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Abstract

Numerous Internet of Things (IoT) applications demand accurate and timely informa-
tion to enable effective actuation. Nonetheless, in computation-intensive status update
systems or data gathering systems, the capabilities of IoT devices may fall short in com-
puting/acquiring data with high accuracy, thereby necessitating multiple trials. Offloading
data computation or acquisition tasks to robust units mitigates this inaccuracy. However,
these units can be positioned far from the user, and latency becomes an issue for offloading
due to some factors, such as propagation delays and resource sharing with other possible
tasks. In this thesis, we study how to keep the information accurate and fresh, introducing
a cost function representing the staleness of the recently obtained data that is accurate
enough for actuation. We propose a timeliness-based model striking a balance between
employing local and remote resources. We consider two settings to treat the problem,
namely blind and informed decision settings. In the blind setting, we utilize a stochastic
decision-making strategy where the user makes the offloading decisions without knowledge
of the current value of the cost function. We conduct a steady-state analysis and solve the
problem through convex optimization. We also extend this setting to multi-user scenarios
sharing the same remote resources. In the informed decision setting, we address the opti-
mization problem as a Markov Decision Problem (MDP), in which the user leverages the
current cost function value. We resolve the issue using finite horizon Dynamic Program-
ming (DP). We state that while the informed decision setting yields superior results, it
also has several drawbacks, such as consuming extensive memory and flexibility.
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Chapter 1

Introduction

In the contemporary digital age, the Internet of Things (IoT) plays a vital role in estab-
lishing a hyper-connected ecosystem with a myriad of devices. The number of IoT devices
connecting to the Internet is expected to reach 83 billion by 2024 [1], more than ten times
the human population. It will create a massive amount of data; however, realizing IoT’s
transformative potential hinges upon the availability of current and actionable data rather
than voluminous data. For instance, the timely procurement of accurate data is the pri-
mary purpose in some real-time application areas, such as healthcare [2], transportation [3],
agriculture [4], and Industrial IoT [5]. In these settings, keeping information up-to-date is
crucial.

In computation-intensive status update systems or data-collecting systems, the accuracy
and latency of computed/collected data directly influence the efficacy of user actions. Cloud
servers, having powerful computational units, storage areas, and resources, offer significant
accuracy to these systems with higher latency. However, prior to the introduction of Multi-
Access Edge Computing (MEC) [6, 7], which advocates for placing the resource-rich units
near to the user, such as base stations, the significant distance between the cloud server
and the user was a considerable issue for time-sensitive applications. MEC facilitated the
offloading concept and, accordingly, garnered significant interest not only within academic
literature but also among different corporations, such as IBM and Nokia [8, 9]. Contrast-
ingly, data can be procured using solely local resources, in which comparatively inaccurate
data is acquired with low latency [10]. Both computation-intensive status update systems
and data collecting systems experience a hard choice between accuracy and latency. Within
the context, the terms local and remote create a dichotomy.

Within this thesis, the term “Remote” refers to the robust computational units and vast
data repositories strategically positioned outside the immediate proximity of the user or the
operational environment, like a cloud server. They can provide accurate and detailed data
at the cost of latency, which may impede the time-sensitive decision-making processes
depending on the system. Users can also suffer from network congestion whenever the

1
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Figure 1.1: Vehicle computation use case

processing units of the server or bandwidth are insufficient to handle the high use. On
the other hand, the term “Local” refers to computationally limited resources in proximity,
such as embedded sensors and computational units inside an IoT node or the sensors in
the vicinity and the processing resources on the user. The service extended to the user
is marked by its notably low latency but may be beset by inaccuracy. The users must
maintain a delicate equilibrium between latency and accuracy, bearing in mind the local
computational limitations of IoT devices due to power, processor sharing, and duty cycle
factors [11]. This study offers an analytical framework in which all related parameters are
included and presents optimal user behavior in user-driven IoT offloading scenarios.

1.1 Motivation

The setting under study captures a key trade-off that applies to different application sce-
narios. First, assume an autonomous vehicle surveillance system where the goal is to gather
data about the road, traffic, and possible dangers and take action in case of jeopardies,
as pictured in Fig. 1.1. The vehicle’s controller needs the latest information about the
situation, which will be revealed after computing the data collected via various sensors
such as LiDAR, radar, and cameras. The sensors in the vehicle collect pre-processed data
of the region and may (i) process them using local computation units or (ii) offload the
computation task to a server outside of the vehicle such as roadside units (RSU) [12]. The
latter requires much time due to the integration of data from other vehicles or more re-
fined data processing; however, the accuracy of its computation result exceeds that of the
former.

In some IoT applications, garnering indispensable information for actuation might be diffi-
cult in the absence of external sources [13]. Procuring and storing this type of information
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Base Station

Local Traffic 
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Figure 1.2: Traffic lights use case

can be challenging because of the limited resources of the IoT node [14]. The second use
case instance, portrayed in Fig. 1.2, is inspired by this setting. Suppose a traffic lights
management system desires to direct the traffic as efficiently as possible, requiring traffic
information acquired either by (i) locally computing pre-processed data from cameras or
sensors located in proximity or (ii) requesting traffic data of a related position from a
remote server via the base station. The results obtained via local units may not be fully
reliable due to low computation power. Conversely, the traffic data from the remote server
is accurate as it can employ data from various sources to obtain traffic information, but
high latency is an issue. In addition to the Round-Trip Time (RTT) delay, the specific
information might not be available in the connected edge server, obligating the transfer of
the request to another edge, which indirectly increases the latency.

In both scenarios, the fundamental problem is to strike a balance between latency and
accuracy under the constraint of having limited local resources due to factors such as
energy or other independent tasks’ computational power consumption. The idea can be
generalized to settings in which the local option stands for inaccuracy and low latency, and
the remote option symbolizes accuracy and high latency. For instance, local action can
be regarded as gathering data from another vehicle, i.e., Vehicle-to-Vehicle (V2V) [15]. In
contrast, remote action can be using roadside units (RDU) to acquire the same data in a
Vehicle-to-Everything (V2X) [16] data gathering scenario. Additionally, the interaction of
the nodes within a cluster can be seen as local against offloading to fog or edge servers,
accepted as remote in the dichotomy [17]. This study responds to a fundamental question:
When shall the user offload?
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Within the context of this thesis, the offloading term is used for using remote resources,
not positioned in the vicinity, for both data computing and gathering scenarios. Many
parameters, such as the distance between the user and the remote server and the units’
capabilities, influence the decision. For instance, when the remote server is far away or
numerous users are connecting to the same server, not offloading is the wisest choice.
However, it is pertinent to underscore that there might be some limitations on employing
local resources. Hence, not using neither of the resources might be the ideal move.

Another critical point is to map the accuracy into the planned model. Quantifying the
output of a task can be complicated. While the output of Task A may be more accurate, i.e.,
high-quality, than that of Task B, both can still be categorized as low-quality. According
to Juran’s definition in [18], data is considered high-quality if they are fit for its uses in
operations, decision-making, and planning. This definition serves as the foundation for the
model we will develop. We define the output of a task as high-quality if it can be used to
actuate and assume the user, or remote server, can differentiate between low-quality and
high-quality output. Suppose the user obtains low-quality output while using local data
collection. In that case, it is regarded as a failure (non-usable). Conversely, if it has high
quality (local or remote), it is accepted as a successful task execution.

This thesis aims to design a timeliness-targeted model for offloading scenarios in time-
critical data computing or gathering applications. We favor harnessing a user-driven
decision-making model, defining a cost function representing the staleness, and employ-
ing convex optimizations and dynamic programming.

1.2 Related Work

The scientific literature on utilizing a server located far away from the user, along with
a resource within the proximity, often overlooks data gathering use cases and primarily
focuses on the computation offloading scenario. Within the data gathering context, the
dichotomy of local and remote is generally noted in caching systems [19–23]. Caching
reduces the experienced latency and the network load by locating a storage unit closer to
the user end [19].

Many studies delve into different aspects of caching strategy and architecture. For instance,
[20] explores hit rate and latency in a vehicle caching system, whereas [21] establishes an
optimization model to jointly minimize delay and energy consumption in Mobile Edge
Caching systems. The primary challenge is that the classical caching concept is developed
to reduce latency and is generally unsuitable for time-sensitive applications. Even so,
studies have investigated the timeliness of a flow in a caching system. For example, the
duality between delay and freshness is investigated in [22], and fresh caching for dynamical
content changes is studied in [23]. Even though there are two centers, there is a single
source in these systems, and both caching nodes and the original remote server store data
without any accuracy differences, and the user does not make any choice between the server
and caching node. Thus, it is significantly different from our data-gathering use scenario.
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Figure 1.3: Duality of communication and computation (reproduced from [28])

Conversely, there are numerous studies investigating data computing architecture. The
initial research on computation offloading primarily focused on Mobile Cloud Computing
(MCC), where mobile devices utilize a distant (remote) server. Despite the success of
traditional cloud applications like Siri and iCloud, they still face challenges with response
time [24]. As a solution for the issue, Satyanarayanan et al. [25] publicized Cloudlet as an
idea of mitigating the device’s resource poverty with the help of nearby resource-rich units.
In 2013, IBM and Nokia Siemens defined Mobile Edge Computing to portray computing
facilities in a base station [8]. Subsequently, the European Telecommunications Standards
Institute (ETSI) established an Industry Specification Group (ISG) to standardize this
concept in December 2014 [9]. The name of this concept was later changed to Multi-
Access Edge Computing to encompass various communication technologies. Throughout
the evolution of the concept, the main idea, placing powerful computation units on the net-
work’s edge, remains unchanged. Utilizing MEC allows users to leverage remote computing
capabilities with minimal latency, making MEC convenient for delay-sensitive practices.

After introducing the MEC paradigm, the concept of offloading engaged the attention of
various studies, each exploring it from different perspectives. Researchers aimed to address
questions of “When” (or “Whether”) [11, 26–28], “Where” [27, 29, 30], “What” [26, 30–33]
and “How” [11, 24, 34] to offload. We shall now delve into these questions to provide a
comprehensive exploration.

Q1. When to offload?

The response to the question “When” pertains to the time instants of offloading. At times,
offloading every task may be the better option, while in some cases, not offloading might be
preferable. Kumar et al. [28] suggest offloading in scenarios where the application demands
much computation and little communication (see Fig. 1.3). Conversely, not offloading is
the wisest choice when the computation is minimal, and communication is significant.
In cases where the required computation and communication are roughly equivalent, the
decision depends on other factors. Throughout this thesis, we aim to address this question
by taking into account various influencing factors.
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Q2. Where to offload?

The response to this inquiry is context-dependent, potentially encompassing at least one
MEC server, Fog server, another vehicle, and so forth. In [27], the user selects between an
edge and cloud server to offload, whereas another research [29] models an offloading system
where an edge server can offload the incoming tasks to other edge or cloud servers. The
common feature is that the options available for offloading are entities not located within
the immediate operational range. In our proposed model, the offloaded server, named the
remote server, is the only option for the user to offload.

Q3. What to offload?

There are different studies regarding this issue, yet they predominantly fall into two distinct
categories [31]. On the one hand, full offloading [32], which is also called binary offloading
or coarse-grained, represents the unity of each task. The user performs the task locally or
offloads the task to the remote server. On the other hand, partial offloading [33], also called
fine-grained, stands for offloading solely the computation-hungry parts of the tasks. We
favor using the former since it is appropriate for both data computing and data gathering
use cases.

Q4. How to offload?

The right offloading path is another issue to be addressed. Various studies explore the
preferable wireless interfaces, such as cellular and WiFi, for offloading [24,34], while certain
other research use the queuing theory approach to answer this question [24]. It is essential
to note that these specific approaches are outside the scope of consideration in this thesis.

The presented contributions generally center their attention on different objectives, such
as maximizing throughput, enhancing the quality of experience (QoE) or quality of service
(QoS), or minimizing latency, consumed energy or computation cost [31]. For instance,
[35,36] focus on improving QoE or QoS by offloading computations. On the other hand, [37]
aims to maximize the offloaded task, or throughput, in a downlink scenario where the data
computations can be done at the edge server or in the end user, whereas [38] explores
an uplink scheme problem by allocating power and resources to the users to maximize
throughput.

Potential computational limitations, primarily arising from constraints such as limited
energy, processor availability, and duty cycle factors, are typically examined under the
energy-harvesting (EH) problem or the optimization based on energy consumption. For
instance, Mao et al. [39] devised an EH framework to determine a computation offloading
strategy minimizing both latency and computation failure. They employed Lyapunov
optimization to decide whether to offload, compute locally, or drop, along with determining
power and CPU-cycle frequencies. On the other hand, the researchers in [29] treated this
limitation issue as a constrained multi-objective optimization problem (CMOP), aiming to
jointly minimize processing delay and consumed energy. Nevertheless, potential limiting
factors other than energy are generally overlooked.
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The in-depth examination of latency within offloading scenarios is another area of research.
Zhao et al. [30] focused on the interplay between accuracy and latency, ferreting local, edge,
and cloud computing, and proposed offloading only a fraction of data to the remote servers
(edge or cloud) instead of an all-or-nothing paradigm. They could lessen the latency by
25% while obtaining minor reductions, or even advancements in some cases, in accuracy.
A similar research [26] investigates a centralized offloading decision-making strategy aimed
at minimizing overall latency. The authors tackle the problem by decomposing it into two
sub-problems: communication and computation resource allocation, which they solve using
convex optimization tools.

Addressing a different facet of the issue, Mancuso et al. [27] explored different routing
selection algorithms for virtualized services over edge or cloud servers under latency con-
straints. The algorithms contrasted based on the amount of knowledge of the system.
The researchers found that stateless methods, where the user did not know the servers’
occupancy, gave comparable results to more complex state-based algorithms in the case of
perfect information. However, stateless methods outperformed their more complex counter-
parts in the case of inaccurate state information, as incorrectness brought forth erroneous
offloading choices.

