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Abstract

Ensuring safe GNSS localization is essential for critical transportation applica-
tions like civil aviation. In order to achieve that, the robust modeling of all GNSS
errors is an essential step. Current minimum operational performance standards
(MOPS) propose GNSS error models that are sufficient for snapshot positioning
(like least squares). However, they do not address completely the stochastic dy-
namics of the errors over time. Moreover, current standards only provide GNSS
error models for single-frequency single-constellation (i.e. GPS L1 band). Recent
research has developed high-integrity time-correlated error models for GNSS tro-
pospheric, orbit and satellite clock error sources. Nevertheless, the airborne mul-
tipath error has not yet been modeled with this approach.

In this work, we characterize the airborne multipath error for the GPS L1 and
L5 bands, and the Galileo E1 and E5a bands using data from real test flights. In
order to model multipath with a robust time-correlated error model, its behavior is
studied over time through the properties of its autocorrelation function, as well as
modeling it conservatively in the frequency domain. The resulting error models
are suitable for implementations in safe time-sequential positioning estimators,
such as the Kalman filter.
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Resumen

Garantizar una localización segura con GNSS es esencial para aplicaciones
de transporte críticas como aviación civil. Para lograrlo, el modelado robusto de
todos los errores en las señales GNSS es fundamental. Los MOPS (Minimum
Operational Performance Standards) actuales proponen modelos de error que
son suficientes para estimadores de posición instantáneos (que no hacen uso
de las medidas anteriores). No obstante, no abordan por completo la dinámica
estocástica de los errores a lo largo del tiempo. Además, los estándares actuales
solo proporcionan modelos de error GNSS para la banda L1 de GPS. Investiga-
ciones recientes han desarrollado modelos de error de alta integridad correlados
en el tiempo para diferentes fuentes de error GNSS, como el error troposférico,
y el error orbital y de reloj del satélite. Sin embargo, el error multicamino aéreo
aún no se ha modelado con esta metodología.

En este trabajo, caracterizamos el error multicamino aéreo para las bandas
L1 y L5 de GPS, y las bandas E1 y E5a de Galileo utilizando datos recopilados
en vuelos de prueba reales. Con el fin de modelar el multicamino con un modelo
robusto de error correlado en el tiempo, estudiamos su comportamiento a lo largo
del tiempo a través de las propiedades de su función de autocorrelación, además
de modelarlo de forma conservadora en el dominio de la frecuencia. Los mode-
los de error resultantes son adecuados para su implementación en estimadores
seguros de posicionamiento secuencial en el tiempo, como el filtro de Kalman.
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1. Introduction

This chapter provides the general context of this master thesis, as well as the
current technology gap that drives the purpose of this work. In addition, the pro-
posed research objectives are introduced. Finally, a brief overview of the docu-
ment structure is also presented.

1.1 Background

Over the last decades, Global Navigation Satellite Systems (GNSS) have become
increasingly prevalent in many navigation and positioning applications. In the field
of civil aviation, GNSS are especially predominant because they can potentially
provide worldwide coverage as compared to other traditional navigation aids.

GNSS services for civil aviation are considered safety-critical applications where
system integrity plays a crucial role. This includes developing accurate error mod-
els inherent to the GNSS measurements. For this reason, standardization bodies
like the Radio Technical Commission for Aeronautics (RTCA) continuously re-
lease Minimum Operational Performance Standards (MOPS) that describe the
error models for GNSS measurements.

Current available standards (MOPS) cover the use of single-constellation single-
frequency receiver, in particular, the GPS L1 band. Error models for the GPS L1
band are generally obtained through cumulative distribution function (CDF) over-
bounding [1][2] and are sufficient for snap-shot positioning, which means that pre-
vious measurements are not used to compute the current user’s position. How-
ever, they do not address completely the stochastic dynamics of the errors over
time, making them not enough for safe time-sequential positioning estimators like
the Kalman Filter.

1



1.2. Motivation

1.2 Motivation

Recent research describes robust error modeling for time-correlated errors for
the tropospheric error [3], as well as the orbit and satellite clock errors [4]. These
type of models address the stochastic dynamics of the errors over time and are
suitable to be implemented in a Kalman Filter. The Kalman filter can be a more
accurate position estimator and allows the integration of additional sensors like
an Inertial Measurement Unit (IMU) [5]. However, airborne multipath error in
GNSS measurements has not yet been characterized using a high-integrity time-
correlated model.

In this context, we set as the ultimate goal of this thesis to model the airborne
multipath error in the code measurements with a dynamic error model using real
data from several test flights. This data includes GNSS measurements from GPS
L1 and L5 bands, and Galielo E1 and E5a bands. As an example. Figure 1.1
displays the direct GNSS signal with a green color. The orange and red lines
represent the reflected GNSS signals, which cause the airborne multipath error.

Figure 1.1: Graphical representation of the airborne multipath error (DLR’s ATRA
test aircraft).

In the near future, multi-constellation multi-frequency receivers are expected
to substitute current civil aviation receivers due to their many advantages over the

2



Chapter 1. Introduction

single-constellation single-frequency receivers. The L5, E1 and E5a individually
promise more accurate and reliable positioning than the L1 band. Additionally,
the simultaneous use of different constellations and frequency bands provides
more availability and the ability to correct the ionospheric error combining GNSS
measurements from two frequency bands.

1.3 Objectives

The main two goals of this thesis are:

1. Develop a methodology to isolate the airborne multipath error from other
GNSS error sources and characterize its temporal behavior.

2. Derive robust time-correlated error models for airborne multipath using real
flight data.

1.4 Structure of the Thesis

This thesis is divided in 8 different chapters. Chapter 2 introduces basic GNSS
notions and their application in civil aviation. Chapter 3 presents the theoretical
statistical tools used in stochastic error modeling. Chapter 4 explains the method-
ology used to isolate multipath error from raw GNSS measurements. Chapter 5
describes the proposed methodology to analyze and model the multipath error.
Chapter 6 introduces the flight data used to evaluate the methodology. The re-
sults of this thesis are presented and discussed in Chapter 7. Lastly, Chapter
8 summarizes the main achievements, final conclusions and possible next steps
following this work.

3





Part I

Preliminaries

5





2. GNSS Navigation for Civil Aviation

This chapter reviews the fundamental theory about Global Navigation Satellite
Systems (GNSS), together with the background knowledge regarding their usage
in the civil aviation field. Later sections in this chapter offer insight into the GNSS
error sources and their models, as well as some basic GNSS processing con-
cepts. To conclude, Section 2.5 covers the different ways to model the airborne
multipath error, also focusing on the current technology gap.

2.1 General GNSS Concepts

The term Global Navigation Satellite Systems (GNSS) encompasses four main
constellation of satellites: Global Positioning System (United States), Galileo (Eu-
ropean Union), BeiDou (China) and GLONNAS (Russia). The main goal of these
technologies is to provide compatible devices the capability of estimating their
positions by employing MEO (Medium Earth Orbit) satellites that orbit around the
Earth. Currently, GNSS are the predominant navigation system and provide lo-
calization service for a wide range of positioning applications.

2.1.1 Principle of Use

In order to operate, satellites orbit around the Earth transmitting radio frequency
signals that provide worldwide coverage. These signals contain information about
the satellite position and the time the signal was sent, which is extremely precise
due to fact that satellites use atomic clocks. Since the travel speed of electro-
magnetic waves through the atmosphere is, in principle, a known constant, the
distance from the user to the satellite can be estimated if we also know the time
the signal was received. Lastly, it is necessary that the user’s receiver acquires
simultaneously GNSS signals from at least four different satellites (from the same
constellation). The reason for this is that a 4 equation system with 4 unknown
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variables needs to be solved to estimate the position of the user at a specific mo-
ment. Those four unknown variables are the spatial coordinates: x, y, z and the
difference between the system time and the receiver time (clock-bias). Although
solving the system of equations results in obtaining the user’s position, there are
error sources affecting these signals that we have not mentioned in this simplified
explanation. Section 2.3 describes in detail the main errors inherent to GNSS
measurements and the models associated with them.

Figure 2.1: Basic positioning scenario with four satellites within line of sight of the
user.

2.1.2 GNSS Structure

The GNSS structure is commonly divided into three different segments:

• Space Segment: it consists of a constellation of MEO satellites. These
satellites transmit ranging signals on at least two frequencies within the mi-
crowave radio spectrum.

• Control Segment: its main goal is to maintain the system’s health by mon-
itoring the broadcast signals. It is also responsible for computing and up-
loading to the satellites the required navigation data. The control segment
is composed of a group of dispersed monitoring stations that communicate
with the satellites through ground antennas. The master control station has
a backup facility at a different location.
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• User Segment: It comprises GNSS receiving equipment for both civil and
military services. These receivers can be found in ground, sea, air or even
space applications [6].

2.1.3 GPS and Galileo Constellations

The main constellations supporting short term safety related applications are
GPS and Galileo. In the next subsections, more information about them is pro-
vided.

