataset and is also
defined by a dataspace and a datatype property. However, ideally it should only be used to add additional information to
a node instead of storing complex data, since attributes can neither be chunked nor compressed. Examples for attributes
may include a timestamp of creation or parameters used for a tool or simulation that produce the data that the attribute is
referring to. A schematic representation of attributes attached to a dataset is shown in Fig. 1b.

HDF5 is a widely used standardized file format in many scientific fields. It forms the basis of data formats and
standards like CGNS [5] – well known in computational fluid dynamics – or VMAP [12] – a novel standard for
computational structural mechanics.

/
dataset_0
group_a/
dataset_a1
dataset_a2

group_b/
dataset_b1
group_c/
dataset_c1

(a) Internal node hierarchy

dataset_b1
ID = "my_dataset"
DATE = "2023.11.22"
TIMESTAMP = "10:40:05"
PARAMETERS = { "i"=42, "foo"="bar" }

(b) Attributes attached to a dataset

Fig. 1 Representation of the internal structure of an exemplary HDF5 file.
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IV. Collaborative Framework for Design and Simulation
GTlab, an open-source framework developed by the Institute of Propulsion Technology at the German Aerospace

Center (DLR), serves as the software foundation for the implementation of the new methodology presented in this
paper. The framework addresses the multidisciplinary and collaborative design and simulation of aircraft engines [6]. A
plug-in architecture facilitates the system’s extension and the integration of new functionalities and features.

Various engineers and designers work collaboratively on data records that are subject to the aircraft engine design
process or other applications. A data record consists of individual data objects organized in a tree hierarchy. Data
objects may hold any set of data and provide various functionalities for accessing and modifying their state. In GTlab,
all data objects are derived from a common object type, which is intended to provide uniform handling of all data
objects within the framework.

The common object type provides a standardized interface to extend the functionalities and operations of data
objects. For example, individual data objects or entire data trees may be used in workflows for processing. On a
graphical user interface (GUI) level, different types of views can be created that operate on the data of a data object, like
schematic models, plots, or fully-fledged editors.

The framework employs a data processing unit that provides various features for data handling. It allows the
serialization of all data objects within the application using the common object type. Hence, data records can be
written to disk, exchanged via network, or similar. All data objects are serialized by default into the human-readable
Extensible Markup Language (XML) data format. Moreover, snapshots of data trees can be taken based on the memento
design pattern [13]. By forming the difference between snapshots, changes to the data can be identified. Further, these
differences and snapshots can be applied to existing data records.

To facilitate the collaborative workflow, data records are organized in projects, which denote the root node of the
data tree hierarchy. The hierarchical structure of a project is defined by the model-based approach of the central data
model [7]. An example of a data record in GTlab is depicted in Fig. 2. In this example, the individual data objects
denote components of an aircraft engine and are organized in a hierarchical structure. The root node represents the
project that combines the data records. The component of a compressor is expanded, visualizing the parent-child-like
relations that make up a complex data structure.

Previously, binary data generated by CFD or CMS simulation software, particularly those based on HDF5, had not
been integrated into the framework architecture. As part of the presented approach, the following sections describe how
HDF5 data can be integrated transparently and efficiently into a collaborative data framework, while retaining existing
data handling and processing functionalities.

Project
Fan
Compressor
Stator_0
Blade_Data

Rotor_0
Blade_Data
Disk_Data

Stator_1
...

Rotor_1
...

...(other blade rows)
Combustor
Turbine
...(other components)

Fig. 2 Exemplary representation of a data record in GTlab. Here the data tree of a compressor is expanded.
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V. Methodology and Implementation
This section addresses the integration of HDF5 structures into the GTlab software framework. It involves exposing

the internal HDF5 file structure without altering the core framework. The resulting hierarchical representation mirrors
the internal layout of HDF5 files. The approach loads data on demand and implements a smart resource-handling
mechanism. High-level graphical utilities are presented that facilitate the integration.