Among all computation offloading studies, only a limited number of them scrutinize the
notion of information freshness despite its significance as one of the Key Performance
Indicators (KPI) for time-sensitive actuating applications. Although freshness and latency
are related, they are distinct concepts. Freshness pertains to an information flow, whereas
the delay, or latency, is about a data packet. Transmitted data can become stale over
time due to propagation, queuing, or processing delay. However, there are other factors on
which freshness depends. Substantially, minor latencies might even increase the staleness
depending on the updating rate [40].

In order to picture the freshness of a data flow process while taking cognizance of these
factors, the concept of the Age of Information (AoI) was introduced [41–43]. Within the
AoI framework, the age of status denotes the time difference between the current time
and the generation timestamp of the last acquired data, indicating the flow’s freshness or
timeliness. In [44], this definition was extended to Age of Processing (AoP), where the age
represents the elapsed time of the latest processed data, highlighting additional processing
delays for edge computing-enabled applications. Studies from various sectors utilized the
age concept to enhance the freshness in time-sensitive systems.

Ndikumana et al. [34] studied the offloading problem for autonomous vehicles, where the
vehicles could choose one of the defined Radio Access Technology (RAT) to send the pre-
processed data to the edge. They underlined the energy problem of the vehicle in the case of
purely operating local computation and selected their goal as reducing AoP. To achieve this,
they employed unsupervised machine learning techniques. Another study, detailed in [11],
examined computation offloading for the Internet of Medical Things (IoMT). The authors
aimed to develop an offloading strategy based on AoI, criticality, and energy consumption.
Employing a game-theoretic approach, the authors derived a decentralized solution.
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A general queuing theory approach, applicable to various use cases, was adopted in [45].
The authors analyzed a multi-user downlink system, seeking to minimize average AoI.
They utilized an entirely local computing scheme and a fully remote computing scheme,
also known as full offloading [32], and obtained closed-form expressions for average AoI.

Another study [46], which bears similarities to ours, examined a single-user computation-
intensive status update system. This study employed three different computing schemes:
(i) Fully edge server computation, (ii) Fully local server computation, and (iii) Partially
edge, partially server computation (akin to [33]). The authors underlined that partial
offloading consistently yielded equal or superior results. Unlike our study, the work did
not account for local computation limitations or assess the accuracy of local resources.

Finally, it shall be noted that AoI is not the sole metric introduced to capture freshness.
Many studies in the literature, such as [47,48], adopted a different timeliness representation.
The crucial aspect is the capability to express dissatisfaction with untimeliness. In this
thesis, we define a cost function signifying our dissatisfaction regarding the staleness of the
most recently computed or gathered data. Based on this function, we devise a framework
for scenarios involving both data computing and gathering offloading, considering local
computation limitations and the accuracy of the computations (or the quality of data in
gathering scenarios).

1.3 Our Contributions

In this study, we propose a user-driven timeliness-based framework, applicable for compu-
tation offloading or dual data gathering situations in which the user experiences a dilemma
between Local and Remote resources. Our research contributions, outlined in connection
with the thesis’ structure, can be summarized as follows:

• In Chapter 2, we introduce a slotted-time model and outline the potential states of a
user. Moreover, we define a cost function representing the staleness of the flow and
system parameters that characterize the system.

• In Chapter 3, we study a blind decision-making setting where the user determines
the next move, i.e., local or remote action, independent of the current cost value.
We conduct a steady-state analysis and derive a closed-form expression for the av-
erage cost function. The optimal closed-form offloading solution is determined using
convex optimization for single-user scenarios. We extend the model for multiple-user
scenarios and observe the system’s characteristics.

• In Chapter 4, we focus on an informed decision-making setting where the user lever-
ages the current state and time. We employ Dynamic Programming (DP) over a finite
horizon to obtain optimal offloading sequences and assess the power of knowledge.

• In Chapter 5, we compare the outcomes between blind and informed decision-making
settings and address several issues regarding the settings. The study is concluded in
Chapter 6.



Chapter 2

System Model

This chapter introduces a simple time-slotted model to study the settings and use cases
presented in Chapter 1. Each time slot is of equal length within the model and denoted
by an index k ∈ N0. Before explaining the model in detail, several terms are defined.

Definition 1 (Task). A task represents an atomic activity that the user has to perform.

This may encompass either data collection, processing, or both, depending on the context.

The assumption is that a new task arises once the previous one is executed. Hence, there

is always a task that must be addressed.

Definition 2 (Availability State, (ς)). The availability state is the user’s status represent-

ing availability for performing tasks. In other words, it describes whether the user is Idle

(ς = 0) or Busy (ς = 1). In Busy state, the user cannot take any action and has to wait

until becoming Idle, whereas Idle state indicates the user is currently available and can

take one of three possible Actions.

Definition 3 (Action, (u)). The user’s decision pertaining to performing tasks is called

an action. In this context, three possible actions can be taken when the user’s availability

state is Idle.

• Remote: Send a request to the remote server (High percentage of success with
possible high latency);

• Local: Try to perform the task via local resources (Lower percentage of success with
possible low latency);

• Wait: Do nothing.

9
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IDLE BUSYLocal Action

Wait Action

Successful Remote Task

Remote Action

Unsuccessful Remote Task

Figure 2.1: Availability state transition diagram of the model

When the user’s availability state is Idle and the user takes a Remote action, the avail-
ability state becomes Busy in the subsequent time slot. It stays there until the remote
server successfully completes the task, and when this happens, the user’s state reverts to
Idle. Taking Local or Wait action does not change the availability state, and the user
remains Idle. In other words, an attempt to perform the task locally takes one slot. As
mentioned, the attempt may be successful or not. A graphical representation of these state
transitions is provided in Fig. 2.1.

Definition 4 (Cost (Penalty) Function, (∆)). The cost function, also called the penalty

function, pictures the staleness of the most recent task completion. It quantifies the time

difference between the current time and the instant of the last successful task execution.

It grows linearly until a new task is successfully performed, at which point it drops to 0.

The cost function maps the time slot index (k) to a natural number, including 0, and the

value of the cost function at time index k, denoted by ∆k, is defined as:

∆ : N0 −→ N0

∆k =

{
0 if a new task is successfully performed at (k − 1)th time slot,

∆k−1 + 1 otherwise

Without loss of generality, we shall assume ∆0 = 0. It is worth noting that the cost
function is discrete. It is assumed that the action is taken at the start of a time slot, while
the effect of that action is observed by the end. In simpler terms, ∆k equals the cost right
before kth slot begins. A simple realization and cost changes based on the actions taken
can be seen in Fig. 2.2. In this scenario, the cost function equals m just before (k − 1)th

slot. At the onset of this slot, the user selects Wait action, resulting in an increase of the
cost by the end of the time slot, setting ∆k = m + 1. Next, the user chooses to perform
the task locally and succeeds. As a result, the function decreases to 0 by the end of the
time slot, and ∆k+1 becomes 0. At the onset of (k+1)th time slot, the user makes another
decision, and this sequence continues.

The cost function we consider resembles classical AoI or AoP functions [41, 44]. In the
literature, similar studies about freshness [49–52] generally decrease the cost function to 1
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(k-1)th slot kth slot (k+1)th slot

Wait action
is chosen

Local action is
chosen

Wait action is
chosen

The task is performed
successfully. Cost is

reduced to 0

The cost function
value is increased

by 1

The cost function
value is increased

by 1

Time Slot

Figure 2.2: Time slots representation

instead of 0. However, this does not affect anything except raising the cost function value
by 1 at each time slot and does not change the optimization results.

When designing a cost function, one could use an approach that assumes it is continuous
and increases linearly even within a time slot until a new task is completed, after which
it drops to zero. Figure 2.3 shows an illustration comparing discrete and continuous cost
functions. Notably, a 0.5 (time slot × cost) difference in the area under the curves at each
time slot creates a bias when calculating average cost, for instance. However, this is the
only difference; ultimately, the simple discrete model explained previously is preferred.

Definition 5 (Reset). A reset denotes completing a task successfully and returning to the

Idle (ς = 0) availability state with a cost function equal to 0. Reset is the only way to

diminish the cost function. Visual representations of these resets are illustrated in Fig. 2.3.

For example, at time slot k = 5, the user, or remote server, performed the task successfully,

initiating the fall at the end of that time slot.

Definition 6 (Inter-Refresh Time (χ)). Inter-refresh time is the time between two consec-

utive resets. For example, in the specific case of Fig. 2.3, the χ values follow the sequence

6, 1, 4, 3, 5, assuming that there is a reset prior to the initial time slot k = 0.

In order to create a model that accurately reflects real-world conditions, considering nu-
merous variables and factors is necessary. However, achieving a perfect reflection can be
unfeasible in many cases. Therefore, several assumptions are made in order to simplify
calculations while striking a balance between accuracy and practicality.
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Figure 2.3: Comparison of discrete and continuous cost functions

Assumption 1. Each time slot has a duration equal to or longer than the time necessary

to complete the local task, including the time needed to collect raw data from local sensors,

process it, obtain desired data, and assess the success of the task. For remote tasks, the

propagation delay is smaller than the length of a time slot, guaranteeing that the request

arrives at the server by the end of the time slot.

Assumption 2. It is assumed that the remote server executes the task successfully within

a time slot with a probability p ∈ (0, 1], named remote latency parameter. With probability

1−p, the task is not completed and will continue to be dealt with remotely in the next slot.

This may occur because the server might be busy with other tasks or due to processing

time. In general, it is also possible that the server cannot process the task and forward it

to another available server. These details are hidden within our model. In the end, the

remote server delay, i.e., the number of time slots spent in Busy state, is geometrically

distributed, and the system is memoryless, simplifying the calculations on the model.

To illustrate a general overview of the changes in the cost function with different actions,
Fig. 2.4 is given. The green and red shaded areas represent the times when the user is
Idle and Busy, respectively. The black circles indicate chosen Local actions, while the red
stars represent the time slots when a Remote action is selected, i.e., the transition points
from the Idle to the Busy state. On the other hand, the blue stars represent the time slots
when the remote server completes the task successfully, i.e., the transition points from the
Busy to the Idle state. All markers are placed at the beginning of the related time slot
to depict that users make decisions at the beginning of a time slot. Hence, the transitions
occur by the end of the transition slots. This example assumes the user always performs
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Figure 2.4: Cost function versus time

the tasks successfully when using a Local action. However, this generally does not hold,
and the model must take this into account.

Definition 7 (Local Success Probability, (α)). The probability of successfully executing

a task through Local action is termed as the local success probability, denoted by α ∈
[0, 1]. Values of α = 0 and α = 1 signify consistent failure or success in task completion,

respectively. The trials are independent and identically distributed (i.i.d.) across different

time slots. In other words, the outcomes of the prior trials do not affect the outcomes of

the incoming ones.

The local success probability parameter is subject to the influence of several internal and
external factors. For instance, deploying high-resolution sensors and high-computing power
can enhance the parameter’s value, while adverse weather conditions might impede it.

The primary objective of the research is to optimize the behavior of the nodes by mini-
mizing the cost function. We consider two different settings: blind and informed decision
optimizations. In the first case, the average cost function over an infinite horizon is ex-
amined, where the user employs stochastic decision-making independent of the current
status. We aim to determine the optimal action probabilities, thereby minimizing the
average cost. To tackle this setting, we employ a steady-state analysis as discussed in
Chapter 3. In the informed decision case, the user uses the current cost and time values,
facilitating informed decision-making. We apply the Dynamic Programming approach to
obtain optimal action sequence, as elaborated in detail in Chapter 4. Additionally, one
of the critical components of the model is the restriction on using local tasks, which is
implemented differently depending on the optimization approach used and is explained in
the corresponding chapter.



Chapter 3

Blind Decision

The blind decision setting serves as our initial strategy, employed when the user determines
the next move independent of the current cost function value. This setting is particularly
valuable in scenarios where memory constraints are an issue. In such scenarios, the main
goal is to lessen the average cost over an infinite time horizon. The user utilizes stochastic
decision-making and assigns a probability to each action. The question that arises is how
a user should pick these probabilities.

3.1 System Model Extensions

Chapter 2 introduced the key elements of the system model. To tackle the case under
study, we incorporated some additional modifications. First, let us assign a probability to
each of the available actions. These actions include Wait, Local, and Remote, whose
probabilities are denoted as PW , PL, and PR, respectively.

• P (Remote Action | User is Idle) = PR

• P (Local Action | User is Idle) = PL

• P (Wait Action | User is Idle) = PW

It is important to note that these probabilities must sum up to 1 at each time slot. That is,
PW+PL+PR = 1. Fig. 3.1 reports the availability state transition diagram, illustrating the
availability states and transitions that can occur. Additionally, the stationary probability
of being in the idle state πI or the busy state πB is seen in Eq. (3.1), whereas its derivation
is reported in Appendix A.1.

πI =
p

PR + p
and πB =

PR

PR + p
(3.1)

14
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PW
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PR

1− p

Figure 3.1: Availability state transition diagram for blind decision approach

It is essential to highlight that as the value of PR rises, the likelihood of the user being in
the Busy state also increases. This is because the user is more likely to use Remote action,
which keeps it busy for extended periods. Similarly, higher remote latency parameter (p)
values, signifying lower remote latencies, increase πI since the remote server executes the
tasks more quickly, resulting in the user being Idle more often.

A representation of the blind decision setting is pictured through the Markov Chain model,
seen in Fig. 3.2. Each state represents a pair of cost (∆) and availability state (ς). The
superscript of nodes presented in the Markov Chain symbolizes the cost value, while the
subscript symbolizes the availability state.

As previously mentioned, when a user is Idle, there are three potential actions to con-
sider. First, Remote action has probability PR. In this case, the user sends a request
to the remote server and becomes Busy in the next time slot, awaiting a successful task
execution. Secondly, the Local action has probability PL. In this situation, the user uses
local resources to perform a task with a probability α of being successful. As choosing an
action and successful completion are independent events, the user successfully completes
the local task execution with a probability of αPL if Idle. The user then resets the cost
and returns to the Idle availability state with a cost function value 0. Conversely, the user
may employ a Local action and fail with a probability (1−α)PL. Finally, the Wait action
has probability PW = 1−PL −PR. In this case, the user waits until the next time slot. In
cases where the user waits or fails to perform the task locally, the cost value increases by
one, and the availability state remains Idle, with a total probability of 1− PR − αPL.