GPS

Global Positioning System (GPS), which was developed by the United States of
America, was the first GNSS constellation to be deployed and its first satellite
launch was in 1978. GPS was originally designed to have 24 satellites evenly dis-
tributed among 6 orbital planes with an altitude of 20,180 km, which corresponds
to a Medium Earth Orbit (MEO). Currently, it is composed of 31 operational satel-
lites, also referred to as Space Vehicles (SVs). Their orbital period is 11 hours
and 58 minutes, meaning each SV travels two complete orbits each sidereal day,
repeating the same ground track each day.

GPS signals are transmitted on 3 radio frequencies on the L band: L1, L2 and
L5 bands. The L5 band was added later than the first two with the launch of new
satellite models (2010). All the signals have right-hand circular polarization, and
their frequencies are derived through multiplying the fundamental frequency by
an integer number. This fundamental frequency (f0), which value is set at 10.23
MHz, is generated by atomic clocks onboard the SVs. Table 2.1 shows the carrier
frequency for each band and its relation to the fundamental frequency.

It is also worth noting that Binary Phase Shift Keying (BPSK) is the modu-
lation method used for all signals in every frequency band, except for the L1C
signal, which uses Multiplexed Binary Offset Carrier (MBOC) [7]. Furthermore,
GPS implements the Code-Division Multiple Access (CDMA) technique to send
simultaneously multiple signals in the same frequency band. These signals are
sequences of zeros and ones that allow the receiver to determine the time it took
for the radio signal to travel from the SV to the user. They are referred to as rang-
ing codes or Pseudo Random Noise (PRN) codes, and they are modulated over
the carriers of the different bands. PRN codes can be classified in civilian and mil-
itary access, the later one reserved for authorised users. Thus, only civilian codes
are an open service (free of charge) used for civil navigation worldwide. The main
civil ranging codes for the 3 frequency bands are the following: Coarse/Acquisi-
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tion (C/A) and L1C (L1C-I data + L1C-Q pilot) for L1, L2C (L2 Civil Moderate + L2
Civil Long) for L2, and L5C (L5-I data + L5-Q pilot) for L5.

Band Carrier frequency Relation to f0

L1 1575.420 MHz 154 × 10.23 MHz

L2 1227.600 MHz 120 × 10.23 MHz

L5 1176.450 MHz 115 × 10.23 MHz

Table 2.1: Carrier frequencies values for all the GPS bands and their relation to
the fundamental frequency (f0).

Lastly, the current ’legacy’ Navigation Message (NAV) is modulated on the
carriers at a rate of 50 bits per second. It contains all the necessary information to
allow users to perform the positioning service: ephemeris and time parameters,
ionospheric and clock corrections, the almanacs, etc. The complete message
comprises 25 frames, each lasting for 30 seconds. Together they form what is
known as the master frame. The entire master frame requires 12.5 minutes to
be transmitted completely to the GNSS receiver. This modulation of all signals
also includes repeating periodically every sequence of bits, which is known as a
chipping. For instance, in the C/A code, each sequence contains 1023 bits and
is repeated every millisecond. This means the duration of a chip is 1 µs, in other
words, a chipping rate of 1.023 Mcps.

Galileo

Galileo’s first test satellite was launched in 2005, however, it was not until 2016
that the system became operational. Galileo was developed by the European
Space Agency (ESA) and one of its main goals was to eliminate the depen-
dency of European authorities to foreign GNSS technologies, specifically, GPS
or GLONASS. Unlike GPS, Galileo has 3 orbital planes with an altitude of 23,222
km, also in the MEO range. As of August of 2023, there are 36 SVs in orbit, of
which only 28 are operational. Their orbital period is 14 hours and 5 min.

Galileo was designed to provide different services depending on the user
needs:

• OS: The Open Service is accessible to users worldwide without any cost.
Single frequency receivers provide performance levels that are comparable
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to those of GPS (C/A). In the future, the OS is expected to provide Naviga-
tion Message Authentication, which will allow the computation of the user
position using authenticated data extracted from the navigation message.

• OSNMA: The Open Service Navigation Message Authentication is a free
access service complementing the OS. It delivers authenticated data, as-
suring users that the received Galileo navigation message has not been
modified externally.

• HAS: The High Accuracy Service complementing the OS by providing an
additional navigation signal and added-value services in a different frequency
band. The HAS signal can be encrypted in order to control the access to
the Galileo HAS services.

• PRS: The Public Regulated Service is intended for security authorities, such
as police and military, who rely on a continuous service with controlled ac-
cess. This service is encrypted and subject to strict governmental control.

• SAR: This service provides support to the international COSPAS-SARSAT
system for Search and Rescue (SAR). Distress signals will be relayed to the
Rescue Coordination Centre and users will be informed that their situation
was acknowledged.

• CAS: The Commercial Authentication Service complements the OS by de-
livering controlled access and authentication functionality to users.

Similar to GPS, all satellites in the Galileo constellation utilize the same fre-
quencies for transmitting signals (also differentiated using CDMA) [8]. They all
consist of two types of channels: data channels and pilot channels. Both provide
ranging codes, but the data channels also have navigation data. On the other
hand, pilot channels are data-less signals without bit transitions, which facilitates
the tracking of weak signals. Each channel is destined to provide one or more of
the services mentioned earlier. They are distributed among 4 different frequency
bands: E1, E5a, E5b and E6. Table 2.2 [9] describes the main characteristics of
Galileo signals: carrier frequency, channel type, provided service, and modula-
tion. It is also important to mention that MBOC modulation, used for the E1-B and
E1-C signals, is implemented the Composite Binary Offset Carrier (CBOC) [10].

Galileo navigation messages are divided in four types: Freely accessible Nav-
igation Message (F/NAV), Integrity Navigation Message (I/NAV), the Commercial
Navigation Message (C/NAV) and the Governmental Navigation Message (G/-
NAV). They provide information similar to GPS, however, these navigation mes-
sage types are included or not depending on the channel type. These different

11



2.2. Civil Aviation Navigation

channels are divided in five categories: Navigation/Positioning, Integrity, Supple-
mentary, Public Regulated and Search and Rescue.

Band Carrier frequency Channel Modulation Services

E1 1575.420 MHz

E1-A data BOC(15,2.5) PRS

E1-B data
MBOC(6,1,1/11) OS, CS, SoL

E1-C pilot

E5a 1278.750 MHz
E5a-I data

BPSK(10) OS
E5a-Q pilot

E5b 1176.450 MHz
E5b-I data

BPSK(10) OS, CS, SoL
E5b-Q pilot

E6 1207.104 MHz

E6-A data BOC(10,15) PRS

E6-B data
BPSK(5) CS

E6-C pilot

Table 2.2: Main characteristics of Galileo signals.

2.2 Civil Aviation Navigation

There are multiple ground-based technologies that provide positioning support for
aviation: Instrument Landing System (ILS), Very high frequency Omnirange Sta-
tion (VOR), Distance Measuring Equipment (DME), etc. Nonetheless, since they
are stationary equipment, they have a limited range. This range can vary from few
kilometers (ILS) to 370 km (VOR/DME). On the other hand, GNSS can provide
navigation support to aircrafts nearly anywhere on Earth. For this reason, GNSS
are considered the predominant positioning systems in civil aviation, especially
in situations where the airplane is outside of the effective range of ground-based
technologies.

Only the frequency bands corresponding to the GPS L1/Galileo E1 and GPS
L5/Galileo E5a are reserved Aeronautical Radio Navigation Service (ARNS) bands.
However, as it was mentioned before, the Galileo constellation and the GPS L5
band became operative several years after GPS L1 and L2 bands. Because of
that, the majority of the research effort in the last decades has been focused
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on characterizing and modeling the L1 band. Therefore, standardization bodies
have developed only MOPS for single-frequency, single-constellation (L1 band).
These organizations include: the International Civil Aviation Organization (ICAO),
the Federal Aviation Administration (FAA) or European Organisation for Civil Avi-
ation Equipment (EUROCAE).

The simultaneous use of different frequency bands provides improved accu-
racy, availability, and resilience to signal interference, as well as the ability to
correct the ionospheric error. In addition, the L5 band from GPS together with
the E1 and E5a bands from Galileo individually promise more accurate and reli-
able positioning estimation for civil aviation than the L1 band. For these reasons,
recent research [2] has contributed in the release of standards involving L5, E1
and E5a signals. This also help manufacturers adjust their new products to the
current standards and also provide their input. As of today, commercial airplanes
are equipped with single-frequency GPS receivers for the L1 band. However,
in the near future is expected that multi-frequency receiver models, like the Multi-
Modal Receiver (MMR), will substitute current single-frequency receivers, making
available the signals from all four bands: L1, L5, E1 and E5a.

In this type of research, oriented to standardization, error modeling plays a
crucial role since it allows to define the integrity of the system. In this context,
integrity can be described as the ability of one system to warn the user in case
that displayed information cannot be trusted due to errors. For that, it is important
to accurately characterize the errors involved, to later assess their effect on the
resulting estimation of the position. Section 2.3 and Section 2.5 cover in detail
the current error models for GNSS measurements, especially for the airborne
multipath error, which is the focus of this thesis.