A. Representation of HDF5 Structures in the Framework
The first challenge involves the integration of the HDF5-based binary data into the GTlab software framework while

retaining the current data processing capabilities. This includes checking for differences between two data objects, the
unique identification, and the referencing of data objects. Therefore, the first step is to make the internal structure of an
HDF5 file accessible within the framework. To facilitate the integration of HDF5-based binary data, a dedicated HDF5
plugin was developed. This plugin is designed to extend and enhance the capabilities of the GTlab software framework.
The key advantage of this approach is that it allows integration without any modifications to the core structure or the
underlying data handling mechanisms of the framework.

Based on the common object type architecture of the framework, different types of data objects have been
implemented, representing HDF5 groups, datasets, attributes and the files themselves. By means of parent-child
relations, a one-to-one transformation of an HDF5 file hierarchy into a corresponding data tree in the framework can be
achieved. A dedicated object denotes the root node of an HDF5 data tree and references the HDF5 file on the hard drive
or other storage types. All groups, datasets, and attributes of the corresponding HDF5 file are organized in an object
hierarchy according to the internal layout of the file. Accordingly, the structure of HDF5 files can be embedded into the
framework.

Since all data objects are based on a common object type, uniform data handling is ensured. Consequently, the
structure of an HDF5 file in GTlab can be serialized already. Individual nodes of the HDF5 file are made uniquely
identifiable and, as such, referenceable. Entire HDF5 files with numerous branches and datasets become accessible and
hence, are no longer opaque to the collaborative framework. In addition, high-level changes to the HDF5 data can now
be tracked within the framework – a critical requirement in a collaborative environment.

Whereas HDF5 files are made accessible by mirroring their structure into an adequate data tree, the actual data is
not loaded into the framework by default. Instead, the data objects only contain the most necessary information to allow
referencing their corresponding nodes.

B. Embedding HDF5 Structures into Collaborative Data Records
In collaborative workflows, HDF5 data offers a wide range of interaction possibilities. From a user’s perspective an

HDF5 file and its corresponding data tree can be attached to any other data object in a data record using parent-child
relations. Further, the same file may be appended multiple times to the project’s data tree. Thus, in the context of the
collaborative environment of GTlab, HDF5 data can easily be affiliated with components subject to aircraft engines or
other applications. Users can manipulate, analyse and share this data in a variety of ways to meet different requirements
and scenarios. This adaptability allows teams to efficiently process and interpret the data, tailoring their approach to the
specific needs of their project. Furthermore, HDF5 files can originate from different locations on hard drives or other
storage types, but are combined in a centralised manner using this approach. For the example of a compressor, the
results of a CSM analysis of the turbomachinery blading (as depicted in part B [10]) may be stored in an HDF5 file,
which in turn may be attached to the blade row objects of the corresponding compressor data tree. Consequently, data
affiliations can be expressed clearly.

As noted earlier, a single HDF5 file may become very complex and contain numerous branches with various datasets
of heterogeneous data. Therefore, it is essential to allow the attachment of only specific substructures from an HDF5 file
that are relevant for a specific application. This capability can be facilitated by employing shortcuts to nodes, where each
shortcut originates from a node on a higher level in the HDF5 data tree and points to a node on a lower level. All node
objects in between will be hidden, effectively removing irrelevant branches from the data tree without changing the file
itself. As previously mentioned, this is particularly valuable for very large HDF5 files with many branches and a high
level of complexity in the data structure. To continue the example of a CSM analysis of compressor blading: a single
HDF5 file, as generated from a CSM workflow, may contain geometry and result data for the different blade rows of a
compressor. Consequently, the same HDF5 file may be appended for each blade row once. In the case of a compressor
with eight rotor blade rows, substructures of the file containing the desired information would be appended eight times
in total. By employing node shortcuts, only the relevant geometries and result data are shown in the corresponding data
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Project
...
Compressor
...
Rotor_0
Blade_Data
Disk_Data
HDF5_Data (1. file instance)
geometry/blade_R0 (node shortcut)