Assumption 3. We restrict to the cases PR+αPL > 0. Other situations are inconsequen-

tial and unreflected.

When the user is Busy, a remote server finishes the task successfully with a probability
of p, leading the user to reset the cost. Alternatively, the remote server may fail with a
probability of 1−p and continue performing the task in the next slot. In this case, the user
stays in the Busy availability state and waits until the remote units complete the task. The
availability state transitions are shown in Fig. 3.2 with red and blue lines, with the former
representing a transition from the Idle state to the Busy state and the latter representing
the transition from the Busy state to the Idle state.
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Figure 3.2: Markov chain of the system

As stated, the execution of local tasks may be constrained due to several factors, such
as energy limitations or the need to perform other operations. For the blind decision
approach, we introduce the following definition to specify how frequently a user can utilize
local resources.

Definition 8 (Local Action Limitation Rate, (Plim)). The Local Action Limitation Rate

refers to the frequency at which a user can employ a Local action, regardless of whether

the action is successful. The user is allowed to use Local actions in a certain percentage

of time slots, denoted by Plim ∈ [0, 1].

Notably, the user can use Local actions only if it is Idle, and the frequency of using Local
action is

πIPL =
pPL

PR + p
, (3.2)

where πI comes from Eq. (3.1). This frequency is limited by Plim, i.e.,
pPL

PR+p
≤ Plim. After

simple manipulations, PL is thus constrained as:

PL ≤ Plim(p+ PR)

p
. (3.3)

If the value of Plim equals 1, there are no limitations, and the user can take the Local
action in every time slot. Conversely, if Plim is equal to 0, the user cannot use the Local
action at all, and the only option available is to use Remote or Wait actions. Another
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critical point is that PL shall always be smaller than 1− PR since the sum PR + PL + PW

cannot exceed 1.
PL ≤ 1− PR (3.4)

The PL limitations in (3.3) and (3.4) set a boundary for the local action probability. Taking
this into account, we aim to determine PR and PL minimizing the cost. Given a fixed PR,
the user must distribute the remaining 1− PR probability to Wait and Local actions. In
this case, the local action probability is preferred over Wait action as long as Plim allows.
The reason is that the user resets the cost with a probability α in case of employing a
Local action, but the cost function always increases with the Wait action. Thus, the
ideal PL value, that is the optimal PL for a fixed PR, is calculated as shown in Eq. (3.5).

PL,ideal(PR) = min
{
1− PR,

Plim(p+ PR)

p

}
(3.5)

Our analysis will center on the steady state of the process, proved to be ergodic [53]. This
framework aims to find the optimal PR minimizing the average cost function ∆1. In short,
the objective is as follows:

PR,optimal = min
PR

E[∆k], s.t. PL = min
{
1− PR,

Plim(p+ PR)

p

}
(3.6)

For this purpose, we first deduce the Probability Mass Function (PMF) of inter-refresh
time (see Def. 6). The general closed form of the PMF of inter-refresh time, i.e.,
when p ̸= 1, αPL + PR ̸= 1 and αPL + PR ̸= p, denoted as Pχ(x), is seen in Eq. (3.7),
whereas the closed form of the extreme cases is in Eq. (3.8). Here, h[x] is the unit
step function2, and δ[x] is the unit impulse function as defined in [54]. The derivations are
in Appendix A.2.

Pχ(x)x∈N+ =
(αPL + PR)(αPL − p)

αPL + PR − p
(1− αPL − PR)

x−1 +
pPR

αPL + PR − p
(1− p)x−1 (3.7)

Pχ(x) =



αPL(1− p)x−1h[x− 1] + pPR(x− 1)(1− p)x−2h[x− 2] if p = αPL + PR ̸= 1

pPR(1− p)x−2h[x− 2] + αPLδ[x− 1] if p ̸= 1, αPL + PR = 1

(αPL + PR)(1− αPL)(1− αPL − PR)
x−2h[x− 2] if p = 1, αPL + PR ̸= 1

+αPLδ[x− 1]

αPLδ[x− 1] + PRδ[x− 2] if p = αPL + PR = 1

(3.8)

1Eq. (3.5) shows PL,ideal(PR) for each PR ∈ [0, 1]. While finding optimal PR, we automatically derive

the optimal PL. Notably, PL,optimal = PL,ideal(PR,optimal).
2The notation of u is used to denote actions. Hence h is preferred for the unit step function.
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Lemma 1. Let Pχ(x) be the Probability Mass Function of inter-refresh time, and assume

that E [χ] exists and is finite. Then, the expected value of the defined cost function E [∆],

which is symbolically represented as ∆, is equal to E [χ2]
2E [χ]

− 1
2
.

Proof. As the process is ergodic, ∆ equals the ensemble average of the defined cost function,

which is the average of the cost function over time and calculated by dividing the area under

the cost function by the total length.

∆ = lim
k→∞

1∑k
n=1 χn

k∑
n=1

χn(χn − 1)

2
= lim

k→∞

k∑k
n=1Xn

lim
k→∞

1

k

k∑
n=1

χn(χn − 1)

2

=
1

limk→∞
1
k

∑k
n=1 χn

lim
k→∞

1

k

k∑
n=1

χn(χn − 1)

2
=

1

E [χ]
E [
χ(χ− 1)

2
]

=
1

E [χ]

E [χ2]− E [χ]

2
=

E [χ2]

2E [χ]
− 1

2

Theorem 1. Let PR ∈ [0, 1] be the remote action probability, PL ∈ [0, 1] be the local action

probability, α ∈ [0, 1] be the local success probability (see Def. 7), and p ∈ (0, 1] be the

remote latency parameter (see Assumption 2). Assuming 0 < PR + αPL ≤ 1, then the

average cost function ∆ (refer Lemma 1) is calculated as:

∆ = −1 +
1

p
+

1

αPL + PR

− 1

p+ PR

(3.9)

Proof. The proof of Theorem 1 is given in Appendix A.3.

We aim to confine the optimal PR and PL pair that minimizes the average cost for different
parameters, such as local success probability (α), remote latency parameters (p), and
local action limitation rate (Plim). In the subsequent sections, the optimization issue is
scrutinized for (i) one user connecting to the remote server and (ii) multiple users, where
the total number of users in the system is denoted as N , utilizing remote server resources.
The summary of defined parameters for the blind decision paradigm can be seen in Table
3.1.



CHAPTER 3. BLIND DECISION 19

Parameter Name Symbol Explanation

Availability State ς
The user’s status representing availability

for performing tasks (Busy or Idle)

Cost Function ∆
The function depicting the staleness of

the most recent task completion

Inter-Refresh Time χ
Time duration between two consecutive

resets

Remote Latency

Parameter
p

The probability of remote server

executing the task successfully within a

time slot

Local Success Probability α
The probability of successfully executing

a task through local action

Remote Action

Probability
PR

The probability of using Remote action

if the user is in Idle availability state

Local Action Probability PL
The probability of using Local action if

the user is in Idle availability state

Wait Action Probability PW
The probability of using Wait action if

the user is in Idle availability state

Local Action Limitation

Rate
Plim

The maximum frequency at which the

user can employ local resources

PMF of χ Pχ(x)
Probability Mass Function of

inter-refresh time

Average Cost Function ∆ Average of the cost function

Number of users N
Number of users connecting to the

remote server (For multiple user scenario)

Table 3.1: Blind case nomenclature
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Figure 3.3: Relation between PL,ideal, PL,ideal + PR and PR

3.2 Single User Case

As stated before, the local action probability is constrained by the local action limitation
rate parameter. An illustration of PL,ideal(PR) and corresponding PL,ideal(PR) + PR sum,
based on Eq. (3.5), are shown in Fig. 3.3 with red and blue lines, respectively. One can
observe that PL,optimal value equals Plim at PR = 0. Smaller PR values lead to staying idle
more, so Plim restricts PL,optimal as in (3.3). As PR grows, PL,ideal rises as well until PR

hits a boundary point, termed PR,bound, satisfying PL,ideal = 1− PR,bound = Plim
(p+PR,bound)

p
.

From this equation, PR,bound is calculated as:

PR,bound =
p(1− Plim)

p+ Plim

. (3.10)

The remote action probability interval [0, PR,bound] is defined as “Local Limited Zone
(LLZ)”, which can be seen as the yellow area in Fig. 3.3. After PR,bound point, PL,ideal(PR)
is equal to 1 − PR. The interval (PR,bound, 1], named as “Total Limited Zone (TLZ)”, is
observed as the blue area in the figure. It is important to note that PR,bound correlates with
Plim parameter inversely. When Plim = 0, PR,bound = 1, meaning that the system is in the
LLZ ∀PR ∈ [0, 1]. Conversely, when Plim = 1, PR,bound = 0, meaning that the system is
in the TLZ ∀PR ∈ [0, 1]. We consider both zones mentioned above while determining an
optimal PR and PL pair.
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3.2.1 Local Limited Zone

The first region to be examined is the LLZ where PR ∈ [0, PR,bound]. Throughout the zone,
PL is restricted by Plim parameter as in Ineq. (3.3). Thus, the average cost equation in
Eq. (3.9) becomes:

∆LLZ(PR) = −1 +
1

p
+

1

αPlim + PR(
αPlim

p
+ 1)

− 1

p+ PR

. (3.11)

There are two values of PR that cause ∆LLZ to diverge: − αPlimp
αPlim+p

and −p. These values
are the same if and only if p = 0, undefined in our context. Therefore, these two PR

values are always distinct and − αPlimp
αPlim+p

> −p. Moreover, both values are smaller than 0.

Let us define ℵ = − αPlimp
αPlim+p

for the sake of simplicity. With the objective to comprehend

the ∆LLZ dynamics, PR space is dilated to PR ∈ (ℵ,∞) while the sole possible logical PR

values are in [0, PR,bound]. In order to find the extreme points of the cost function, the
partial derivative of ∆LLZ over PR is calculated.

∂∆LLZ

∂PR

=
1

(p+ PR)2
− (

p

p+ αPlim

)(
1

PR + pαPlim

p+αPlim

)2 (3.12)

∂∆LLZ

∂PR
exists ∀PR ∈ (ℵ,∞). The extreme points make this function equal to 0.

1

(p+ PR,extrema)2
= (

p

p+ αPlim

)(
1

PR,extrema +
pαPlim

p+αPlim

)2

± 1

(p+ PR,extrema)
=

√
p

p+ αPlim

(
1

PR,extrema +
pαPlim

p+αPlim

)

PR,extrema(±1−
√

p

p+ αPlim

) = p

√
p

p+ αPlim

∓ pαPlim

p+ αPlim

PR,extrema,1 =
p
√

p
p+αPlim

− pαPlim

p+αPlim

1−
√

p
p+αPlim

and PR,extrema,2 =
p
√

p
p+αPlim

+ pαPlim

p+αPlim

−1−
√

p
p+αPlim

(3.13)

Eq. (3.13) shows the extreme points, which can be local minimum or maximum. With the
assistance from the second derivative test, PR,extrema,1 proved to be the local minimum and
bigger than ℵ (see Appendix A.4), whereas PR,extrema,2 is smaller than ℵ (see Appendix
A.5) and stays out of the interested region. One can interpret that ∆LLZ decreases between
ℵ and PR,extrema,1, and rises after PR,extrema,1. The position of PR,extrema,1 on the PR axis
depends on the system parameters, shifting the optimal PR (PR,optimal) and PL (PL,optimal)
pair. Hence, the position of this local minimum must be located.
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• ℵ < PR,extrema,1 ≤ 0 case

It is proven that PR,extrema,1 is always bigger than ℵ. The inequality of PR,extrema,1 ≤ 0 is
investigated in Appendix A.6, and the condition required for PR,extrema,1 to be non-positive
is given as:

p ≤ αPlim(

√
5− 1

2
) = pmin ≈ αPlim(0.618). (3.14)

In systems where the remote latency parameter p is smaller than αPlim(
√
5−1
2

), denoted

as pmin, the value of PR,extrema,1 is negative. Thus, ∆LLZ strictly increases along PR ∈
[0, PR,bound], and PR,optimal value that minimizes the cost function equals to 0. In other
words, the wisest move is not choosing any Remote action.

• 0 < PR,extrema,1 ≤ PR,bound case

This case indicates a local minimum inside LLZ, making that minimum point the optimal
PR value. First, we know the remote latency parameter p must be greater than pmin for
PR,extrema,1 to be greater than 0. Appendix A.7 details the derivation of the necessary
conditions satisfying PR,extrema,1 ≤ PR,bound, given in Ineq. (3.15).

p4+p3(2+αPlim)+p
2[2Plim−P 2

lim(1−α)2]+p(2αP 2
lim(1−α)−αPlim)−(α2P 2

lim) ≤ 0 (3.15)

Assuming α and Plim is fixed, let us denote the left side of this inequality as f(p). Only
one of the roots of f function is positive and between 0 and 1 (see Appendix A.8). This
root is denoted as pmax,LLZ . If the p value of the system satisfies the condition that it is
less than pmax,LLZ and greater than pmin, PR,extrema,1 is the optimal value for LLZ.

• PR,bound < PR,extrema,1 case

p values bigger than pmax,LLZ makes PR,extrema,1 > PR,bound, entailing a strictly decreasing
∆LLZ function throughout LLZ. Therefore, the optimal PR value that minimizes the cost
function becomes PR,bound. One can see the visualization of the general relation between
PR,optimal and p in Fig. 3.4.

To sum up:

▷ If p ≤ pmin, then PR,optimal = 0

▷ If pmin < p ≤ pmax,LLZ , then PR,optimal =
p
√

p
p+αPlim

− pαPlim
p+αPlim

1−
√

p
p+αPlim

▷ If pmax,LLZ < p, then PR,optimal = PR,bound =
p(1−Plim)
p+Plim

As a final note, it is observed that as Plim approaches 1, PR,bound goes to 0 and pmax,LLZ

converges to pmin.
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Figure 3.4: Optimal PR vs p in LLZ (Plim = 0.1 and α = 1). In minimal p values where

p ≤ pmin, PR,optimal equals 0. In other words, the best option is not choosing any Remote

action. However, if pmin < p ≤ pmax,LLZ , the optimal PR value follows the first extreme

point we derived. Finally, when p > pmax,LLZ , the optimal remote action probability is

equal to PR,bound. This is the only case where PR,optimal +PL,optimal = 1, signifying that the

user should not wait.