2.3 GNSS Error Sources and Models

In the previous section, we briefly discussed the role of modeling errors affect-
ing GNSS measurements. In this section, we describe the error sources and
associated models of GNSS measurements.

2.3.1 GNSS Measurements

The GNSS measurements, obtained by any receiver after correlation, are com-
posed of: the code-phase (also referred to as the pseudorange), and the carrier-
phase, and doppler. This last one will not be utilized in the context of this work.
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• Code-phase (ρ): the code-phase is simply the raw measurement of a satellite-
specific ranging code, which was described previously. It is a binary signal
that provides coarse timing information, allowing to estimate the pseudor-
ange. However, it is more significantly more noisy than the carrier-phase.

• Carrier-phase (ϕ): as its name implies, the carrier-phase is the measure-
ment of the carrier signal that the ranging code is modulated over. It is
considerable less noisy than the code-phase but it does not provide an ac-
curate estimation of the pseudorange.

An example of real L1 band code-phase measurements can be seen in Figure
2.2.

Figure 2.2: Example of a receiver code-phase measurement (in meters) for sev-
eral GPS satellites in the L1 band.

Code-phase and carrier-phase are typically modeled with the following ex-
pressions for a specific frequency i, receiver r and satellite s [11]:

ρsr,i = Gs
r,i + c · (δtr − δts) + T s

r,i + Isr,i + esr,i +MP s
r,i + εsr,i + bsr,i + br,i + ξr,i + ξsr,i , (2.1)

ϕs
r,i = Gs

r,i + c · (δtr − δts) + T s
r,i − Isr,i + esr,i +mpsr,i + ηsr,i + βs

r,i + βr,i + ζr,i + ζsr,i +N s
r,i ·λi , (2.2)

where ρsr,i and ϕs
r,i are the pseudorange and carrier-phase measurement, re-

spectively, Gs
r,i represents the geometric range, which is the actual distance from

the receiver to the satellite in meters. The term c indicates the speed of light in
m/s, and in combination with c · (δtr − δts) represents the error in meters due to
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the clock biases of both the satellite and the receiver. All of the error sources
in Equations (2.1) and (2.2), as well as their nomenclature are described in the
following table:

Nomenclature Error source Unit

δtr Receiver clock bias s

δts Satellite clock bias s

T s
r,i Tropospheric delay m

Isr,i Ionospheric delay m

esr,i Ephemeris error m

MP s
r,i / mp

s
r,i Multipath error (code/phase) m

εsr,i / η
s
r,i Thermal noise (code/phase) m

bsr,i / β
s
r,i Satellite instrumental errors (code/phase) m

br,i / βr,i Receiver instrumental errors (code/phase) m

ξsr,i / ζ
s
r,i Satellite antenna errors (code/phase) m

ξr,i / ζr,i Receiver antenna errors (code/phase) m

N s
r,i Integer ambiguities cycles

Table 2.3: Error sources terms in the code and carrier phase measurements.

As we can see in Equations (2.1) and (2.2), the tropospheric delay, the iono-
spheric delay and the ephemeris error impact both measurements in equal mag-
nitude. However, the ionospheric delay affects with different sign in each expres-
sion.

2.3.2 Integer Ambiguities

In the context of the carrier-phase measurement, it is essential to understand the
meaning of the "integer ambiguities" error term. It refers to the discrepancy be-
tween the real number of wave cycles the signal has experienced while traveling
and the number of cycles the receiver’s has estimated. As shown in Equation
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(2.2), it can be represented as an unknown integer number N s
r,i times the wave-

length of the signal λi.

Although this error can easily reach several hundred meters, in a normal case
it is also constant over a continuous tracking of a satellite. It is important to keep
this in mind for Section 4.5 in the Methodology part.

2.4 GNSS Processing

This section is dedicated to present two specific concepts that apply when pro-
cessing GNSS signals. We will first explain what cycle-slips are and how the
affect carrier-phase measurements, as well as their relation to integer ambigui-
ties. Lastly, the carrier-smoothing method will also be described, which is used to
reduce the code-phase measurement noise.

2.4.1 Cycle-Slips

A cycle-slip occurs when the receiver’s PLL skips one or several phase cycles.
This causes discontinuities in the carrier-phase measurement that are seen as
jumps of integer numbers of wavelengths (λi). In other words, the integer ambi-
guities can no longer be considered constant. As it was mentioned earlier, this
aspect will be relevant in Section 4.5.

Figure 2.3: Example of a cycle slip around 4000 seconds on GPS satellite 17 (L1
band).
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It is also worth noting that cycle-slips are not the same as simple loss of sig-
nal, which can be easily detected by the lack of measurement in a given moment.
There are different cycle-slip detector implementations that decide what mea-
surements are affected by a cycle-slip. Section 4.2.2 in the Methodology part
describes in detail the cycle-slip detector algorithm chosen and its implementa-
tion.

2.4.2 Carrier-Smoothing

The noisy yet unambiguous code-phase measurements can be effectively im-
proved and smoothed by combining it with the precise yet ambiguous carrier-
phase measurements. This reduces significantly the noise and errors present
the in the code-phase measurement. To achieve that, an algorithm denominated
the Hatch filter, first introduced in [12], can be used. For a given satellite, fre-
quency, code-phase (ρ) and carrier-phase (ϕ) measurements, the algorithm can
be expressed as follows:

ρ(k) =


1
n
ρ(k) + n−1

n
[ρ(k − 1) + (ϕ(k)− ϕ(k − 1))] for n ≤ L ,

1
L
ρ(k) + L−1

L
[ρ(k − 1) + (ϕ(k)− ϕ(k − 1))] for n ≥ L ,

(2.3)

where k represents the current epoch number and n represents the number
of epochs computed so far. On the other hand, L = T

∆t
is a fixed value given by

the sampling interval of the data (∆t) in seconds and the smoothing time constant
(T) also in seconds. The smoothing time constant dictates the length of time it
takes the filter to enter its steady state (to converge). Additionally, the algorithm
must be initialised to ρ(k) = ρ(k) at the start and every time a loss of signal or a
carrier-phase cycle slip occurs.

The carrier-smoothing is commonly applied when processing the code-phase
at the user’s end because it greatly reduces the noise impact. However, it is
important to highlight two of its main disadvantages.

First, the models for smoothed measurements are only valid for when the filter
has converged, in other words, when at least T seconds have passed. Paired
with the fact that the algorithm restarts for every discontinuity, it can be especially
detrimental. Secondly, the Hatch filter can resemble a low pass filter in the fre-
quency domain. This results in the higher frequencies components of the errors
being eliminated in the process, which means that the smoothed pseudorange
needs to be modeled differently than the measurements without smoothing.
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2.5 Current Multipath Error Models

To conclude this chapter, we will explain the current airborne multipath error mod-
els. These include the 100s smoothed multipath error model for the L1 band in the
current MOPS, as well as recent research regarding high-integrity time-correlated
errors.

2.5.1 MOPS Multipath Model

It was mentioned before that contemporary aircrafts are still equipped with sin-
gle frequency receivers only capable of acquiring signals from the GPS L1 band.
Consequently, error models present in the current standards have covered the L1
band in greater detail than other frequency bands. The most relevant multipath
error model included in the current MOPS can be found in [1][13][14], and it mod-
els multipath error together with the receiver antenna errors, but separately from
its thermal noise for the GPS L1 100 second smoothed code-phase measure-
ments. For context, the equivalent to these error terms before the smoothing are
theoretically expressed as MP s

r,i, ξr,i and εsr,i respectively in Equation (2.1). This
GPS L1 MOPS error model parametrises both of them as zero-mean Gaussian
overbounds, and their variance is described as follows:

σ2
air = σ2

noise(θ) + σ2
mp(θ) , (2.4)

where θ represents the elevation angle of an specific satellite with respect to
the horizon from the aircraft’s position, also known as North East Down (NED)
frame. The distribution of these parameters’ standard deviation is given for two
performance classes of receiver/antenna combinations, Airborne Accuracy Des-
ignator A and B (AAD-A/AAD-B):

σnoise(θ) =


0.15 + 0.43 · exp

(
− θ

6.9

)
for AAD-A ,

0.11 + 0.13 · exp
(
− θ

6.9

)
for AAD-B ,

(2.5)

σmp(θ) = 0.13 + 0.53 · exp
(
− θ

10

)
for AAD-A and B . (2.6)
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Figure 2.4: Current MOPS model for the standard deviation of 100s smoothed
multipath error in the GPS L1 band (Equation (2.6)).

This model was established based on measurements collected during hun-
dreds of flight hours from different airframes. It bounds the errors in the range
domain for the worst combination of errors on all measurements, ensuring con-
servative bounding in the positioning domain. This is sufficient for snapshot posi-
tioning, which refers to the real-time estimation of the position being computed for
each epoch without taking into account any previous measurements. However,
they do not address completely the stochastic dynamics of the error sources. For
this purpose, recent research has focused on developing dynamic error models
that characterize the stochastic of different error sources over time. The last sub-
section explains these type of error models.