Rotor_1
Blade_Data
Disk_Data
HDF5_Data (2. file instance)
geometry/blade_R1

... (other blade rows)
... (other components)

Fig. 3 Exemplary integration of an HDF5 file, containing multiple blade geometries. The file is appended
multiple times (highlighted in bold). Node shortcuts are applied, linking only the relevant data for a blade object.

trees (Fig. 3). Thus, a high degree of flexibility is achieved in which data affiliations are expressed clearly.
In the comprehensive dataset of a collaborative application, reorganising the data presented in HDF5 format is

often essential. This restructuring is intended to align the data more effectively with the specific needs and goals of
the collaborative project, and to ensure that the dataset is optimally configured for collaborative analysis, processing,
and decision making. Instead alternative hierarchies of data objects could be employed that are more suitable for a
specific purpose, without changing the actual internal layout of the file. This is especially relevant for standardized
formats that are based on HDF5, such as CGNS or VMAP. As the name implies, a standardized format follows the
same structure in which data is stored. Whereas the layout of the data is optimized on functional and logic level,
displaying the entire structure as is may be too technical or low-level for a specific workflow or application. A
more fitting representation may be created that hides irrelevant information or condenses branches. This feature is
not only relevant for an entire HDF5 file but also substructures may benefit from an altered hierarchy. Providing
the ability to override the representation of a HDF5 file without changing the actual layout enables a high degree
of flexibility. For instance, this might involve reformatting a VMAP file from the CSM analysis, as depicted in
part B [10], which may contain numerous geometries and result data such as stress or displacement information (Fig. 4a).
These datasets are each spread over different branches and are deeply nested. By providing an alternative view on the

/
VMAP
GEOMETRY
0 (first part group)
... (geometry data)

... (other parts)
...
VARIABLES
... (result data grouped part-wise)
DISPLACEMENT
STRESS
...(other result data)

(a) Simplified hierarchy of a VMAP file as generated from CSM
analysis [10]. Geometry and result data are separated.

Project
...
VMAP_Data (file instance)
Part_0 (geometry of part 0)
Stress
Displacement
... (other result data)

Part_1 (geometry of part 1)
Stress
Displacement
... (other result data)

... (other parts)

(b) Integration of a VMAP file using a specialized hierar-
chy. Here result data is directly affiliated with geometries.

Fig. 4 Exemplary integration of a VMAP file.
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VMAP file, in which only the geometries and the corresponding result data are organized in a straightforward hierarchy,
a more intuitive and less technical representation can be achieved from a user’s point of view. Still, the same VMAP
file may be appended multiple times within the same project tree. For each applications, a varying hierarchy may be
employed without changing the file in any way and providing the same features of data handling. Figure 4 depicts how a
raw VMAP file may be transformed into an alternative hierarchy in the framework to provide abstraction.

C. Efficient Access to HDF5 Data
In the approach outlined to this point, the framework only transforms the structure of an HDF5 file at the metadata

level, avoiding to load the actual data into memory. This strategy leads to significant savings in essential system
resources.

The approach to handling HDF5 data in this framework is designed for efficiency and resource management. Data
from the HDF5 files is only fetched when it is actually accessed, a method similar to lazy evaluation. This ensures that
only the data required, whether it is a specific record or a subset, is loaded into the framework – a process referred to as
"data internalization". When access to the data is no longer required, the data is removed from memory. Any changes to
the internalized data are stored during this unload process, known as "data externalization".