3.2.2 Total Limited Zone

Let us now focus on TLZ, where PR ∈ (PR,bound, 1]. Again, we aim to attain the PR,optimal

and PL,optimal pair to minimize ∆. Throughout the zone, PL is restricted by Ineq. (3.4);
thus, the average cost equation in Eq. (3.9) becomes:

∆TLZ(PR) = −1 +
1

p
+

1

α + PR(1− α)
− 1

p+ PR

. (3.16)

Akin to the LLZ, the partial derivative is used to explore the characteristics of the function
over the TLZ, and the PR domain is extended to PR ∈ R \ { −α

1−α
,−p}. Accordingly,

∂∆TLZ

∂PR

=
1

(p+ PR)2
− (

1

1− α
)

1

(PR + a
1−α

)2

=
(1− α)(PR + α

1−α
)2 − (p+ PR)

2

(1− α)(PR + α
1−α

)2(p+ PR)2
.

(3.17)
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∂∆TLZ

∂PR
exists ∀PR ∈ R \ { −α

1−α
,−p}3. Notably, two PR values make ∂∆TLZ

∂PR
= 0, and denoted

as PR,extrema,3 =
α−p

√
1−α√

1−α−(1−α)
and PR,extrema,4 =

α+p
√
1−α

−
√
1−α−(1−α)

. The latter is always negative.

Conversely, the former can be either positive or negative, and it can be bigger or smaller
than PR,extrema,4 depending on the parameters α and p. In this subsection, we identify four
distinct intervals of interest based on these considerations.

• PR,extrema,3 ≤ PR,extrema,4 < 0 case

As previously mentioned, PR,extrema,4 is always negative. For PR,extrema,4 to be greater than

or equal to PR,extrema,3, p value must exceed or equal to α
1−α

in which case ∂∆TLZ

∂PR

∣∣
PR=0

=

( 1
p2

− 1−α
α2 ) < 0. Since both extrema are less than 0, it can be deduced that:

∂∆TLZ

∂PR

< 0, ∀PR > max(PR,extrema,3, PR,extrema,4)

Consequently, if p ≥ α
1−α

, then max(PR,extrema,3, PR,extrema,4) = PR,extrema,4 < 0. Hence,

PR ∈ [0, 1] : PR > max(PR,extrema,3, PR,extrema,4) and ∂∆TLZ

∂PR
< 0. In short, all p values

higher than p ≥ α
1−α

guarantees a strictly decreasing average cost function. Thus, the
optimal PR value of TLZ is the highest PR value, i.e., PR,optimal = 1.

• PR,extrema,4 < PR,extrema,3 < 0 case

Given the condition p < α
1−α

, PR,extrema,3 is always higher than PR,extrema,4. Furthermore, as
proved in Appendix A.9, PR,extrema,3 is a local maximum when p < α

1−α
. Hence, ensuring

PR,extrema,3 < 0 makes the average cost function strictly decrease between 0 and 1. To
determine the necessary condition for PR,extrema,3 < 0:

α− p
√
1− α√

1− α− (1− α)
< 0

α < p
√
1− α

p >
α√
1− α

In essence, this case is obtained when α
1−α

> p > α√
1−α

. Analogously to the prior situation,
the optimal remote action probability PR,optimal equals 1.

3When α = 1, the value of −α
1−α becomes undefined. Therefore, we use α = 1− to define consistent

success in the local task execution.
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• PR,extrema,4 < 0 ≤ PR,extrema,3 ≤ 1 case

In this case, PR,extrema,3, proved to be local maximum in Appendix A.9, lies within the
interval [0, 1]. However, our objective is to identify the minimum average cost value. Since
no other local extrema exists within [0, 1], our focus should be on examining the function at
the boundary points of TLZ. The required condition for PR,bound ̸= 1 to be optimal, along
with its derivation, is elaborated on Ineq. (3.18). Moreover, the condition stipulating
PR,extrema,3 ≤ 1 is detailed in Ineq. (3.19).

∆TLZ(PR = PR,bound) ≤ ∆TLZ(PR = 1)

−1 +
1

p
+

1

α + PR,bound(1− α)
− 1

p+ PR,bound

≤ −1 +
1

p
+

1

α + (1− α)
− 1

p+ 1

1

α + PR,bound(1− α)
− 1

p+ PR,bound

≤ p

p+ 1
...

0 ≤ (PR,bound − 1)(PR,bound −
α

p(1− α)
+ p+ 1)

p(1− Plim)

p+ Plim

≤ α

p(1− α)
− p− 1

p3 + 2p2 + p(Plim − α

1− α
)− αPlim

(1− α)
≤ 0 (3.18)

PR,extrema,3 ≤ 1

α− p
√
1− α√

1− α− (1− α)
≤ 1

1−
√
1− α√

1− α
≤ p (3.19)

Utilizing Descartes’ Sign Rule, we ascertain only a single root of the equation on the left
side in Ineq. (3.18) is positive. This root is denoted as pmax,TLZ . Briefly, if p ≤ pmax,TLZ ,
then ∆TLZ(PR = PR,bound) ≤ ∆TLZ(PR = 1), leading to PR,optimal = PR,bound. Conversely,
if p > pmax,TLZ , then ∆TLZ(PR = PR,bound) > ∆TLZ(PR = 1), resulting in PR,optimal = 1. It
must be noted that in order for PR,extrema,3 ∈ [0, 1], the remote latency parameter p must

be in [1−
√
1−α√

1−α
, α√

1−α
] interval.
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• PR,extrema,4 < 0 < 1 < PR,extrema,3 case

In this situation, where p < 1−
√
1−α√

1−α
, the local maximum exceeds 1. Therefore, the average

cost function strictly increases along PR ∈ [0, 1], and the optimal value is the minimum
feasible PR value, which is PR,bound. One can see the overall picture of TLZ in Fig. 3.5.

To sum up, pmax,TLZ is the pivotal threshold distinguishing between PR,optimal = PR,bound

and PR,optimal = 1 outcomes. Remarkably, this threshold can be bigger than 1. To illustrate,
if α = 1, then based on Eq. (3.16), ∆TLZ = 1

p
− 1

p+PR
. Under this condition, PR,optimal

always equals PR,bound. It can be inferred that pmax,TLZ goes to infinity as α approaches 1.
Conversely, as α approaches 0, pmax,TLZ converges to 0.

p

Figure 3.5: Overall picture of TLZ

3.2.3 Overall System and Results

Thus far, we have delved into two distinct PR zones. At this point, it is important to
merge these zones and obtain a general overview. Several possible scenarios exist, but we
introduce a conjecture before detailing these scenarios.

Conjecture 1. Let α ∈ [0, 1) be the local success probability and Plim ∈ [0, 1] be the local

action limitation rate. Under this condition, pmax,TLZ > pmax,LLZ .

Although there is no mathematical proof, we tested the conjecture for numerous parameters
and are confident that it holds. In light of this information, the situation depicted in Fig.
3.6 is attained.

The overall system encompasses four partitions, or regions, each following a distinct opti-
mal remote probability (PR,optimal) function. A system setup with known remote latency
parameter p, local success probability α, and local action limitation rate Plim parameters
falls under one of these four regions, and the optimal PR value that the user should use is
derived accordingly. Fig. 3.6 is based on altering the parameter p; however, all boundary
points, namely pmin, pmax,LLZ and pmax,TLZ , depend on α and Plim. A similar figure can
be obtained for changes of α and Plim. The crucial aspect is identifying which system
parameters are associated with which region.
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Figure 3.6: Overall blind decision-making system

The first region covers the systems characterized by parameters satisfying Ineq. (3.14),
indicating where p ≤ pmin. The attributes of this region are depicted in Fig. 3.7a. Within
this domain, the optimal values for LLZ and TLZ are 0 and PR,bound, respectively. As
PR,bound is also included in LLZ, we can deduce that the overall PR,optimal = 0. This region
signifies an extremely small p value, leading to relatively extensive remote latencies after
employing a Remote action. Instead, the wisest move is to utilize local resources to
perform tasks and wait for the remaining time to adhere to local limitation constraints.

The second region includes the systems where the parameters do not satisfy Ineq. (3.14),
but satisfy Ineq. (3.15). In other words, pmin < p ≤ pmax,LLZ . Similar to the first region,
the optimal value of TLZ, PR,bound, is covered by LLZ. Thus, the optimal value of LLZ,
PR,extrema,1, becomes dominant and overall PR,optimal equals PR,extrema,1. An example of
average cost versus PR graph is shown in Fig. 3.7b. One can interpret that the models
with relatively higher remote latencies than Region 1 belong to this region. The p value is
not minimal; hence, utilizing a Remote action can prove advantageous. Nonetheless, the
optimal PR still resides within LLZ, emphasizing that occasionally waiting is necessary to
minimize the cost, thereby improving freshness.
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(a) p = 0.1 (b) p = 0.15

(c) p = 0.3 (d) p = 0.6

Figure 3.7: Average cost versus PR graphs (Plim = 0.4 and α = 0.5)

The third region stands for the only one in which both LLZ and TLZ share the same
PR,optimal, equivalent to PR,bound, as illustrated in Fig. 3.7c. Systems with remote latency
parameter p values between pmax,LLZ and pmax,TLZ belong to this region. In this context,
the p value is sufficiently high to consistently useRemote actions instead of waiting but not
high enough to fully utilize the remote servers. Consequently, the wait action probability
PW = 1− PR − PL equals 0.

The fourth region encompasses the frameworks with better remote task completion capa-
bilities than the local ones; thus, the user always employs remote servers without waiting
or taking any Local action. An illustration of this region, including the zones, is seen
in Fig. 3.7d. Within this framework, the optimal PR for LLZ is PR,bound. However, the
average cost is smaller at PR = 1 in TLZ, thereby PR,optimal = 1.
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Figure 3.8: PR,optimal and average cost versus p graphs (Plim = 0.4 and α = 0.3)

Fig. 3.8a portrays the PR,optimal versus p graph when α and Plim are fixed. As seen, the
optimal remote action probability is 0 for extremely small p values (Region 1). Beyond
a certain threshold value, pmin, the framework transitions into Region 2, and PR,optimal

begins to follow PR,extrema,1 until it hits pmax,LLZ . Before reaching this threshold, waiting
was a part of the optimal strategy. However, when p > pmax,LLZ , this strategy is invalid,
and PW equals 0. In the third region, PR,optimal = PR,bound. Subsequently, increasing the
p value leads the system to Region 4, where PR,optimal = 1. Notably, there is a jump from
PR,bound to 1, and it is impossible to obtain PR,bound < PR,optimal < 1 in a single-user case.

The graph presented in Fig. 3.8b highlights the corresponding cost value when the user
uses PR = PR,optimal, explained via Fig. 3.8a. The yellow line signifies the fully remote
case, in which task completion is performed exclusively by a remote server, i.e., PR = 1.
In contrast, the red line stands for using solely local resources as long as the local action
limitation rate allows, that is, PL = Plim and PR = 0. The cost value for the entirely local
case does not change over p, as enhancing or deteriorating remote latencies does not affect
the user if they do not use Remote action. Conversely, average cost strictly decreases in
the fully remote case. Observe that the optimal cost obtained by following PR = PR,optimal

is always less than or equal to the ones associated with entirely local or remote cases.

It has been observed that pmax,TLZ can exceed 1, positioning the system in the third region
even when p = 1, signifying that the remote server always performs the task successfully
within a time slot. In such cases, the optimal strategy does not entail exploiting remote
resources whenever the user is idle. If α and Plim are high enough, using Local actions
reduces the average cost function. Notably, the left side of Ineq. (3.15) exceeds 0, ∀α, Plim ∈
[0, 1] and p = 1, which means the optimal PR is in TLZ and PW = 0. Additionally, as Plim

approaches to 1, pmax,LLZ converges to αPlim(0.618) and PR,optimal converges to 0 in the
first three region.
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Figure 3.9: PR,optimal and average cost versus α graphs (p = 0.1 and Plim = 0.4)

Thus far, we have conducted analyses to optimize user actions and derived the inequalities
based on varying p values. Intuitively, if expected remote latency diminishes, i.e., p grows,
an increase inRemote action use is expected. Alternatively, given p and Plim are constant,
an increase in α makes the Local actions more “Reliable” and tends to shift the system
towards Region 1.

As depicted in Fig. 3.9a, the systems with extremely small α values are associated with
Region 4, i.e., PR,optimal = 1. Beyond a threshold value, let us denote α3 for simplicity,
PR,optimal drops to PR,bound—a constant value throughout α. The specific value of α3 de-
pends on the parameters p and Plim and can be calculated from Ineq. (3.18). Amplifying α
eventually puts the system into Region 2 and then Region 1. The boundary α values where
the transition from Region 3 to Region 2 and Region 2 to Region 1 happen are denoted as
α2 and α1. The specific values of α2 and α1 can be calculated from the Ineq. (3.15) and
Ineq. (3.14), respectively.

Another thing to be examined is the obtained average cost function values and their com-
parison with fully local and fully remote cases, detailed in Fig. 3.9b. The yellow and
red lines represent fully remote and local scenarios, respectively. In contrast, the blue
line marked with diamond shapes is the attained optimal cost via the optimal PR values.
Altering α values does not influence the remote case as they are independent; however, it
is inversely correlated with the average cost in the case of employing only local resources.
Thus, the user should prefer utilizing solely remote servers if α is very small and local
resources if α is high.
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Figure 3.10: PR,optimal and ∆ versus Plim graphs (α = 0.3 and p = 0.1)

Lastly, the evaluation of optimal PR for different Plim values is depicted in Fig. 3.10a.
Although not apparent in the graph, excessively small Plim values, where the local limita-
tion is too high, make PR,optimal = 1. Similar to the α case, an increase in Plim decreases
PR,optimal. However, in this instance, the reason is not reliability but rather limitations.