2.5.2 Multifrequency Multipath Models

Recent work [2] characterized the standard deviation (σmp) of 100-s smoothed
multipath for multiple frequencies and GPS/Galileo constellations [2]. Multipath
is modeled together with the thermal noise and the receiver antenna error is re-
moved. This model was derived through the overbounding of the Cumulative
Distribution Function (CDF) for the GPS L1 and L5 bands and Galileo E1 and E5
bands. The result of the model can be described in the following equation [2]:
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σmp(θ) =


0.14 + 0.07 · exp

(
− θ

40

)
for L1/E1 ,

0.11 + 0.05 · exp
(
− θ

30

)
for L5/E5a ,

(2.7)

where θ ∈ [0◦, 90◦] is the elevation of the satellite with respect to the NED
frame. For better comprehension, Equation (2.7) is also represented graphically
in Figure 2.5.

Figure 2.5: Standard deviation of 100-s smoothed multipath depending on the
elevation (NED frame) for GPS and Galileo civil aviation bands according as de-
scribed in Equation (2.7).

2.5.3 Dynamic Error Models

High-integrity time-correlated error models aim not only to safely bound the prob-
ability distribution of errors, but also to describe the stochastic dynamics of the er-
rors. These error models are suitable for implementations in safe time-sequential
positioning estimators, such as the Kalman filter, which is widely used in aero-
nautical applications. They are based on overbounding in the frequency domain
the Power Spectral Density (PSD) of the error. It is proven in [15] that doing
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so ensures also bounding in the position domain if the PSD is obtained apply-
ing the Wiener–Khinchin–Einstein theorem. This theorem states that the PSD
of a wide-sense-stationary random process can be estimated by calculating the
Fourier Transform of its autocorrelation.

Recent work has characterized the Tropospheric error [3], as well as the Orbit
and Clock error [4] using high-integrity time-correlated error models. However,
the airborne multipath error has not yet been covered with this approach. Current
MOPS [1] only provide a reference value of 25 seconds for the correlation time of
multipath (without smoothing) in the GPS L1 band. It implies that if multipath error
was to be modeled using a First Order Gauss Markov Process overbound, this
reference value of 25 s would be its time-correlation constant (τ ). In this context,
we set as the goal of this thesis to model the multipath with a high-integrity time-
correlated error model.
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3. Stochastic Error Modeling

This chapter introduces different statistical tools and models that are commonly
used to characterize time series. These include: the Autocorrelation Function,
the Power Spectral Density and the First Order Gauss-Markov Process.

3.1 Autocorrelation Function

The autocorrelation is a statistical measure used to quantify the similarity between
a time series and a delayed version of itself. The specific values of this delay are
known as lags. It is a fundamental concept in time series analysis that helps
us understand the degree of dependence or correlation between observations at
different time points. The AutoCorrelation Function (ACF) of a continuous-time
signal x(t) can be defined as:

Rxx(t, ℓ) =

∫ ∞

−∞
x(t+ ℓ)x∗(t) dt , (3.1)

where ℓ represents the lag, and x∗(t) is the complex conjugate of x(t).

A Wide-Sense-Stationary (WSS) random process is required to have a mean
and autocorrelation function which only depend on the difference between the
two instants being evaluated (ℓ). Another requirement is that the second moment
of the process is finite for all times. In the case x(t) can be considered a WSS
random process, its ACF could be written as [16]:

Rxx(ℓ) =

∫ ∞

−∞
x(t+ ℓ)x∗(t) dt , (3.2)

Since empirical data is discrete and finite, our ability is confined to estimat-
ing the autocorrelation sequence, which is the discrete version of the ACF. Two
autocorrelation estimators are widely used: biased and unbiased, both of which
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are consistent. In the case of the unbiased version of the ACF, the variance can
significantly increase for higher order lags. On the contrary, the biased estimator
introduces statistical bias, but it has relatively lower variance. Because of this,
the biased ACF is more commonly used for obtaining further estimations (like the
Power Spectral Density). That being said, the biased estimation of the ACF for a
discrete-time (k) WSS random process x[k] can be expressed as follows:

r̂xx[ℓ] =
1

L

L∑
k=1

x[k + ℓ]x∗[k] , (3.3)

where ℓ is the temporal lag or delay and L is the number of available sam-
ples of the random process. Theoretically, ℓ is defined in the interval [−∞,∞],
however, it is more practical to limit its interval to ℓ ∈ [−L,L].

3.2 Power Spectral Density

The Power Spectral Density is the distribution of power contained in a signal
across its different frequency components. There are several ways to estimate it:
periodogram [17], Bartlett’s method [18], Welch’s method [19], etc. However, this
subsection only focuses on the estimation through the Wiener-Khinchin-Einstein
theorem. The reason for this is that, in the context of the Kalman Filter, it can
be proven that overbounding the PSD of an WSS error in the frequency do-
main applying the Wiener-Khinchin-Einstein theorem guarantees that the error
is bounded in the position domain [3]. Therefore, for the purpose of this thesis we
only use this method to estimate the PSD of the multipath error.

The Wiener-Khinchin-Einstein theorem states that if a random process is WSS,
its autocorrelation function and its Power Spectral Density (PSD) are Fourier
pairs. This means that the spectral density of the random process x(t), which
is WSS and time-continuous, can be obtained performing the Fourier Transform
to its autocorrelation function:

Sxx(f) =

∫ ∞

−∞
Rxx(ℓ)e

−2πjfℓ dℓ , (3.4)

where once again ℓ represents the temporal lag or delay used to obtain the
ACF, and f is the frequency in hertzs. Conversely, the autocorrelation function
could also be obtained by performing the Inverse Fourier Transform to the spectral
density:
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Rxx(ℓ) =

∫ ∞

−∞
Sxx(f)e

2πjfℓ df . (3.5)

For the discrete-time case, the PSD of the WSS random process x[k] is simi-
larly obtained applying the Discrete Fourier Transform to its ACF sequence:

Sxx(Ω) =
1

2π

∞∑
n=−∞

rxx[n]e
−jΩn , (3.6)

with the discrete-time frequency Ω = 2π f
fs

defined in [−π, π] due to the peri-
odic nature of the DFT and the Nyquist-Shannon sampling theorem. The term f
represents the discrete frequency in Hz and fs the sampling frequency (also in
Hz) used to sample x[k].

There are also some aspects that need to be taken into account when esti-
mating the PSD of real signals. Among the most important ones we find aliasing
and spectral leakage. Aliasing can occur when the signal has higher frequency
components than the sampling frequency (fixed in some cases), causing in the
overlapping of the discrete spectrum. On the other hand, spectral leakage takes
place when non-periodic signal is transformed using the DFT. Since the DFT is
periodic in the frequency domain, it implicitly assumes that the signal is also peri-
odic in the time domain. This repetition introduces discontinuities at the beginning
and end of the signal, which result in sharp transitions. In the frequency domain,
these sharp transitions lead to the spreading of energy across neighboring fre-
quency bins [20].

To solve both problems, a windowing is applied to the ACF before perform-
ing the DFT [21]. Windowing progressively reduces the value of the signal close
to the beginning and end in the time domain, avoiding overlap of the higher fre-
quency components, as well as smoothing the sharp transitions that cause spec-
tral leakage. However, the main drawback of applying a window is that the original
signal, to which we want to estimate the PSD, is being slightly altered.

For this work, we have chosen the Hamming window function. It is widely
used, simple to implement and according to [21] it is one of the window func-
tions with least spectral leakage. The following expression corresponds to the
Hamming window in the discrete time-domain:

w[k] = 0.54− 0.46 cos

(
2π
k

L

)
, (3.7)

where L is the number of samples of the signal we want to apply the window
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3.3. First Order Gauss-Markov Process

to. Figure 3.1 shows the behavior of the Hamming window in the time domain.

Figure 3.1: Hamming window function for a signal with L samples.

Thus, the final expression derived from Equation (3.6) we will use to estimate
the PSD in W/Hz can be written as:

Ŝxx(f) =
1

fs

∞∑
n=−∞

(rxx[n] ·w[n]) e−2πj f
fs

n , (3.8)

Note that Equation (3.8) is normalized with respect to the sampling frequency
fs. Since the magnitude being represented is power density (W/Hz) in the fre-
quency domain, this ensures it is divided by the interval in which it was obtained.

3.3 First Order Gauss-Markov Process

For snapshot positioning estimators, the pseudorange overbounding models are
based on Gaussian distributions due to its simplicity and unique properties [22].
On the other hand, when deriving conservative time-correlated models for bound-
ing empirical errors, the first order Gauss-Markov model can be considered an
extension of the Gaussian model for time-correlated process [15].