A smart resource-handling approach is employed to avoid fetching data multiple times. Once data access is required,
only the requested data is loaded into memory. By leveraging a reference-counting mechanism, subsequent fetching
calls are not required. Instead, the reference count of the data handle is incremented for each access. Thus, all actors
with access to the handle work with the same data; changes made by one actor are also available to the other actors.
Essential safeguards are implemented to avoid simultaneous access to the data in a shared memory environment. Once
an actor no longer requires access to the data, the reference count is decremented. When no access to the data is required
anymore, and thus, the reference count reaches zero, the data is externalized. If the internalized data has been changed
by the framework, the corresponding nodes in the HDF5 file are overwritten. Otherwise, the data in memory can be
discarded. To further mitigate repeated data fetching, an additional buffering is employed, which keeps the recently
accessed 𝑛 number of datasets in memory. A schematic representation of how a process accesses the data of an HDF5
object within the framework is depicted in Fig. 5. Accessing the HDF5 data yields a data handle, which internalizes the
actual HDF5 data. After processing the data and releasing the data handle; the HDF5 data object is externalized.

As mentioned in section IV the framework GTlab provides a compare algorithm to find the difference between two
datasets. This is especially important in collaborative applications, to track changes and modifications of data and to
ensure data consistency. Consequently, it is essential to also enable the same level of data handling for HDF5 data within
the framework. To elaborate: it should not matter whether the actual data object is located within an HDF5 file, thus
external to the project or whether the data object is deeply integrated in the framework. Since the data is internalized
when access is required, the existing data handling is already made available. A snapshot of an internalized datset can
be taken and compared to another snapshot at a later point. Determining the difference between two HDF5 datasets is
thus efficient from a resource perspective, since only the data is fetched and compared that must be examined.

Fig. 5 Schematic representation of how a process accesses the data of an HDF5 object within the framework.
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D. User Interface
To provide access to HDF5 data through the user interface of the framework, the plugin enhances GTlab’s GUI with

multiple graphical tools and features. The graphical integration is crucial to achieve a seamless integration of HDF5
data into the user interface. This ensures that HDF5 data objects behave like any other native data object within the
framework. The key extensions for graphical integration include: (1) a HDF5 property widget to display high-level
information about HDF5 nodes, (2) an embedded HDF5 data viewer, and (3) numerous context menu entries – so-called
quick actions – for each data object it implements. These utilities are presented in the following:

(1) By attaching an HDF5 file to a GTlab project, its data tree is displayed in the project’s explorer (Fig. 6a). The
property widget displays the most relevant metadata of the HDF5 object that is currently selected. The metadata includes
the HDF5 node name and the full path to the node inside the linked HDF5 file. Detailed information about the datatype
and its dataspace are displayed for dataset objects, which also entails whether the dataset is chunked and compressed.
Finally, attributes of the referenced node are listed in a table, which displays the names of the attributes, their value,
datatype, and dataspace. The value is displayed in a single cell for scalar attributes to provide convenience for the user.
Nonetheless, all attributes regardless of complexity can be viewed in a dedicated viewer as depicted in (2). The property
widget is shown in Fig. 6b, displaying properties of an exemplary dataset.

(2) The HDF5 plugin implements an HDF5 data viewer, which allows to view datasets and attributes directly within
GTlab in a tabular layout. It can be invoked using quick actions. It supports all common datatypes, including variable
length, deeply nested, and complex compound types. For multidimensional data with dimensions exceeding two,
two-dimensional (2D) slicing is employed. The HDF5 viewer is shown in Fig. 7 in which a subset of an exemplary
dataset is displayed. The HDF5 viewer supports different modes for displaying/fetching the data of a dataset. Depending
on the process used to generate the data, a single HDF5 dataset may often contain thousands of entries. In such a
case, fetching and displaying all entries in a viewer may require substantial computational effort and system resources.
However, in the context of GTlab, practice has shown that users are rarely interested in the entire dataset if it contains
numerous entries. Instead, they are mostly interested in a portion of the data to check for errors or estimate the data’s
trend. This requirement can be met efficiently with HDF5 as it also allows the query of custom selections and subsets
instead of loading the entire dataset. Using this feature, the HDF5 viewer reads and displays only the 𝑛 first and last data
rows if the number of rows is too large to display. The user can also turn off this behaviour when all data should be
displayed.