In this section, we aimed to obtain the optimal trio of PR, PL, and PW , diminishing the
average cost function. Evaluating the outage, or age violation, probability [42,55–57], that
is, the probability of exceeding a specific value, is another point of view. For that purpose,
we conducted a Monte Carlo simulation experiment and attained empirical CDFs of the
observed cost function values for different PR values, as seen in Fig. 3.11. This figure is
an example from a system in Region 2, i.e., PR,optimal = PR,extrema,1. One can observe that
the optimal PR minimizing the average cost does not necessarily minimize the outage
probability for some threshold values. For example, the probability of the cost function
being higher than 2 is higher at PR,optimal compared to PR,bound. Therefore, an in-depth
analysis is required if outage probability is a critical indicator for the system.

3.3 Multiple Users

In the previous section, we assumed a solitary user was operating within the model. How-
ever, real-world situations often deviate from this simplification. In practice, multiple
users may request task executions from the same remote units, creating an excessive load.
Consequently, this can lead to additional delays in getting a response and, by extension,
increase the staleness. The main objective of this chapter is to integrate the multiple-user
case into our model and discover the most favorable remote action probability PR.
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Figure 3.11: Empirical CDF of the cost function

Definition 9 (Number of Users, (N)). The total number of users connected to the same

remote units is denoted as N ∈ N, N ≥ 1. When multiple users are present, they share

not only the first contacted remote server but also the subsequent servers behind this task

execution process, along with the same channel. Whenever more than 1 users request task

execution from the remote units, the available resources are allocated among them.

Assumption 4. All users exhibit identical action probabilities, that is, PR, PL, and PW

are the same for each user. The primary aim is to optimize performances across all users.

From a heuristic standpoint, designating high PR signifies handling multiple users simul-
taneously and sharing resources among them. Thus, the experienced latency increases,
forcing the remote latency parameter (p) value to diminish. Ultimately, the p parameter
is inversely correlated to PR and n.

Assumption 5. The resources, such as bandwidth and processing units, are shared

equally among users connected to the remote units. Therefore, the remote latency pa-

rameter equation is:

1

p
= TbaseÑ (3.20)

where Tbase ∈ [1,∞) is the expected remote latency for the single user case and Ñ is the

number of users allocated with resources and awaiting a response from the remote server.
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Deriving the exact number of users awaiting a response from the remote server is complex
and challenging. Accordingly, we approximate Ñ from a user’s perspective as follows:

E[Ñuser] = 1 + (N − 1) · πB (3.21)

This equation represents how many users are in the Busy availability state from one of the
user’s point of view. Within the equation, the “1” term signifies the user connecting to the
remote server, while each of the remaining N − 1 users is in the Busy availability state,
i.e., awaiting a response from the remote server, with a probability of πB. The (N − 1)πB
term shows the expected number of busy users except the one that already took a Remote
action. Applying the formula of πB determined in Eq. (3.1), the remote latency parameter
equation becomes Eq. (3.22).

1

p
= Tbase[1 + (N − 1) · PR

p+ PR

]

1

p
= Tbase[

p+NPR

p+ PR

]

p2Tbase + p(NPRTbase − 1)− PR = 0

...

p =

1
Tbase

−NPR +
√

( 1
Tbase

−NPR)2 + 4 PR

Tbase

2
(3.22)

As seen from Eq. (3.22), the p value depends on Tbase, N and PR. Unlike the single-user
case, we used Tbase and N parameters to represent the remote task execution characteristics
of the system instead of employing the p parameter. Thus, we have four distinct parameters
defining a framework in total.

We first evaluate the accuracy of our approximations. An issue that arises is that calcula-
tions rely on steady-state analysis. Therefore, the experiment’s time horizon, Tmax, must
be selected as high as feasible, leading us to designate it as 10.000. Throughout simula-
tions, we monitor the number of users connected to remote units at each time slot and
determine p according to Eq. (3.20). We execute each setup 500 times using MATLAB
and obtain the empirical average of the average cost and Ñ values.

From a theoretical standpoint, it is important to note that Eq. (3.21) shows the expected
number of users connected to the remote unit and allocated with resources from a user’s
perspective. The user assumes its availability state is always Busy, beneficial while cal-
culating the experienced remote latency parameter. From the overall perspective, i.e.,
remote server’s perspective, the expected value of Ñ is calculated as:

E[Ñremote] = N · πB. (3.23)
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Figure 3.12: ∆ and E[Ñ ] versus PR graphs (α = 0.5, Plim = 0.1)

The theoretical p value is approximated from Eq. (3.22), and the theoretical E[Ñ ] and ∆ are
derived from Eq. (3.23) and Eq. (3.9), respectively. Fig. 3.12 proves that the theoretical
E[Ñ ] and ∆ are closely aligned with the simulation results. Considering minimizing the
average cost function, the optimal PR values are very close in empirical and theoretical
frameworks, and the difference is negligible.
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Figure 3.13: PR,optimal versus N graphs (α = 0.1 and Plim = 0.7)

To examine the impact of the total number of users (N) within the system, one can refer
to Fig. 3.13. The closed-form derivations pertaining to PR,optimal in multi-user scenarios
are elaborate. Hence, we applied a brute-force method to determine the optimal values,
evaluating the average cost function (Eq. 3.9) for each PR value and finding the one
minimizing the cost. In addition, the corresponding p value for the PR minimizing the
cost is used to derive PR,bound based on Eq. (3.10). Both PR,optimal and PR,bound values are
depicted in the figure.

Fig 3.13a shows the PR,optimal for a various number of users at an extremely small Tbase
value, in which p parameter is very high when N = 1; thereby positioning the system
within the 4th region. It states that using Remote actions is the wisest move without
waiting or utilizing local resources. As N increases, there is a decrease in optimal PR after
a threshold value. Remarkably, an additional region becomes apparent in the multi-user
paradigm. For example, when N = 3, PR,optimal is between PR,bound and 1, impossible in
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single-user case. Let us denominate this region as “Region 3.5” as it is between Region
3, in which PR,optimal = PR,bound, and Region 4, where PR,optimal = 1. On the other hand,
with further increments in the N parameter, the system transitions to Region 3 and,
consequently, Region 2. In this scenario, PR,optimal value in Region 2 no longer equals the
extreme point as in Eq. (3.13). However, it is still smaller than PR,bound and larger than 0.
Another key point is that increasing the N value does not carry the system to Region 1.
If the granularity of PR values is high enough, the optimal PR value is above 0, resulting
in rare server activity with tolerable p value.

All previous points are valid for the frameworks in 4th region in the single-user paradigm.
Given Tbase = 10.4, for instance, the one-user system stays in the third region (see Fig.
3.13b). Akin to the Fig. 3.13a, increasing N decreases p and shifts the system to Region
2. Additionally, if the single-user paradigm is in Region 2 (refer Fig. 3.13c), it stays there
while N increases. The optimal PR value decreases but does not reach 0. Technically,
even a minimal remote action probability can benefit all users. The only possible case
where PR,optimal = 0 is when the system is in Region 1 within a single-user paradigm. In
this scenario, employing solely local sources is optimal, even when only one user exists.
Increasing the number of users worsens the remote latencies; therefore, the optimal strategy
remains to avoid using any Remote action. This scenario is depicted in Fig. 3.13d. It can
be concluded that the Tbase parameter is vital to position the single-user system, thereby
influencing the behavior in case of a variant number of users.

From a different perspective, given a fixed number of users, the results of the increment
on Tbase is portrayed in Fig. 3.14. Similar to Fig. 3.13, the behavior depends on the
region corresponding to the smallest Tbase value. In Fig. 3.14a, the system is in Region 4
at Tbase = 1: however, the system shifts towards the first region and PR,optimal decreases
as Tbase increases. It is pertinent to underscore that PR,optimal drops to zero4 at very high
Tbase values unlike the ones in Fig. 3.13. The reason is that Tbase directly influences the
single-user scenario, unlike the N parameter.

Other figures (Fig. 3.14b, 3.14c, and 3.14d) illustrate PR versus Tbase for different N values,
placing the systems into Region 3.5, Region 3, and Region 2 when Tbase = 1, respectively.
They all manifest analogous characteristics, such as shifting towards the first region and
reaching it after one point.

Ultimately, Fig. 3.15 illustrates the average cost function when the derived PR,optimal is
selected as the remote action probability, along with fully local and remote cases. As
seen, the average cost in the fully local case is independent of the N and Tbase parameters
since these parameters solely affect the remote characteristics of the system. However, the
average cost value in the fully remote case increases as N or Tbase increases. Notably, the
average cost function with the optimized action probabilities persistently remains either
smaller or equivalent to the average cost when employing a single resource type.

4The point dropped is seen as 10−5 due to plotting the y-axis on a log scale.
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Figure 3.14: PR,optimal versus Tbase graphs (α = 0.1 and Plim = 0.7)
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Figure 3.15: ∆ versus N and Tbase graphs (α = 0.1 and Plim = 0.7)



Chapter 4

Informed Decision

In Chapter 3, the concept of the blind decision setting, wherein the user decides on offload-
ing strategies regardless of the current cost function, was explained. However, utilizing
the information on the staleness, characterized by the cost function of the model, can
help the user improve freshness. This chapter focuses on formulating the problem as a
Markov Decision Process [58] and ascertaining the optimal strategy by employing dynamic
programming over a finite horizon.

We will proceed by building upon what has been presented in Chapter 2. In contrast to
what discussed in Section 3.1, the user’s action decisions depend on the present information
on the staleness and current time. It is worth noting that while remote latency parameter p
and local success probability α values still incorporate an element of randomness, choosing
the optimal action is no longer based on chance.

4.1 Dynamic Programming

Dynamic programming (DP) is a mathematical optimization algorithm that decomposes
complex problems into smaller, more manageable subproblems and addresses them re-
cursively. Prior to utilizing the DP method, the problem shall be restated as a Markov
Decision Process (MDP). The MDP model with a finite horizon T is denoted by a 4-tuple
{X,U, S,G}, where X indicates a set of possible states, U is a set of possible actions, S
represents the randomness factors in state transitions, and G is a general cost function.
We structure our analysis into two distinct segments, distinguishing between scenarios with
and without restrictions on Local actions. All components of the MDP, apart from X,
remain identical in both situations with or without local limitations. We first elucidate
the unconstrained version in subsection 4.1.1, then clarify the differences between the two
scenarios and propose a layered state space solution to resolve the problem in subsection
4.1.2.

38
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4.1.1 Unconstrained Local Action Analysis

Definition 10 (Unconstrained State Space, (XU)). XU denotes the set of all possible

states without constraint on Local actions. A state of a user at the onset of time slot k

is represented by xk = (∆k, ςk), xk ∈ XU , where ∆k and ςk are the cost function value and

availability of the user at kth time slot, respectively.

Definition 11 (Action Space, (U)). If Idle, a user makes an offloading decision at the

onset of each time slot, denoted by a vector uk = [r, l, w], where k is the time slot index.

All possible actions, r, l, w ∈ {0, 1}, constitute the action space. Notably, the notation

comes from the first letter of the actions Remote, Local, and Wait, and rk+ lk+wk = 1.

After a Remote action is employed, the availability state of the user reverts to Busy in

the next time slot. In mathematical terms, ςk+1 = 1 if rk = 1. When the user is Busy, the

Wait action is selected automatically, i.e., uk = [rk, lk, wk] = [0, 0, 1] if ςk = 1. Notably,

the Wait action is the only option in Busy availability state, and the state of the next

time slot is subject to randomness.

Definition 12 (Random Variables, (S)). The dynamic part of the system, termed sk ∈
S, ∀k = 1, ..., T , encompasses two random variables, namely sLk , s

R
k ∈ {0, 1}. The Local

action’s success and the Remote action’s latency are both subject to randomness, and

the probabilities depend on α and p, respectively. Within the model, sLk = 1 signifies a

Local action is taken at kth time slot, and it is successful, whereas sRk = 1 means the

remote serves executes the task with success while the user is waiting for a response from

the remote server. The conditional probabilities are given in Eq. (4.1) and (4.2).

P (sLk = 1|lk) =

{
α if lk = 1

0 if lk = 0
(4.1)

P (sRk = 1|ςk) =

{
p if ςk = 1

0 if ςk = 0
(4.2)

Definition 13 (State transition function, (f)). The system state at time k + 1 depends

on the previous state, the action taken, and the disturbance, or stochastic, factor. The

transition function maps these factor to the subsequent state as:

xk+1 = fk(xk, uk, sk) = (∆k+1, ςk+1)

xk+1 =


(0, 0) if (lk = 1 and sLk = 1) or (ςk = 1 and sRk = 1)

(∆k + 1, 0) if (lk = 1 and sLk = 0) or (ςk = 0 and wk = 1)

(∆k + 1, 1) if rk = 1 or (ςk = 1 and sRk = 0).

(4.3)
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The initial point, denoted as x0, is set to be equal to (0, 0). As we traverse through time,
the cost value at time slot k always remains smaller than or equal to k in our setting. This
knowledge has been leveraged to streamline complexity, obtaining a transition graph as
seen in Fig. 4.1. In the figure, the superscript of nodes denotes the cost value, while the
subscript denotes the availability state. Here, the time index progresses towards the right
side of the figure, and all possible states of a time slot are lined up vertically.

When the user is Idle with a cost function value ∆, it can employ (i) the Remote action,
depicted with blue lines, and transition to the Busy availability state with a cost function
value ∆+1 in the next time slot, (ii) the Local action, resulting in successful task execution
and cost reset by the end of the time slot with a probability of α (illustrated with dashed
red lines), or unsuccessful task execution with a probability of 1−α (illustrated with solid
red lines), or (iii) the Wait action, shown with cyan lines, increasing the cost function by
one without altering the availability state.

Conversely, the user must wait when in Busy availability state. While waiting, the remote
units may complete the task, providing a response to the user by the end of the time slot
with a probability p (illustrated with dashed green lines), after which the user resets the
cost function and becomes Idle. Or, the remote units may not execute the task in that time
slot (illustrated with solid green lines) with a probability of 1− p, and the user continues
to be Busy. Cost resets are expressed with dashed lines, while the solid lines indicate an
increase in the cost function.