The First Order Gauss-Markov Process (FOGMP), also known as Ornstein-
Uhlenbeck process, is a type of stochastic process widely used in various fields
because of its similar characteristics to real physical error processes. It has rela-
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Chapter 3. Stochastic Error Modeling

tively simple theoretical expression, since it can be defined with just two param-
eters: its variance and time-correlation constant. In addition, the FOGMPs are
stationary processes, meaning it is simpler to manipulate them mathematically.
Thus, FOGMPs can be easily implemented in safe time-sequential positioning
estimators, such as the Kalman Filter via state-augmentation [23][24].

The theoretical relation used to describe a continuous-time FOGMP g(t), with
a variance σ2 and a time-correlation constant τ , can be written as:

∂g(t)

∂t
=

1

τ
g(t) + u(t) , (3.9)

where u(t) represents a continuous zero-mean White Gaussian Noise (WGN)
with variance σ2

u = 2σ2

τ
.

The autocorrelation function of a generic FOGMP can also be expressed as
follows:

Rgg(ℓ) = σ2e−
|ℓ|
τ , (3.10)

Figure 3.2: Autocorrelation function depending on the lag (ℓ) for different
continous-time theoretical FOGMPs (Equation (3.10)).

Figure 3.2 shows the Autocorrelation Function (ACF) of several simulated
FOGMPs. As we can see, it provides an intuitive representation of the degree
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3.3. First Order Gauss-Markov Process

of correlation of the process over time. Nonetheless, using the overbounding the
ACF of an error process does not guarantee that the error is also bounded in
the position domain. However, as we stated earlier, it can be proven that only
by overbounding its Power Spectral Density (PSD) in the frequency domain, the
WSS error process is guaranteed to be bounded in the position domain as well
[3][25].

On the other hand, real data is always subject to a sampling frequency (fs),
and therefore, discrete. Due to this, we are more interested in the discrete ex-
pressions describing a FOGMP. Applying standard continuous to discrete trans-
formations [26], we can obtain the discrete-time FOGMP expression:

g[k] = e−
∆t
τ g[k − 1] + u[k] , (3.11)

where ∆t = 1
fs

is the sampling time and u[k] is also a WGN, but now discrete

and with a variance σ2
u = σ2

(
1− e−

2∆t
τ

)
. If we rewrite Equation (3.11) we can

obtain a more intuitive expression as:

g[k] = α · g[k − 1] +
√
σ2(1− α2) ·un[k] , (3.12)

where α = e−
∆t
τ and un ∼ N (0, 1).

Using the Wiener-Khinchin-Einstein theorem reflected in Equation (3.6), the
PSD of a discrete-time FOGMP can be obtained with the next Equation:

Sgg(Ω) =
1

2π

∞∑
n=−∞

rgg[n]e
−jΩn , (3.13)

with the discrete angular frequency Ω defined once again only in [−π, π]. The
theoretical expression of the power spectral density of a discrete-time FOGMP
when its number of samples tends to infinity can be obtained [27] and expressed
as:

Sgg(Ω) =
1

π
·

σ2(1− α2)

1 + α2 − 2α cos(Ω∆t)
, (3.14)

with Ω ∈
[
0, π

∆t

]
.

Note that the term 1
π

= �2
�2π

in Equation (3.14) is accomplishing two things.
First, it conserves the total power of the FOGMP since only the positive half of
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its symmetrical spectrum is being considered. Secondly, it is normalizing the
expression with the frequency interval in which it was originally defined.

If we take into account that the sampling interval is the inverse of the sampling
frequency ( 1

∆t
= fs). Equation (3.14) can be written in terms of frequency (Hz),

and not angular frequency (rad/s) as:

Sgg(f) = 2∆t ·
σ2(1− α2)

1 + α2 − 2α cos(2πf∆t)
, (3.15)

where f ∈
[
0, fs

2

]
.

Figure 3.3: Power Spectral Density for different discrete-time theoretical FOGMPs
with ∆t = 0.2 s.

Figure 3.3 shows the PSD behavior of several theoretical FOGMPs in the
discrete-time domain. It represents graphically Equation (3.15) with ∆t = 0.2 s,
which means it is only defined until fs

2
= 2.5 Hz. As we can see σ2 only affects

the initial value. Meanwhile, τ affects both the initial value and the beginning of
the slope portion. The bigger the value of τ is, the sooner this slope takes place.
However, in a logarithmic scale for both axis, the value of this slope is always the
same and therefore unaffected by any parameter.
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3.3. First Order Gauss-Markov Process

Equation (3.15) can also be obtained when the number of samples of the
FOGMP is not considered to tend to infinite. It can be written as follows [28]:

Sgg(f) = 2 σ2∆t · Re
(
L− (L− 1)Z + ZL+1

L(1− Z)2
− 1

)
, (3.16)

where Z = exp
(
−∆t

τ
− j2πf

)
and L is the number of samples of the FOGMP.

The difference between Equation (3.15) and Equation (3.16) can be seen in
the next Figure 3.4. For convenience we will referred to this expressions as theo-
retical infinite FOGMP and theoretical finite FOGMP respectively.

Figure 3.4: Difference between infinite and finite (L = 300) theoretical expressions
for a FOGMP.

In order to plot Figure 3.4, the chosen parameters of both FOGMPs are:
σ2 = 0.5, τ = 20 s and ∆t = 0.2 s. In the case of the theoretical finite FOGMP, the
number of samples (L) is set to 300. It is important to mention that the theoretical
infinite FOGMP will be used when referring to the overbounding function. Mean-
while, the finite FOGMP will be used exclusively in next section to compare it with
a simulated FOGMP.
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3.4 PSD Estimate Considerations

Lastly, we have also considered relevant to determine the effect of not having
enough samples to accurately estimate the PSD of the real signal. Failing to
recognize that a segment of data is too short for this purpose will result in an er-
roneous PSD being included in the modeling process. Figure 3.5 intuitively repre-
sents an example of this effect when estimating the PSD (applying the Equation
(3.8)) a simulated FOGMP of length L = 10000, ∆t = 0.2, σ2 = 1 and τ = 20s.
For comparison, the PSD estimate is also calculated for the same data segment
while only using the first 50%× L samples, 20%× L samples, etc. In this case, it
is clear that using any less than the first 20%× L samples leads to an inaccurate
estimation of the PSD, where the segment of data is too short, to the point that
the effect of the Hamming window becomes more prevalent that the signal itself.

Figure 3.5: PSD of simulated FOGMP when using its first P% x L samples.

Now, in order to more rigorously assess this effect on the PSD estimate, a
parametric simulation is performed. The idea is to compare the PSDs of both
the theoretical finite FOGMP and a generated FOGMP through a Monte-Carlo
simulation, which consists on averaging the PSDs of one thousand FOGMPs.
We decided to use the Mean Absolute Percentage Error (MAPE) to measure the
error between them because we believe it gives a more intuitive metric than that
of the Mean Squared Error (MSE), for example. To obtain Figure 3.6, σ2 = 1 and
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3.4. PSD Estimate Considerations

∆t = 0.2 were set as fixed values for both the theoretical finite FOGMP and the
simulated FOGMP, while their time-correlation constants and number of samples
took a range of values.

Figure 3.6: MAPE of the theoretical finite FOGMP vs Monte-Carlo simulated
FOGMP.

As we can see, using 5000 samples for the Monte-Carlo simulated FOGMP
guarantees the error to be at the minimum achievable value 2% for all values of
τ .

32



Part II

Methodology

33





4. Multipath Isolation

Chapter 2 presented the expressions that describe the GNSS measurements.
Looking at them, we can see that airborne multipath is one of the error sources
that impact GNSS. However, it is not possible to directly model it, since we first
need to define what we will consider as multipath and determine the procedure to
isolate it from the rest of the errors.

Figure 4.1: Conceptual diagram of the multipath isolation process.
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This chapter describes the methodology to isolate multipath from other GNSS
error sources. An overview of the methodology can be seen in Figure 4.1. The
following sections explain each of the main processes depicted in the diagram:
Preliminary Checks, Code-Minus-Carrier Method, Antenna Group Delay Variation
(AGDV) correction and Integer Ambiguities Removal.

4.1 Multipath Definition

As we already mentioned before, there are several different approaches to model
multipath error. This thesis models the multipath (MP s

r,i) together with the thermal
noise (εsr,i), but excluding the receiver antenna error (ξr,i). With this in mind, we
proceed to describe in detail the isolation methodology we used.

4.2 Preliminary Checks

Prior to processing the data, faulty measurements need to be discarded. These
can be caused by cycle-slips or when the data is simply corrupted. Falling to
discard them will result in an erroneous model. This section describes the two
techniques used to detect and avoid these type of incorrect measurements.

4.2.1 Sanity Check

It is important to ensure the data is healthy and it does not contain incorrect
GNSS measurements. One example of corrupt data are negative values of pseu-
dorange. Since distances must always be positive, these measurements should
be discarded. Another example of incorrect data are time jumps. These are dis-
continuities in the vector containing the timestamp each of the measurements.
For instance, if the sampling interval is 0.2 seconds and the difference between
two consecutive timestamps is 0.4 seconds, it can be assumed that one mea-
surement was lost. In this case, we consider each time jump to split the data into
two continuous segments.