(a) The project explorer in GTlab. Here an exemplary HDF5
file is displayed in which the node MYELEMENTS is selected.

(b) HDF5 property widget displays the metadata and at-
tributes of the selected node.

Fig. 6 Graphical integration of an HDF5 file.
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Fig. 7 HDF5 data viewer in GTlab. Here a 2D dataset is shown. Only the first and last 10 elements are displayed.
More rows may be fetched on demand.

(3) The HDF5 plugin implements multiple quick actions for the different HDF5 object types, allowing the user to
perform high-level operations on HDF5 data. For the file object, the most common file operations, like renaming
and deletion from disk, have been implemented. It should be noted that the HDF5 hierarchy of a file object in a data
record is just a snapshot of the actual file on disk at a given time. Changes to the file throughout external processes
will not be reflected directly in GTlab to maintain data consistency. Instead, the file object will be marked as outdated.
A quick action is implemented to synchronize changes of the HDF5 data objects in memory with the files on disk
on demand. However, HDF5 objects that are part in the snapshot before a change, which are no longer present in a
sequential snapshot, are not deleted directly. Instead, these objects will be marked as missing. Added data objects will
also be highlighted accordingly – this way, a user can browse through the top-level modifications of an HDF5 file. Quick
actions are also available to rename nodes and attributes in the linked HDF5 file. Similarly, a node and attribute may be
removed entirely from the HDF5 file. Finally, for all HDF5 nodes attributes can be appended using quick actions. As
presented in subsection V.B, shortcuts to nodes are employed to hide irrelevant information and branches in an HDF5
data tree. The shortcuts are implemented using the quick actions system. When activated, the user is prompted via a
dialog to select the node at a higher level. Once created, the nodes and branches in between are hidden. A node shortcut
may also be expanded once again.

VI. Conclusion
This paper presented an approach for integrating large binary data based on HDF5, produced by simulation processes

such as CFD and CSM, in a collaborative architecture. Previously, the data was considered opaque since the software
framework had no insights into the internals of HDF5 files.

To make the internal structure of an HDF5 file accessible and searchable, the file structure was explored and
transformed into a related hierarchy in the GTlab framework, in which each data object represents a corresponding node of
the HDF5 file. By embedding only the relevant data structures and employing shortcuts to nodes or displaying alternative
representations for a data tree, irrelevant information is hidden, and a more fitting integration is achieved – without
modifying the actual HDF5 file. Since the same file can be appended multiple times to the project and to any other data
structures in the framework, data affiliations are expressed clearly. All data objects in the framework GTlab share a
common object type. As a result, a uniform handling of HDF5 data is ensured. All necessary changes are implemented
in the form of an HDF5 plugin. Only the file structure is appended to the data tree of a project, whereas the actual
data is accessed by employing a reference-counting mechanism. This mechanism ensures that only the required data is
fetched for the minimum duration needed. Thus, a lightweight integration can be achieved, in which essential system
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resources are conserved. Additional graphical utilities have been implemented, which provide a seamless integration
from a user’s point of view. The utilities include the graphical representation of metadata associated with HDF5 nodes
in the GTlab framework. A dedicated HDF5 viewer allows efficient access to the raw data of a dataset or attribute.

Whereas this paper presents a viable approach for integrating large opaque data in a collaborative framework, certain
challenges regarding large data remain. A critical challenge is the exchange of large amounts of data, which requires
significant bandwidth and computation effort in a collaborative environment. Nonetheless, the approach presented may
lay the foundation for an efficient solution. One approach that is currently investigated is to relocate the processing of
large data to the data storage location by means of a remote processing unit, in the spirit of edge computing [14]. For
HDF5 files, only the structure could be exchanged via a network. Engineers and designers can then examine the data
tree within the software framework and browse the high-level representation. Access to individual datasets would be
exchanged efficiently by only transmitting the data that is needed, as presented in this paper.

The application and evaluation of the presented methodology is carried out by a detailed CSM analysis described in
part B [10].
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