Definition 14 (General Cost Function Space, (G)). The cost function defined in Chapter

2 is utilized to represent staleness. The cost incurred at the kth time slot is denoted by

gk(xk, uk, sk) ∈ G, equivalent to ∆k. Similarly, the terminal cost is gT (xT ) and equal to

∆T .

Definition 15 (Total Cost Function, (J)). The total cost, which we want to minimize, is

represented by Jπ(x0) where x0 stands for the system’s initial state and π = {u0, ..., uT−1}
is the policy, describing the sequence of chosen actions. Considering the presence of a

disturbance, the total cost can be formulated as follows:

Jπ(x0) = E
sk

{
gT (xT ) +

T−1∑
k=1

gk(xk, uk, sk)

}
. (4.4)

The objective of Chapter 4 is to optimize over closed-loop policies, wherein the task involves
selecting uk for each k and potential xk and finding the optimal policy (π∗). In pursuit
of that, the cost-to-go function Jk(xk) is defined to measure the minimum total cost
accumulated from time slot k to the terminal slot T when the state of the system at kth

time slot is xk as in [59]:

Jk(xk) = min
uk

E
sk

{
gk(xk, uk, sk) + Jk+1(fk(xk, uk.sk))

}
(4.5)
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Figure 4.1: Markov decision process



CHAPTER 4. INFORMED DECISION 42

The optimal policy π∗ can be obtained by solving Eq. (4.5), iterating the time from k = T
to k = 0. The optimal cost J∗(x0) is equivalent to J0(x0). The values π∗ = [u∗0, ..., u

∗
T−1]

minimizing the right side of the equation, also named Bellman equation, are the optimal
policy [ [59], Sec. 1.3]. The right side of the Bellman Equation can be constructed as
follows:

Jk(xk) = ∆k +min
uk

E
sk

{
Jk+1(fk(xk, uk.sk)

}

Jk(xk) =

∆k + min
r,l,w∈{0,1}

[
JW
k+1(xk+1), J

R
k+1(xk+1), J

L
k+1(xk+1)

]
, if ςk = 0

∆k + p× Jk+1((0, 0)) + (1− p)× Jk+1((∆k + 1, 1)), if ςk = 1
(4.6)

subject to r + l + w = 1

where

JW
k+1(xk+1) = Jk+1((∆k + 1, 0))

JR
k+1(xk+1) = Jk+1((∆k + 1, 1))

JL
k+1(xk+1) = α× Jk+1((0, 0)) + (1− α)× Jk+1((∆k + 1, 0)).

Starting from k = T − 1, the time index regresses in reverse until k = 0 while computing
the cost-to-go values of each state and their associated actions. Utilizing MATLAB, we
have derived the optimal actions and generated a look-up table indicating the optimal
actions based on the present time and state along with the time horizon. This can be done
for any set of p, α, and Plim parameters. Knowledge of these three is sufficient to make an
informed decision. Notably, this iteration has a computational complexity O(T 2), and the
size of the generated look-up tables is proportional to T 2.

4.1.2 Constrained Local Action Analysis

As stated, subsection 4.1.1 presents the general logic behind our algorithm for the uncon-
strained local action case. However, the approach is unsuitable for situations where the
users’ Local actions are restrained for various reasons. To clear that obstacle, we employed
the same Plim parameter as in the blind decision setting to introduce how many Local
actions are allowed to the user for the given time horizon.

Definition 16 (Allowed Local Action Number, (Γ)). The total number of allowed local

actions within a finite horizon is represented by Γ. It is calculated as follows:

Γ = Plim · T (4.7)

The number of allowable local actions until the end of the time horizon at time index k is

denoted as Γk and computed as shown in Eq. (4.8).

Γk = Γ−
k−1∑
n=0

ln (4.8)
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Figure 4.2: Layered Markov decision process for the constraint case

At the initial time slot k = 0, Γ0 is equal to Γ. Whenever a Local action is employed,

successful or unsuccessful, Γk decreases by 1 until no Local action rights remain. At that

point, the sole option is to utilize remote servers for data computation or gathering tasks.

We restrict the use of Local action by defining lk = 0 if Γk = 0.

With the inclusion of the Γk ∈ {0, 1, ...,Γ} parameter, a new state space and transition
function shall be defined. In brief, a new dimension is added to the previously explained
Markov Chain, and the updated 3-dimensional version is generated as illustrated in Fig.
4.21. Utilizing Local actions decreases the Γk value, and the system goes one layer below.
In the last layer, i.e., Γk = 0, the only options are waiting or employing a remote server.
Thus, the Γk value cannot be smaller than 0.

1It must be noted that only the nodes are portrayed in the graph due to high-complexity of the

illustration.
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Definition 17 (Constrained State Space, (XC)). XC represents the set of all possible

states in the constrained local action situation. At time index k, the state is denoted by

xk = (∆k, ςk,Γk), xk ∈ XC .

The transition function for the constraint case is seen as follows:

xk+1 = fk(xk, uk, sk) = (∆k+1, ςk+1,Γk+1)

xk+1 =



(0, 0,Γk − 1) if lk = 1 and sLk = 1

(0, 0,Γk) if ςk = 1 and sRk = 1

(∆k + 1, 0,Γk − 1) if lk = 1 and sLk = 0

(∆k + 1, 0,Γk) if ςk = 0 and wk = 1

(∆k + 1, 1,Γk) if rk = 1 or (ςk = 1 and sRk = 0)

(4.9)

The fundamental Bellman equation (4.5) is still an essential aspect of the constrained scene.
However, the construction differs due to the newly added Γk dimension. The constrained
version takes the form seen in Eq. (4.10).

Jk(xk) =

∆k + min
r,l,w∈{0,1}

[
JW
k+1(xk+1), J

R
k+1(xk+1), J

L
k+1(xk+1)

]
, if ςk = 0

∆k + p× Jk+1((0, 0,Γk)) + (1− p)× Jk+1((∆k + 1, 1,Γk)), if ςk = 1
(4.10)

subject to r + l + w = 1

Γk

(a)

≥ lk , k = 1, ..., T

where

JW
k+1(xk+1) = Jk+1((∆k + 1, 0,Γk))

JR
k+1(xk+1) = Jk+1((∆k + 1, 1,Γk))

JL
k+1(xk+1)

(b)
= α× Jk+1((0, 0,Γk − 1)) + (1− α)× Jk+1((∆k + 1, 0,Γk − 1))

The constrained local action minimization problem has an additional restriction compared
to the unconstrained one. In the problem formulation, (a) is added to ensure that lk = 0
if Γk = 0. As it is restricted, Γk cannot diminish to 0; thus, (b) is not computed if Γk = 0.

In the constrained setting, the employed algorithm has a complexity of O(T 3) as another
difference from the unconstrained case. If the T value is high, then the iteration time to
compute all possible cost-to-go values might grow. Additionally, the size of the look-up
table increases as well.
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Figure 4.3: Informed decision-making realizations (α = 0.45, Plim = 1, T = 30)

4.2 Results

As stated, informed decision-making differs from blind decision-making in that it utilizes
information about the current state and time. Nevertheless, the optimal actions might be
identical depending on the parameters, which is much more apparent in the no-limitation
circumstance. For instance, in a single-user system, intuitively speaking, one of the Local
or Remote actions is superior, and it should be selected in both settings if there are no
constraints. The addition of informed decision-making is the information about when the
epoch, denoted for the time from k = 0 to k = T , ends. In contrast, the blind case assumes
the time is infinite and acts accordingly.

The realizations showing the cost function over time for informed decision-making in two
different blind decision regions are illustrated in Fig. 4.3a and 4.3b. The former stands
for utilizing sole local sources in both decision-making settings. Conversely, the latter
represents the situation in which PR,optimal = 1 in the blind decision-making case, suggesting
employing the remote server exclusively. The informed decision also verifies this selection;
however, it also proposes to utilize Local actions as the time index approaches the end of
epochs. The explanation is that the reception of the remote server’s response might take
some time, and the user may only acquire it after the end of the epoch. This phenomenon
occurs because of the finite horizon DP implementation.

Blind decision-making entails the utilization of action probabilities at each time slot to
determine whether to use a Local action. Consequently, the Local actions are distributed
all over the time axis. Conversely, the power of informed decision-making comes from
knowing when to utilize a Local action. The user might disconnect from the remote
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Figure 4.4: A realization (p ≈ 0, α = 1, Plim = 0.1, T = 100)
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Figure 4.5: A realization (p ≈ 0, α = 0.2, Plim = 0.1, T = 100)

server temporarily. Until the conditions improve, the sole viable option is to employ local
resources even if there is a possibility of failure and local action restrictions.

An experiment has been devised to monitor a user’s behavior in a comparable situation.
In the simulation environment, the p value is set to a very small value, implying a very
large remote latency, and Plim is selected as 0.1, meaning the user can use the Local
action 10 times when T = 100. The decision mechanism of the user is observed for two
different α values, as shown in Fig. 4.4 and 4.5. In the scene of perfect local task execution,
that is α = 1, the time instants of the Local actions are evenly spaced (refer 4.4a, 4.4b).
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However, introducing a local task fail probability reduces the trust to the Local action
and concentrates the actions toward the middle of the epoch (see Fig. 4.5a, 4.5b). The
situations where the user employed Local actions in the earlier stages make the cost
function incur much higher values in the later stages, and vice versa. Knowledge of the
present cost value and time, along with the awareness of the time horizon, empowers the
user to align itself based on the anticipated outcomes.

Apart from the extreme conditions, the optimal behavior of a user also depends on the
time instants of the Remote actions. In informed decision-making, the region concept
(See 3.6) is not valid anymore. The effect of a tiny alteration on the parameters does not
trigger a significant change. Instead, it shifts the optimal sequence of the actions. Fig. 4.6
shows five distinct realizations corresponding to different values of p. All other parameters,
such as Plim, α, and T , are kept constant in the environment settings. When p is small,
indicating high remote latency, Local actions are employed conservatively, as depicted in
Figure 4.6a. The user only uses Remote actions after all Local action rights are spent.
Increasing the p value (refer to Figure 4.6b) induces users to consume the Local action
rights faster. This shift is attributed to a higher trust level inRemote actions compared to
the scenario with minimal p values, prompting the user to complete Local actions earlier.

When neither local nor remote options dominate, users distribute Local actions over time,
as illustrated in Figure 4.6c, where the superiority of one execution option over the other
is not evident. Conversely, with low remote latency (i.e., high p values), users delay the
use of Local actions until the end of epochs, exemplified in Figure 4.6d, which is the
opposite scenario of in Fig. 4.6b. For very high p values, illustrated in Figure 4.6e, the
optimal action characteristics are akin to 4.3b. In this case, the user solely employs remote
resources due to significantly low remote latency, and the role of Plim is negligible as the
user does not use the Local actions2.

The intricate interplay among Plim, α, and p continues to be evident in informed decision-
making, similar to the blind setting. The distinction is that changing the parameters α and
p shifts the time instants of the actions rather than changing the action probabilities, while
Plim extends or shrinks the interval in which Local actions are used. Fig. 4.7 illustrates
realizations for different α and Plim values, satisfying that the Local actions are superior
to remote ones3. If it were the other way around, we would observe only Remote actions
because Remote actions would yield superior results compared to Local ones, and there
is no limitation on the use of Remote actions. Higher α values lead users to trust Local
actions more and prioritize consuming them first, similar to the effect of decreasing p. This
influence is apparent while comparing Fig. 4.7a and 4.7b, as well as Fig. 4.7c and 4.7d. On
the other hand, increasing Plim extends the interval duration of employing Local actions.
In instances where Plim = 1, as depicted in Fig. 4.7e and 4.7f, the system solely relies on
the Local actions as it is the better choice.

2Except at the final time slots of an epoch as in Fig. 4.3b.
3The influence of Plim is trivial in the converse case, as explained in the prior paragraph.
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0 50 100 150 200 250 300

Time Slot Index

0

5

10

15

20

25

Cost Function

Local Success

Local Fail

Remote Start

Remote End

(d) p = 0.2

0 50 100 150 200 250 300

Time Slot Index

0

1

2

3

4

5

6

7

8

Cost Function

Remote Start

Remote End

(e) p = 0.5

Figure 4.6: Realizations for different p values (α = 0.2, Plim = 0.1, T = 300)
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(b) α = 0.20 and Plim = 0.1
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(c) α = 0.05 and Plim = 0.2
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(d) α = 0.20 and Plim = 0.2
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Figure 4.7: Realizations for different α and Plim values (p = 0.05, T = 300)



Chapter 5

Discussion

This study delved into two decision-making strategies, blind and informed, intending to
maximize freshness. In practical applications, storing the optimal actions for different
situations can be a problem in memory-constrained systems. The blind setting, in which
the user does not utilize the current cost value, addresses this challenge. We formulated
the problem as an open-loop minimization problem, which enables choosing all actions
at time k = 0 based on action probabilities. Subsequently, we performed a steady-state
analysis to derive the optimal action probabilities.

In contrast, the informed setting uses the current cost value and time, allowing us to
derive a closed-loop minimization solution. This approach involves making decisions at the
beginning of each time slot. The optimal solutions and the resulting minimal average cost
values may coincide with the open-loop solution depending on the parameters α, Plim and p.
The following paragraphs will further explore the dynamics of the two settings, employing
graphs to visually stress how the average cost function alters when the parameters and
time horizon differ.

Fig. 5.1 shows the average cost functions for various time horizon T values in the uncon-
strained local action scenario, with Plim = 1. In the figures, the red lines represent the
steady-state average cost of the blind decision approach, where optimal PR and PL are
employed for stochastic decision-making. The value remains constant across the time hori-
zon axis since the impact of the transition phase, i.e., the phase until reaching the steady
state, is not included. Conversely, the blue lines illustrate the average cost of the informed
decision-making settings for different T values, obtained through Monte Carlo simulations,
running 1.000.000 times for each T value and averaging the average cost function results.
MATLAB was the tool used for these simulations.