4.2.2 Cycle-Slip Detector

As it was explained earlier in Section 2.4.1, when a cycle-slips occurs, the value
of the integer ambiguities changes. Since the method to compensate integer
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ambiguities relies on them being constant over continuous tracking of a satel-
lite, it is important to consider every measurement associated to a cycle-slip as
a discontinuity. In the case of MATLAB, this can be achieved by simply changing
that specific value to NaN (Not a Number), which is the same value used when
no measurement was received in a certain epoch (timestamp). However, first
we need to determine what measurements are affected by cycle-slips through a
cycle-slip detector. There are several methods to implement a cycle-slip detector.
In our case, we decided to use the single frequency cycle-slip detector described
in [9]. The reason for this is that we were obtaining better results than with the
double frequency one, which is more sensitive and sometimes yields false posi-
tives. This can be a disadvantage because it results in a significant reduction of
the number of continuous long data segments, limiting the amount of useful data
we can analyse.

The way this specific single frequency cycle-slip implementation works is by
first calculating the difference between the carrier-phase and the code-phase.
Then, a nth-degree polynomial fitting is done over a sliding window of L samples
(e.g. L = 200 at 1 Hz). If at one specific epoch, the discrepancy between (ϕ− ρ)
and the polynomial fit is higher than a pre-established threshold, that epoch is
marked as a cycle slip. It is also important to note that this algorithm needs to be
restarted every time a cycle slip is encountered.

4.3 Code-Minus-Carrier Method

Once the preliminary data checks are performed, we can begin the actual process
to isolate the airborne multipath error. Our starting point are the Equations (2.1)
and (2.2) used currently to describe raw GNSS measurements and that are here
repeated for convenience:

ρsr,i = Gs
r,i + c · (δtr − δts) + T s

r,i + Isr,i + esr,i +MP s
r,i + εsr,i + bsr,i + br,i + ξr,i + ξsr,i , (2.1)

ϕs
r,i = Gs

r,i + c · (δtr − δts) + T s
r,i − Isr,i + esr,i +mpsr,i + ηsr,i + βs

r,i + βr,i + ζr,i + ζsr,i +N s
r,i ·λi . (2.2)

The first step is to subtract the carrier-phase to the code-phase [29], which
leads to the CMC (Code-Minus-Carrier) observable:

CMCs
r,i =ρ

s
r,i − ϕs

r,i =

=2 · Isr,i +
(
MP s

r,i + εsr,i + bsr,i + br,i + ξr,i + ξsr,i
)

−
(
mpsr,i + ηsr,i + βs

r,i + βr,i + ζr,i + ζsr,i +N s
r,i ·λi

)
.

(4.1)

As we can see, several terms are canceled: the geometric range (Gs
r,i), the

error due to clock biases (c · (δtr − δts)), the tropospheric delay (T s
r,i), and the
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4.3. Code-Minus-Carrier Method

ephemeris error (esr,i). Nevertheless, the ionospheric delay (Isr,i) is now doubled.
It is possible to compensate it if we have at our disposal GNSS measurements
from at least two different frequency bands (from the same constellation).

The following expression shows how the ionospheric delay can be estimated
combining the dual-frequency carrier-phase measurements:

Isr,i =
f2
j

f2
i −f2

j
·
(
ϕs
r,i − ϕs

r,j

)
=

f2
j

f2
i −f2

j
·
(
N s

r,i ·λi −N s
r,j ·λj

)
− f2

j

f2
i −f2

j
· (Ei − Ej) , (4.2)

with

Ei − Ej =
(
mpsr,i + ηsr,i + βs

r,i + βr,i + ζr,i + ζsr,i
)

−
(
mpsr,j + ηsr,j + βs

r,j + βr,j + ζr,j + ζsr,j
)
,

(4.3)

where i stands for the main frequency band, to which we want to estimate
ionospheric delay to, and j for the secondary band needed for that purpose. Ad-
ditionally, f represents the carrier frequency used in that band (in Hz).

In Equation (4.3), the terms Ei and Ej encompass various errors inherent to
the carrier-phase measurements. The difference between Ei and Ej can be con-
sidered negligible since these errors are orders of magnitude smaller than those
of the code-phase measurements. Note that by using this ionospheric divergence
estimation, we will also add the integer ambiguities difference of both frequency
bands. This is not so critical if we take into account that they are constant over a
continuous tracking of a satellite, and thus can be removed, as we will see later
on.

Having estimated the ionospheric delay (Isr,i) from Equation (4.2), only remains
to subtract it twice to Equation (4.1). This leads to the next expression, generally
referred to as the CMC Divergence Free or CMCDF :

CMCDF s
r,i,j

= CMCs
r,i − 2 · Isr,i = ρsr,i − ϕs

r,i − 2 · Isr,i , (4.4)

and expanding its terms we obtain:

CMCDF s
r,i,j

=
(
MP s

r,i + εsr,i + bsr,i + br,i + ξr,i + ξsr,i
)

−
(
mpsr,i + ηsr,i + βs

r,i + βr,i + ζr,i + ζsr,i +N s
r,i ·λi

)
− 2 ·

f 2
j

f 2
i − f 2

j

(N s
r,i ·λi −N s

r,j ·λj
)
− (Ei − Ej)︸ ︷︷ ︸

≈ 0

 .

(4.5)
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As we just mentioned, the majority of the carrier-phase related errors are sev-
eral orders of magnitude smaller than the ones of the code-phase. For instance,
the carrier-phase multipath (mpsr,i) and noise (ηsr,i) have a typical value in the range
of millimeters. Meanwhile, when it comes to the code-phase measurement, mul-
tipath error (MP s

r,i) combined with thermal noise (εsr,i) can reach up to several
meters [9][30].

Therefore, the carrier-phase measurements multipath and noise can be con-
sidered negligible, as well as its receiver (ζr,i) and satellite (ζsr,i) antenna errors,
which are even smaller in magnitude. This approximation also includes ignoring
the difference coming from the ionospheric delay estimation (Ei−Ej) in Equation
(4.3). However, the integer ambiguities (N s

r,i ·λi and N s
r,j ·λj) and the instrumental

errors (βs
r,i and βr,i) are an exception to that. On the one hand, the integer ambi-

guities cannot be ignored because they can have a magnitude of hundreds of me-
ters. On the other hand, instrumental errors in the carrier-phase measurements
could be considered negligible, but it is possible to easily compensate them. In
Section 4.5, the process to remove both errors will be explained in detail.

Lastly, we will also ignore the satellite antenna error associated to the code-
phase measurement (ξsr,i). This error introduces group delays in the signal and
recent work has demonstrated that it exhibits variations depending on the nadir
angle [31]. Nevertheless, it is worth noting that this error term is considerably
smaller in magnitude compared to both the multipath error and the errors intro-
duced by the receiver antenna. For this reason, we decided to exclude it as well
from the multipath definition.

After all these assumptions, Equation (4.5) can be rewritten as:

CMCDF s
r,i,j

≈
(
MP s

r,i + εsr,i + bsr,i + br,i + ξr,i
)
−

(
βs
r,i + βr,i +N s

r,i ·λi
)

− 2 ·
f 2
j

f 2
i − f 2

j

−
(
N s

r,i ·λi −N s
r,j ·λj

)
.

(4.6)

At this point, the remaining steps for isolating multipath and thermal noise are
the removal of the receiver antenna errors and the integer ambiguities.

4.4 Antenna Group Delay Variation

In [32], it is shown that receiver antenna errors encompass differential group de-
lay, phase center variation, gain, and cross-polarization isolation. However, group
delay variation is the error that affects the code-phase measurements with the

39



4.4. Antenna Group Delay Variation

most severity, easily reaching values of few meters. In other words, that means
that its magnitude is comparable to that of code multipath. Since our goal is to
isolate it, correcting antenna group delay variation (AGDV) will have a big impact
in the result of the multipath isolation.

In simple terms, AGDV can be defined as the difference in time delay each fre-
quency component experiences while travelling through the receiver’s antenna.
This effect is caused by the non-linear frequency response of the antenna. Addi-
tionally, it is important to understand that this error is dependent on the elevation
and azimuth angles of arrival of the signal.

The focus of this section is to describe the procedure to compensate the AGDV
affecting the code measurement [2].

4.4.1 Coordinate Transformation

As we stated earlier, AGDV depends on the elevation and azimuth angle of arrival
of the signal. For this reason, the first step for correcting this error is to obtain the
value of both these angles. The methodology we follow in this section is described
in [33].

Our starting point are the next input data: the aircraft’s position, and the posi-
tion of each satellite. Initially, these are given in the Earth Fixed Earth Centered
(ECEF) coordinate system. Because we are only interested in the relative po-
sition between airplane and satellite, it is more convenient to work with a local
navigation frame. Therefore, we will reduce the complexity of further calculations
by transforming them to North East Down (NED) first.