Each run lasts exactly T time slots. For small T values, a single Monte Carlo run ends
before reaching the expected cost values. In simpler terms, it spends most of the time in the
transient phase, influencing the overall average. Accordingly, the average cost difference
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(b) α = 0.01, p = 0.2
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(c) α = 0.2, p = 0.01
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(d) α = 0.2, p = 0.2

Figure 5.1: Average cost versus T graphs for different α and p values (Plim = 1)

between the blind and informed decision-making can be significant, as seen in Fig 5.1a.
However, as T increases, the effect of the transition phase decreases. Therefore, we focus
on the cost difference at higher T values when comparing the settings.

Fig. 5.1a portrays the average cost for small local success probability (α) and remote
latency parameter (p) values. With Plim = 1, the user makes a binary selection, utilizing
either solely local or remote resources, as one is probably superior to the other. However,
both actions have low success probabilities, leading to high average costs. On the other
hand, the same settings but with higher p values, illustrated in Fig. 5.1b, have much
smaller average cost values in both decision-making strategies. In this setting, utilizing
remote resources provides much better results than resorting to the local ones, and both
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decision-making strategies use Remote actions in all time slots when the node is Idle1.
Additionally, the cost difference in small T values is much smaller than the previously
explained α = 0.01 and p = 0.01 case because the steady state cost is much lower, making
the transition phase much shorter.

The results of an unconstrained local action system with high local success probability
(α = 0.2) and relatively low remote latency parameter (p = 0.01) values are depicted in
Fig. 5.1c. In this setting, the user employs local resources in each time slot as Local actions
are superior toRemote actions. Increasing the p value to 0.2 does not alter anything since
the local success probability is the same even if the p value is different, forcing the user to
use Local actions2. This behavior can be observed by comparing Fig. 5.1c (former case)
and Fig. 5.1d (latter case).

All graphs in Fig. 5.1 represent the unconstrained local action case, where the users make
binary decisions about offloading. They choose to employ either solely Local or Remote
actions, which is the same in both blind and informed decision-making approaches. Thus,
the average cost results of both settings are the same, which can be observed from the fact
that the average cost in the informed decision setting converges to the steady state average
cost as T increases3. Nevertheless, the power of the informed decision is to know when to
use Local actions.

The graphs illustrating the average costs in the constrained limit action case for α = 0.2
and α = 1 are shown in Fig. 5.2. Notably, these graphs depict systems with a high
remote latency parameter p, indicating that the user can quickly execute tasks via remote
units, even if it consumes all the local action rights. The value of α is also essential since,
1% of the time, the user employs Local actions in this setting, and knowing the optimal
time slots to use Local actions improves timeliness if the Local actions are better than
Remote ones. The average cost of the informed decision, where α = 0.2 (Fig. 5.2a),
converges to the steady-state solution as T increases. However, the converged average cost
of the informed decision is smaller than the steady-state average cost in the case of α = 1,
as seen in Fig. 5.2b. However, this difference is insignificant as the p value is high enough
to compensate for local task execution limitations.

The advantage of informed decision-making is revealed at small remote latency parameter
(p) values. In this case, the user cannot aggressively use the Remote actions due to longer
response times of the remote task execution. On the other hand, greedy use of the Local
actions quickly consumes the allowed local action rights. Considering the limitations on
the Local actions, the timings of the Local actions become incredibly vital. The average
cost values for both informed and blind decisions, given a small remote latency parameter

1Except the last one or two time slots as explained in Sec. 4.2.
2When α and p values equal, the user prefers to employ Local actions due to an additional 1 time slot

to forward the task to the initial server in Remote actions.
3It can be hard to observe from Fig. 5.1a since the transient phase still influences the overall average

even at T = 5.000. However, based on our experiments, we observe that convergence becomes more

apparent with increasing values of T .
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(b) α = 1

Figure 5.2: Average cost versus T graphs for different α values (p = 0.2 and Plim = 0.01)
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500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T

0

20

40

60

80

100

120

A
v
e

ra
g

e
 C

o
s
t

Informed Decision

Blind Decision

(b) α = 1

Figure 5.3: Average cost versus T graphs for different α values (p = 0.01 and Plim = 0.01)

(p = 0.01), are depicted in Fig. 5.3. The first figure, illustrated in Fig. 5.3a, shows the
average cost when α = 0.2. Without any local constraints, the user would pick the Local
action in each time slot. This unconstrained scenario with the same α and p values is
depicted in Fig. 5.1c. However, as there is a certain number of allowed local action rights,
their distribution is crucial, which is the difference between informed and blind decision-
making settings. It is evident from Fig. 5.3a that the average cost gap between informed
and blind decisions is more prominent in the constrained case.

From another point of view, a scenario with consistent local action success, where α = 1,
is illustrated in Fig. 5.3b. Here, the Local actions are evenly distributed at equal intervals
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since the system does not trust Remote actions. A realization example of the informed
case under these system parameters resembles Fig. 4.4a, whereas the blind case randomly
distributes these local rights over time. In this case, the gap between informed and blind
decision cases is particularly evident. The informed decision reduces the cost function by
approximately 42%.

As observed from the results, informed decision-making consistently yields superior results
to the blind case. Nonetheless, the Dynamic Programming approach is not perfect, and
several issues must be addressed.

• Issue 1: Memory

Storing the look-up table generated by Dynamic Programming might pose challenges for
memory-constrained devices. As stated, the size of the look-up table is proportional to
T 2 in the unconstrained local action case and T 3 in the constrained one. Higher T values
make informed decision-making unsuitable for such devices due to high complexity. Islam
et al. [60] underlined this problem of Dynamic Programming solutions, stating that the
stored results of every sub-problem, regardless of their utility, consume an extensive amount
of space in the memory, resulting in using more energy and resources. While this concern is
not explicitly addressed in the thesis, it must be considered depending on the application.

• Issue 2: Incorrect Parameter Values

The second issue concerns potentially incorrect information about the system parameters,
such as p, α, and Plim. The current model assumes the user has the perfect system
information and acts accordingly. However, acquiring the perfect information is not an
easy task. The system parameters may change over time, making their estimate even
more challenging. Mancuso et al. [27] emphasized that state-aware methods are highly
susceptible to errors and stated that the stateless methods gave almost equal or sometimes
better results than the counter-part stateful methods in case of incorrect information.
Therefore, the influence of incorrect system information is another issue that must be
considered while utilizing informed decision-making.

Overall, the implementation of blind decision-making is straightforward because it does
not demand an extra amount of space in the IoT device’s memory. Additionally, it does
not require additional units to obtain information about the current cost function or state,
except for the availability state. However, the results obtained are suboptimal due to the
random timing of the actions, and the user is unaware of the current situation. It relies
solely on randomness; thereby, each realization significantly differs. As a result, there is
no control over the flow. For instance, the user may not use any action for an extended
period, even if the cost function increases significantly.

Conversely, the informed decision-making consciously controls the flow. Whenever the
cost function surpasses a certain threshold, depending on the current time and system
parameters, the user tries to reduce it by taking action until the cost is reset. The user
adapts the actions according to the success of the task executions, yielding superior results.
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Blind Decision Informed Decision

Advantages

• Easy to implement

• Does not have to know the cur-

rent cost value

• Requires less space in the mem-

ory, thereby faster decision mak-

ing [60]

• Arranges the actions according

to previous outputs

• Better flow control

• Optimal solution

Drawbacks

• Suboptimal solution

• Closely linked to randomness

• Hard to control the flow

• Requires the cost information

• Takes up a lot of space in the

memory [60]

• Error-prone in case of incorrect

information [27]

• Can yield a suboptimal solution

for a small time horizon

Table 5.1: The summary of the discussion

However, this approach requires access to information such as the number of local action
rights left, current cost, time, and time horizon since it combines all these values and takes
a decision using a look-up table. In addition, the size of the look-up tables is another
problem since the user may need many different look-up tables for different situations and
store many unnecessary data in the memory, some of which may not even be used for
a long time. This situation can be a notable challenge for memory-constrained devices
and decreases flexibility. Furthermore, a piece of incorrect information about the system
parameters can make results worse.

To conclude, neither of the decision-making settings is flawless. Each setting presents its
advantages and drawbacks, as outlined in Table 5.1. It is the designer’s responsibility to
decide the most suitable offloading decision-making strategy.
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Conclusion

Within the scope of the thesis, we formulated a timeliness-based slotted-time data comput-
ing/gathering offloading model suitable for time-sensitive IoT applications. The developed
framework provides solutions for users experiencing a dilemma between accuracy and la-
tency. This situation was manifested through a dichotomy between “Local” and “Remote”.
In this context, “Local” represents the less powerful resources in proximity, where both
latency and accuracy of the data computing or gathered data is low. On the other hand,
“Remote” pertains to the robust units positioned relatively farther from the user, where the
gathered/computed data is accurate in exchange for high latency. We solved the offload-
ing problem with two distinct approaches, each harnessing a user-driven decision-making
model, and introduced and implemented the local computation limitation issue into both
approaches.

First, we employed a stochastic decision-making strategy where the user makes the of-
floading decisions without any information about how timely the flow is, solely based on
predefined probabilities. The objective was to identify the optimal probabilities for em-
ploying local and remote sources, along with the probability of waiting. We formulated
this problem as an open-loop minimization problem. We derived a closed-form steady-state
solution using convex optimization for single-user cases and employed brute-force methods
to obtain a user’s behavior in the multiple-user scenario.

Next, we treated the problem as a Markov Decision Process (MDP), where the user knows
the system’s timeliness and other relevant values and employed Dynamic Programming
(DP) to determine the optimal action sequence. We analyzed the system over a finite
horizon and revealed that the user’s awareness of the current freshness of the flow helps
the user to make logical decisions. We showed the critical role of knowing when to use
local sources in improving freshness, especially when the remote latency is high.

56
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Subsequently, we conducted a comparison between the two approaches and obtained solu-
tions. We demonstrated that the Dynamic Programming solution yields superior results
to the stochastic decision-making strategy and elucidated the scenarios where these two
approaches follow the same offloading strategy. In addition to this, we discussed potential
issues regarding the evaluated offloading approaches and underlined that the ideal strategy
hinges on the system requirements, necessitating careful consideration by the designer.

As we bring this thesis to a closure, we anticipate that these findings will contribute to the
ongoing efforts to strike a balance between accuracy and latency. In future studies, we plan
to extend the model by employing a game theoretic approach to investigate the behavior
of users. Additionally, we exclusively focused on the single-user scenario in the informed
decision-making setting, leaving multiple-user scenarios as another potential area for future
research. We believe that offloading is a milestone in IoT applications and will continue to
play a crucial role, and we hope that our research will pave the way for numerous studies.



Appendix A

Proofs and Derivations

A.1 Derivation of Availability State Probabilities

πI =
p

PR + p
and πB =

PR

PR + p

Proof. We conduct steady-state analysis to derive stationary Idle and Busy availability

state probabilities. Note that πI + πB = 1.

πI = πI ∗ (PL + PW ) + πB ∗ p
πI ∗ (1− PL − PW + p) = p

πI ∗ (PR + p) = p

πI =
p

PR + p
and πB = 1− πI =

PR

PR + p

A.2 Derivation of Closed Form Pχ(x)
We derive the PMF of the inter-reset time, denoted as Pχ(x), including the extreme cases.

When p ̸= 1, αPL + PR ̸= 1 and αPL + PR ̸= p:

Pχ(x)x∈N+ =
(αPL + PR)(αPL − p)

αPL + PR − p
(1− αPL − PR)

x−1 +
pPR

αPL + PR − p
(1− p)x−1

Pχ(x) =



αPL(1− p)x−1h[x− 1] + pPR(x− 1)(1− p)x−2h[x− 2] if p = αPL + PR ̸= 1

pPR(1− p)x−2h[x− 2] + αPLδ[x− 1] if p ̸= 1, αPL + PR = 1

(αPL + PR)(1− αPL)(1− αPL − PR)
x−2h[x− 2] if p = 1, αPL + PR ̸= 1

+αPLδ[x− 1]

αPLδ[x− 1] + PRδ[x− 2] if p = αPL + PR = 1
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Proof. For the sake of simplicity, let us name each state seen in Fig. 3.2 as π∆,ς where ∆

and ς are the cost and availability state. It is trivial to write the first terms of the PMF.

The only possible way to have χ = 1 is the successful local task execution. In order for

χ to be equal to 2, the user needs to follow [π0,I → π1,I → π0,I ] or [π0,I → π1,B → π0,I ]

paths. The user follows one of the [π0,I → π1,I → π2,I → π0,I ], [π0,I → π1,I → π2,B → π0,I ],

or [π0,I → π1,B → π2,B → π0,I ] paths for χ = 3. The pattern can be seen below.

Pχ(1) = αPL

Pχ(2) = αPL(1− αPL − PR) + pPR

Pχ(3) = αPL(1− αPL − PR)
2 + pPR(1− αPL − PR) + pPR(1− p)

Pχ(4) = αPL(1− αPL − PR)
3 + pPR[(1− αPL − PR)

2 + (1− p)(1− αPL − PR) + (1− p)2]

...

• For the general case when p ̸= 1,αPL + PR ̸= 1, and αPL + PR ̸= p:

Pχ(x) = αPL(1− αPL − PR)
x−1 + pPR

x−2∑
n=0

(1− αPL − PR)
n(1− p)x−2−n

= αPL(1− αPL − PR)
x−1 + pPR(1− p)x−2

x−2∑
n=0

(
1− αPL − PR

1− p
)n

Let (
1− αPL − PR

1− p
) = κ, then:

= αPL(1− αPL − PR)
x−1 + pPR(1− p)x−2(

1− κx−1

1− κ
)

= αPL(1− αPL − PR)
x−1 +

pPR

αPL + PR − p
[(1− p)x−1 − (1− αPL − PR)

x−1]

=
(αPL + PR)(αPL − p)

αPL + PR − p
(1− αPL − PR)

x−1 +
pPR

αPL + PR − p
(1− p)x−1

• If p = αPL + PR = 1:

Pχ(x) = αPLδ[x− 1] + PRδ[x− 2]

• If p = 1 and αPL + PR ̸= 1:

Pχ(x) = αPL(1− αPL − PR)
x−1h[x− 1] + PR(1− αPL − PR)

x−2h[x− 2]

= αPLδ[x− 1] + (αPL + PR)(1− αPL)(1− αPL − PR)
x−2h[x− 2]

• If p ̸= 1 and αPL + PR = 1:

Pχ(x) = pPR(1− p)x−2h[x− 2] + αPLδ[x− 1]

• If p = αPL + PR ̸= 1:

Pχ(x) = αPL(1− p)x−1h[x− 1] + pPR(x− 1)(1− p)x−2h[x− 2]
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A.3 Proof of The Cost Function Ensemble Average

We prove the average cost equation for ∀α, PL, PR ∈ [0, 1], and ∀p ∈ (0, 1].