We will start by calculating the Line of Sight column vector (u) between the
aircraft and every satellite involved, defined as:

uECEF = sECEF − rECEF =

xsECEF

ysECEF

zsECEF

−

xrECEF

yrECEF

zrECEF

 , (4.7)

where sECEF is the position of a specific satellite and rECEF is the position of the
aircraft’s receiver, both in the ECEF coordinate frame. The receiver’s position will
be considered the coordinate origin in the NED system.

Next, we need to transform the uECEF column vector to the NED coordinate
frame:
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uNED =

xuNED

yuNED

zuNED

 = CNED
ECEF ·uECEF . (4.8)

The transformation matrix CNED
ECEF from ECEF coordinate frame to NED can be

described as follows [33]:

CNED
ECEF =

− sin(lat) · cos(long) − sin(lat) · sin(long) cos(lat)
− sin(long) cos(long) 0

− cos(lat) · cos(lon) − cos(lat) · sin(long) − sin(lat)

 , (4.9)

where lat and long refer to the latitude and the longitude of the aircraft, re-
spectively.

In addition, we have to normalize uNED to obtain the unitary Line of Sight vector
ûNED:

ûNED =
uNED

|uNED|
. (4.10)

At this point, we could already calculate the elevation and azimuth angles of
the satellites with respect to the airplane’s antenna. However, the NED coordi-
nates always describe a plane parallel to the surface of the Earth. This means
that any rotation that the aircraft performs when maneuvering will not be reflected
in the NED coordinate frame. Consequently, the elevation and azimuth angles will
be incorrect if we calculate them in the NED frame instead of the actual antenna
frame.

For this reason, we decided to perform another coordinate transformation,
which will take into account the aircraft’s attitude. The concept of attitude is cov-
ered in detail in Appendix A. Regarding this transformation, it will allow us to
obtain the real elevation and azimuth angles of each satellite with respect to the
antenna (body frame), and not the NED frame. Figure 4.2 intuitively shows the
difference in elevation between both coordinate systems.
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Figure 4.2: Example of the difference between the satellite elevation with respect
to the antenna/body frame and the NED frame.

We proceed now to perform the coordinate transformation to the unitary LOS
vector obtained in Equation (4.10):

ûBF =

xûBF

yûBF

zûBF

 = CBF
NED · ûNED , (4.11)

where the transformation matrix CBF
NED from the NED coordinate system to the

Body Frame (BF) is composed of 3 Euler rotations. Each of them referring to
one attitude parameter: heading (H), pitch (P) and roll (R), as we can see in the
following expression, also defined in [33]:

CBF
NED =

1 0 0
0 cos(R) sin(R)
0 − sin(R) cos(R)

 ·

cos(P) 0 − sin(P)
0 1 0

sin(P) 0 cos(P)

 ·

 cos(H) sin(H) 0
− sin(H) cos(H) 0

0 0 1

 . (4.12)

Finally, both the elevation (θBF) and azimuth (ψBF) angles of a specific satellite
with respect to the antenna frame can be obtained through the next relation:
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θBF = arctan

 −zûBF√
x2ûBF

+ y2ûBF

 ,

ψBF = arctan

(
yûBF

xûBF

)
.

(4.13)

4.4.2 AGDV Model

The last step to correct the AGDV is to use a model of the aircraft’s antenna.
This model needs to characterize the direct effect of the AGDV error in the code-
phase measurements. As we stated before, AGDV depends on the elevation and
azimuth angles of arrival of the received signal. Because of this, we can simply
input the result from Equation (4.13) in the antenna model to obtain the AGDV
error affecting the code measurement for those specific values of elevation and
azimuth. In the end, we subtract the estimated AGDV error, ξr,i(θBF, ψBF), to the
CMCDF approximation in Equation (4.6). The resulting CMC AGDV Corrected
or CMCAC can be expressed as follows:

CMCACs
r,i,j

=CMCDF s
r,i,j

− ξr,i(θBF, ψBF) =
(
MP s

r,i + εsr,i + bsr,i + br,i
)

−
(
βs
r,i + βr,i +N s

r,i ·λi
)
− 2 ·

f 2
j

f 2
i − f 2

j

−
(
N s

r,i ·λi −N s
r,j ·λj

)
.

(4.14)

4.5 Integer Ambiguities Removal

After obtaining the expression in Equation (4.14), it only remains to eliminate the
integer ambiguities and instrumental error terms present in it so as to isolate the
multipath error together with the thermal noise.

Previously, it was mentioned that this integer ambiguities removal method re-
lies on the instrumental errors and the integer ambiguities to be constant. Since
both can be considered constant over a continuous tracking of a satellite, we can
simply subtract its own mean. Nevertheless, a continuous tracking of a satellite
by definition cannot contain any loss of lock or cycle-slip. For this reason, we first
have to split the CMCAC data into uninterrupted segments where those discon-
tinuities are absent. Additionally, these segments need to be longer than a set
parameter M , otherwise the estimated mean of that segment may not be repre-
sentative. However, this leads to a trade-off, because the bigger M is, the harder
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it will be for continuous segments to qualify as longer than it. This in turn reduces
the amount of data available to process and analyse.

Lastly, we want to emphasize that this approach assumes that the multipath
error is a zero mean stochastic process, which holds true in most scenarios.
Having said that, we can theoretically express this last step as follows:

CMCMP s
r,i,j

= CMCACssr,i,j
− 1

K

K∑
k=1

CMCACs
r,i,j

, (4.15)

where only continuous segments of length K ≥ M are being computed. Fur-
thermore, it can be proven that the remaining error terms in Equation 4.15 are:

CMCMP s
r,i,j

=MP s
r,i + εsr,i . (4.16)

After removing all the integer ambiguities terms and the instrumental errors as-
sociated to both code-phase and carrier-phase measurements, the CMC method
is consummated. As a result, we have isolated the multipath error (MP s

r,i) and
the thermal noise (εsr,i) inherent to the code measurement. From now on, when
talking about modelling multipath we will be referring to CMCMP s

r,i,j
in Equation

(4.16). Figure 4.3 shows an example of the isolated multipath’s behavior in the
time domain.

Figure 4.3: Example of Galileo E1 band isolated airborne multipath error from
different satellites (Equation (4.16)).
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After isolating the multipath from the rest of the errors in Chapter 4, the next step
is to analyse the data and derive a high-integrity time-correlated error model.
In order to achieve that, we have chosen a specific methodology consisting of
several processes.

Figure 5.1: Conceptual diagram of the multipath analysis and modeling process.
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Figure 5.1 displays the entire modeling process, as well as all the smaller
processes that it can be divided into. As we can see, all the processes are repre-
sented with the same darker turquoise color. However, Smoothing and Standard
Deviation Normalization have a grey color to indicate they can be independently
included or not in the modeling process so as to obtain different multipath mod-
els. Table 5.1 shows all possible combinations resulting in four different multipath
models, which will be applied to measurements from GPS’s L1 and L5 band as
well as Galileo’s E1 and E5a bands. The reasoning behind their choice will be
covered in detail in their respective sections.

Multipath processing options

Unsmoothed Unnormalized Unsmoothed Normalized

Smoothed Unnormalized Smoothed Normalized

Table 5.1: Proposed options for processing mulipath error.

Another relevant aspect to consider is the non-stationary nature of the mul-
tipath error. As it was described previously in Chapter 3, the frequency domain
overbounding of the error is a key step in the modeling process. However, it is
proven that the error overbound in the position domain is only guaranteed if the
error itself is WSS. For this reason, we have decided to include some processes
in this methodology that aim to mitigate the non-stationary aspects of multipath:
flight state classification and standard deviation normalization.

5.1 Flight State Classification

Since the data used in these thesis is obtained from real test flights, we have
considered important to not include in the analysis parts of the flight where the
aircraft is close to the ground. Not doing so would mean we would be including
ground multipath in the modeling process, which has two main implications. On
one hand, our goal is to model the airborne multipath error (and thermal noise),
therefore not removing the effect of ground multipath would result in the incorrect
modeling of it. On the other hand, ground multipath could worsen the already
existent non-stationary nature of airborne multipath.

For these reasons, we have decided to exclude all flight data where the aircraft
is below a certain altitude. The chosen minimum altitude threshold for this the-
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sis is 3050 meters (10000 feet) since it is considered as the standard minimum
altitude where a flight can stop the climbing phase and begin the cruise phase
(where the majority of the flight will take place). We also performed sensitivity
tests to confirm that slightly varying this parameter did not have much impact
on the results. Consequently, all the flight data epochs will be classified in two
possible states: cruise state (above threshold) and take-off/landing state (below
threshold). We will only include data from the cruise state in the analysis and
modeling. Figure 5.2 shows an example of the aircraft’s altitude throughout one
of the test flights in relation with the established altitude threshold of 3050 m.

Figure 5.2: Aircraft’s altitude in relation to the minimum altitude threshold (3050
m).