∆ = −1 +
1

p
+

1

αPL + PR

− 1

p+ PR

Proof. The general PMF equation (Eq. 3.7) is used for the proof. The other cases are

trivial and does not change the result.

Pχ(x)x∈N+ =
(αPL + PR)(αPL − p)

αPL + PR − p
(1− αPL − PR)

x−1 +
pPR

αPL + PR − p
(1− p)x−1

For the sake of simplicity, let us denote ψ = (PR+αPL)(αPL−p)
PR+αPL−p

. Then:

Pχ(x) = ψ(1− αPL − PR)
x−1 + (αPL − ψ)(1− p)x−1

Derive E[χ]:

E[χ] = lim
n→∞

n∑
x=1

xψ(1− αPL − PR)
x−1 + lim

n→∞

n∑
x=1

x(αPL − ψ)(1− p)x−1

= ψ lim
n→∞

n∑
x=1

x(1− αPL − PR)
x−1 + (αPL − ψ) lim

n→∞

n∑
x=1

x(1− p)x−1

= ψ
1

(αPL + PR)2
+ (αPL − ψ)(

1

p2
) = ψ(

1

(αPL + PR)2
− 1

p2
) +

αPL

p2

= ψ(
1

αPL + PR

− 1

p
)(

1

αPL + PR

+
1

p
) +

αPL

p2
=

p+ PR

p(αPL + PR)

Derive E[χ2]:

E[χ2] = lim
n→∞

n∑
x=1

x2ψ(1− αPL − PR)
x−1 + lim

n→∞

n∑
x=1

x2(αPL − ψ)(1− p)x−1

= ψ lim
n→∞

n∑
x=1

x2(1− αPL − PR)
x−1 + (αPL − ψ) lim

n→∞

n∑
x=1

x2(1− p)x−1

= ψ[
2

(αPL + PR)3
− 1

(αPL + PR)2
] + (αPL − ψ)[

2

p3
− 1

p2
]

= ψ[
2

(αPL + PR)3
− 2

p3
+

1

p2
− 1

(αPL + PR)2
] +

2αPL

p3
− αPL

p2

= ψ[
2

(αPL + PR)3
− 2

p3
] +

2αPL

p3
+ ψ(

1

p2
− 1

(αPL + PR)2
)− αPL

p2

= ψ[
2

(αPL + PR)3
− 2

p3
] +

2αPL

p3
− p+ PR

p(αPL + PR)
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Calculate E[χ2]
2E[χ] .

E[χ2]

2E[χ]
=
ψ[ 2

(αPL+PR)3
− 2

p3
] + 2αPL

p3
− p+PR

p(αPL+PR)

2( p+PR

p(αPL+PR)
)

= −1

2
+
ψ[( 1

αPL+PR
− 1

p
)( 1

(αPL+PR)2
+ 1

p(αPL+PR)
+ 1

p2
)] + αPL

p3

p+PR

p(αPL+PR)

= −1

2
+

(p−αPL)
p

[ 1
(αPL+PR)2

+ 1
p(αPL+PR)

+ 1
p2
] + αPL

p3

p+PR

p(αPL+PR)

= −1

2
+

[ 1
(αPL+PR)2

+ 1
p(αPL+PR)

+ 1
p2
]− αPL

p(αPL+PR)
[1
p
+ 1

αPL+PR
]

p+PR

p(αPL+PR)

= −1

2
+

[(1
p
+ 1

αPL+PR
)2 − 1

p(αPL+PR)
]− αPL

p(αPL+PR)
[1
p
+ 1

αPL+PR
]

p+PR

p(αPL+PR)

= −1

2
+

(1
p
+ 1

αPL+PR
)[1

p
+ 1

αPL+PR
− αPL

p(αPL+PR)
]− 1

p(αPL+PR)

p+PR

p(αPL+PR)

= −1

2
+

1

p
+

1

αPL + PR

− 1

p+ PR

∴ ∆ =
E[χ2]

2E[χ]
− 1

2
= −1 +

1

p
+

1

αPL + PR

− 1

p+ PR
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A.4 Proof of The First Extreme Point

We prove PR,extrema,1 is bigger than − pαPlim

(p+αPlim)
, and this extreme point is a local minimum.

Proof. Proving PR,extrema,1 > − pαPlim

(p+αPlim)
:

p2 > 0

p2

p+ αPlim

> 0

p− pαPlim

p+ αPlim

> 0

(p− pαPlim

p+ αPlim

)

√
p

p+αPlim

1−
√

p
p+αPlim

> 0

p
√

p
p+αPlim

− pαPlim

p+αPlim

√
p

p+αPlim

1−
√

p
p+αPlim

> 0

p
√

p
p+αPlim

− pαPlim

p+αPlim

1−
√

p
p+αPlim

+
pαPlim

p+ αPlim

> 0

PR,extrema,1 =
p
√

p
p+αPlim

− pαPlim

(p+αPlim)

1−
√

p
p+αPlim

> − pαPlim

(p+ αPlim)

Applying second derivative test to prove that it is a local minimum:

∂2∆LLZ

∂P 2
R

=

∂[ 1
(p+PR)2

− ( p
p+αPlim

)( 1

PR+
pαPlim
p+αPlim

)2]

∂PR

=
−2

(p+ PR)3
− (

−2p

p+ αPlim

)(
1

PR + pαPlim

p+αPlim

)3

= (
2p

p+ αPlim

)(
1

PR + pαPlim

p+αPlim

)3 − 2

(p+ PR)3
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∂2∆LLZ

∂P 2
R

|PR=PR,extrema,1
= (

2p

p+ αPlim

)(
1

PR,extrema,1 +
pαPlim

p+αPlim

)3 − 2

(p+ PR,extrema,1)3

(a)
=

2

(p+ PR,extrema,1)2(PR,extrema,1 +
pαPlim

p+αPlim
)
− 2

(p+ PR,extrema,1)3

=
2

(p+ PR,extrema,1)2
[

1

PR,extrema,1 +
pαPlim

p+αPlim

− 1

p+ PR,extrema,1

]

=
2

(p+ PR,extrema,1)2
[

p(1− αPlim

p+αPlim
)

(p+ PR,extrema,1)(PR,extrema,1 +
pαPlim

p+αPlim
)
]

=
2

(p+ PR,extrema,1)2
[

p( p
p+αPlim

)

(p+ PR,extrema,1)(PR,extrema,1 +
pαPlim

p+αPlim
)
]

> 0

(a) ∂∆LLZ

∂PR
= 0 at extrema : 1

(p+PR,extrema,1)2
= ( p

p+αPlim
)( 1

PR,extrema,1+
pαPlim
p+αPlim

)2

To sum up, PR,extrema,1 is bigger than − pαPlim

(p+αPlim)
, and it is a local minimum.

A.5 Proof of The Second Extreme Point

We prove ∀p, α ∈ (0, 1] PR,extrema,2 < ℵ = − pαPlim

(p+αPlim)
.

Proof.

p
√

p
p+αPlim

+ pαPlim

(p+αPlim)

−1−
√

p
p+αPlim

< − pαPlim

(p+ αPlim)

p
√

p
p+αPlim

+ pαPlim

(p+αPlim)

1 +
√

p
p+αPlim

>
pαPlim

(p+ αPlim)

p

√
p

p+ αPlim

+
pαPlim

(p+ αPlim)
>

pαPlim

(p+ αPlim)
(1 +

√
p

p+ αPlim

)

p

√
p

p+ αPlim

>
pαPlim

(p+ αPlim)

√
p

p+ αPlim

p >
pαPlim

(p+ αPlim)

p(p+ αPlim) > pαPlim

p > 0
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A.6 Derivation of pmin

We derive the condition for PR,extrema,1 ≤ 0.

Proof.

PR,extreme ≤ 0

p
√

p
p+αPlim

− pαPlim

p+αPlim

1−
√

p
p+αPlim

≤ 0

p

√
p

p+ αPlim

− pαPlim

p+ αPlim

≤ 0√
p

p+ αPlim

− αPlim

p+ αPlim

≤ 0√
p

p+ αPlim

≤ αPlim

p+ αPlim

p

p+ αPlim

≤ (αPlim)
2

(p+ αPlim)2

p(p+ αPlim) ≤ (αPlim)
2

p2 + αPlimp− (αPlim)
2 ≤ 0(

p+ αPlim(
1−

√
5

2
)
)(
p+ αPlim(

1 +
√
5

2
)
)(a)
≤ 0(

p+ αPlim(
1−

√
5

2
)
)
≤ 0

p ≤ αPlim
(
√
5− 1)

2

(a) ∀p, α, Plim ∈ (0, 1] p+ αPlim(
1+

√
5

2
) > 0
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A.7 Derivation of pmax,LLZ

We derive the condition for PR,extrema,1 ≤ PR,bound. Let’s denote m =
√

p
p+αPlim

. Note that

0 < m ≤ 1, ∀p, α, Plim ∈ (0, 1].

Proof.
PR,extrema,1 ≤ PR,bound

p
√

p
p+αPlim

− pαPlim

p+αPlim

1−
√

p
p+αPlim

≤ p(1− Plim)

p+ Plim
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1−m
≤ p(1− Plim)

p+ Plim

mp−m2Plimα

1−m
(
p+ Plim

p
) ≤ 1− Plim
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p
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(p+ αPlim)(p+ 1)
)2

p(p+ αPlim)(p+ 1)2 ≤ [Plimα(p+ 1) + p(1− Plim)]
2
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(p2 + αpPlim)(p+ 1)2 ≤
[
P 2
limα

2(p+ 1)2 + p2(1− Plim)
2

+ 2Plimα(p+ 1)p(1− Plim)
]

(p2 + αpPlim)(p
2 + 2p+ 1) ≤
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P 2
limα

2(p2 + 2p+ 1)

+ p2(1− 2Plim + P 2
lim)

+ 2Plimα(p
2(1− Plim) + p(1− Plim)

]
[
p4 + p3(2 + αPlim) + p2(1 + 2αPlim) + p(αPlim)

]
≤ p2

[
α2P 2

lim + 1− 2Plim + P 2
lim

+ 2αPlim − 2αP 2
lim

]
+ p

[
2α2P 2

lim

+ 2αPlim − 2αP 2
lim

]
+
[
α2P 2
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]
p4 + p3

[
2 + αPlim

]
+ p2

[
−α2P 2

lim ≤ 0

+2Plim − P 2
lim + 2αP 2

lim

]
+p

[
−2α2P 2

lim − αPlim + 2αP 2
lim)−

[
α2P 2

lim

]
p4 + p3(2 + αPlim) + p2[2Plim − P 2

lim(1− α)2] + p(2αP 2
lim(1− α)− αPlim)− (α2P 2

lim) ≤ 0

A.8 Proof of The Positive Root of f (·) Function
We prove that there is only one positive root of the f(·) and it is between 0 and 1.

f(p) = p4 + p3(2+αPlim) + p2[2Plim −P 2
lim(1−α)2] + p(2αP 2

lim(1−α)−αPlim)− (α2P 2
lim)

Proof. Considering the coefficients of f(p), the one with the lowest degree (−α2P 2
lim) is

always negative, while (2αP 2
lim(1−α)−αPlim) can be either positive or negative depending

on the parameters α and Plim. The other three are always positive. Hence, there is only

one sign change. In this condition, Descartes’s Rule of Signs states there is a single positive

root, denoted as pmax,LLZ . To show pmax,LLZ ∈ (0, 1):

f(0+) = −α2P 2
lim < 0

f(1) = 1 + (2 + αPlim) + (2Plim − P 2
lim(1− α)2) + (2αP 2

lim(1− α)− αPlim)− (α2P 2
lim)

= 3 + 2Plim + P 2
lim(−1 + 4α− 4α2) > 0

Via Intermediate Value Theorem, ∃pmax,LLZ ∈ (0, 1] such that f(pmax,LLZ) = 0.

∴ There is solely one positive root and it is between 0 and 1.
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A.9 Proof of The Third Extreme Point

We prove that PR,extrema,3 is a local maximum via the second derivative test.

Proof.

∂2∆TLZ

∂P 2
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=
∂[ 1

(p+PR)2
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1−α
) 1
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1−α
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∂PR
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1− α
)(

1

PR + α
1−α

)3
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2

1− α
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1
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)3 − 2

(p+ PR)3

Employing second derivative test:
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∂P 2
R

|PR=PR,extrema,3
= (

2

1− α
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α

1−α

)3 − 2
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(a)
=

2

(p+ PR,extrema,3)2(PR,extrema,3 +
α

1−α
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− 2
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=
2
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[

1

PR,extrema,3 +
α

1−α

− 1
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]

=
2

(p+ PR,extrema,3)2
[

p− α
1−α

(p+ PR,extrema,3)(PR,extrema,3 +
α

1−α
)
]

(b)
< 0

(a) ∂∆TLZ

∂PR
= 0 at extrema : 1

(p+PR,extrema,3)2
= ( 1

1−α
)( 1

PR,extrema,3+
α

1−α
)2

(b) p < α
1−α

in the area of interest

To sum up, PR,extrema,3 is a local maxima.
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List of Abbreviations

AoI Age of Information

AoP Age of Processing

CDF Cumulative Distribution Function

CMOP Constrained Multi-objective Optimization Problem

DP Dynamic Programming

EH Energy Harvesting

IoMT Internet of Medical Things

IoT Internet of Things

LLZ Local Limited Zone

MCC Mobile Cloud Computing

MDP Markov Decision Process

PMF Probability Mass Function

RAT Radio Access Technology

TLZ Total Limited Zone

QoE Quality of Experience

QoS Quality of Service
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