5.2 Smoothing

Aeronautical applications typically rely on carrier-smoothing to reduce the noise
affecting code-phase measurements, which allows the end user to estimate their
position more accurately. Hence, we decided to model not only the raw (un-
smoothed) multipah, but also the smoothed multipath. Although the smooth-
ing process eliminates high frequency components for both multipath and noise,
which modifies some of its characteristics, it is useful to model its effect on the
end user. Therefore, the smoothing will be a part of the modeling process only
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when characterizing smoothed multipath, both unnormalized and normalized as
we will see in the next section.

Figure 5.3: Example of Galileo E1 band 100-s carrier-smoothed multipath error
from different satellites.

To perform the carrier-smoothing, a recursive averaging filter known as Hatch
filter is applied to the measurements. For this purpose, we will use the variation
of the Hatch Filter algorithm presented in Equation (5.1). It was adopted in the
standards [13][14] and it is more convenient than the original Hatch filter algorithm
because it is applied directly to the raw multipath from Equation (4.16) and not
the code-phase. As a result, it is not necessary to process again all the data
from the beginning when computing the smoothed multipath instead of the from
raw multipath. The following expression describes the aforementioned variation
of the Hatch filter algorithm:

CMC(k) =


1
n
CMC(k) + n−1

n

[
CMC(k − 1)

]
for n ≤ L ,

1
L
CMC(k) + L−1

L

[
CMC(k − 1)

]
for n ≥ L ,

(5.1)

where k represents the current epoch number and n represents the number of
epochs computed so far. On the other hand, L = T

∆t
is a fixed value given by the
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sampling interval of the data (∆t) in seconds and the smoothing time constant (T)
also in seconds. The smoothing time constant dictates the length of time it takes
the filter to enter its steady state (to converge). Additionally, the algorithm must be
initialised to CMC(k) = CMC(k) at the start and every time a loss of signal or a
carrier-phase cycle slip occurs. Figure 5.3 illustrates an example of the smoothed
multipath’s behavior in the time domain. For the sake of comparison, the raw
(unsmoothed) multipath error from which this example of smoothed multipath was
obtained can be found in Figure 4.3.

The larger T is, the more precise the smoothed pseudorange is. However, the
ionospheric divergence effect between the code and carrier also increases with
T [34]. In the case of this work, we have chosen the smoothing time constant T
to be 100 seconds for two reasons. Firstly, the FAA reported 100 seconds as the
LAAS recommendation value [35], which makes this value commonly employed.
Secondly, this allows us to use the standard deviation model for 100-s smoothed
multipath developed in [2], which was obtained using the same data as this thesis.

Finally, it is important to mention that the filter steady state is reached after 3.6
times the smoothing time constant [36]. Therefore, we will only analyze smoothed
multipath after the filter has continuously processed data for 360 seconds.

5.3 Standard Deviation Normalization

It was mentioned earlier in this chapter that the airborne multipath error has an
inherent non-stationary nature. Its main non-stationary aspect is the fact that
multipath’s standard deviation is dependent on the satellite elevation angle. More
specifically, the lower the angle of elevation of the satellite is, the higher its stan-
dard deviation is. For this purpose, the elevation of the satellite is generally com-
puted with respect to the horizon (NED frame). This allows to capture the influ-
ence of carrier-to-noise ratio

(
C
N0

)
which directly affects the thermal noise, and

therefore, our model. Since the elevation in the NED frame is directly propor-
tional to the distance from the satellite to the user, the carrier-to-noise ratio will
decrease the lower the elevation angle is.

On the other hand, the multipath error is dependent on the angle of arrival with
respect to the aircraft’s body frame and not with respect to the NED frame. How-
ever, most of the time commercial aircrafts fly straight and level, which means the
satellite elevation is very similar with respect to the body frame and with respect to
the NED frame. Taking both aspects into account, is generally considered more
relevant to capture the influence of the carrier-to-noise ratio. Therefore, most mul-
tipath standard deviation models are obtained depending on the elevation with
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respect to the horizon (NED frame).

That being said, we set to normalize both the raw multipath and smoothed
multipath with their respective standard deviations so as to detrend its depen-
dence to the satellite elevation, reducing its non-stationary nature. We will start
with the smoothed multipath.

5.3.1 Smoothed Multipath Normalization

In order to normalize the obtained 100-s smoothed multipath for the L1, L5, E1
and E5a bands, we make use of the model introduced in Section 2.5.2. The
elevation of each satellite with respect to the NED frame in every epoch (times-
tamp) can be obtained using the procedure already explained in Section 4.4.1,
but without performing the last Euler angle transformation (CBF

NED). Once we have θ
associated with each multipath sample we can substitute it in Equation (2.7) and
simply divide the smoothed multipath value by the obtained σmp(θ).

5.3.2 Raw Multipath Normalization

Most available models are designed for the 100-s smoothed multipath. Because
of this, we opted to develop our own model of the standard deviation of raw mul-
tipath using all the flights available from the DUFMAN project data for the L1, L5,
E1 and E5a bands individually.

First, we obtain the elevation of every specific satellite with respect to the NED
frame for every timestamp associated to a measurement sample. Then, we the
raw multipath samples are sorted in elevations bins of 5° starting in 0° and ending
in 90°. The reason we chose this bin size is the fact that it is the minimum bin size
that guarantees enough samples to compute the standard deviation (especially
in the first and last bins).

Since we aim to estimate the standard deviation of empirical data, it is also
important to ensure the multipath samples can be considered independent be-
tween them. With that objective in mind, we only use samples that are at least
25 seconds apart from each other. This value is adopted following the raw multi-
path correlation time proposed in recent MOPS [1] for the GPS L1 band. In other
words, we assume that raw multipath can be considered uncorrelated after the
correlation time has passed. Figure 5.4 shows the number of raw multipath sam-
ples for the GPS L5 band after ensuring they are at least 25 seconds apart from
each other.
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Figure 5.4: Number of independent samples (L) of L5 band raw multipath for
every elevation bin.

Furthermore, we also have to take into account the effect that having a limited
number of samples has on estimating the standard deviation of each bin. For
the purpose of ensuring statistical representation of the true spread of the data,
we apply an inflation factor. Based on the methodology used to derive the previ-
ous model for 100-s smoothed multipath standard deviation (Section 2.5.2), the
inflation factor (F ) is defined as [2]:

F =

√
L− 1

χ2
L−1

, (5.2)

where L is the number of independent samples in the specific bin and χ2
L−1 is

the value for which the Chi-squared distribution has the probability (1 − α). The
reason for using this formula is the fact that variance estimate obtained from a
limited number of samples follows a Chi-squared distribution with L − 1 degrees
of freedom [2]. In our case we decided to choose α = 0.05 for a 95% confi-
dence bound, similar to the one used in [2]. After that, we compute the standard
deviation for each elevation bin and multiply it by the inflation factor.

Since it is widely assumed that the σmp follows an exponential model as we
can see in Figure 2.4 and Figure 2.5, we will also adopt this model for the raw mul-
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tipath. The idea is to fit the same exponential model for the computed standard
deviation of each frequency band:

σraw mp = a1 + a2 · exp
(
− θ

a3

)
, (5.3)

where θ ∈ [0◦, 90◦] is the elevation of the satellite with respect to the NED
frame and a1, a2 and a3 are the parameters to fit the model. In Figure 5.5 we
can see the result of applying this methodology to the raw multipath of GPS’s L1
band.

Figure 5.5: Computed standard deviation for L1 band raw multipath and its expo-
nential model fit from Equation (5.3).

Once we have the exponential model fit for each frequency band (L1, L5,
E1 and E5a), we can evaluate the computed θ for every timestamp and normal-
ize each respective raw multipath sample (divide it by its corresponding σraw mp

value).
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5.4 Autocorrelation and Power Spectral Density

Chapter 3 provided the theoretical basis of the correlation and frequency anal-
ysis. However, there are some important considerations when dealing with real
data. First, we define the biased ACF of multipath as the expression in Equation
(3.3), which will be obtained using the function xcorr from MATLAB. Second, we
compute the PSD, defined in Equation (3.8), by applying MATLAB’s fft function to
the resulting ACF of multipath.

Although the final result of the entire modeling process is the Frequency Do-
main Overbounding of the multipath error derived from its PSD, the ACF can also
provide insight on how the process correlation behaves in the time domain (mul-
tipath correlation time). To facilitate this analysis, we will use the normalized ACF
only when examining the multipath correlation characteristics in the time domain.
However, it is important to clarify that the normalized ACF is not used for the
computation of the PSD.

Finally, we opted for only including continuous multipath data segments longer
than 5000 samples in the analysis and modeling. The reason for this is the effect
of having a limited number of samples to estimate the PSD, and the choice of
minimum length was justified in Section 3.4. In the case of having a sampling
interval ∆t = 0.2 s, the continuous multipath segments have a minimum length of
0.2 s× 5000 = 1000 s.

5.5 Frequency Domain Overbounding

Overbounding, as its name implies, consists in finding a model that is under all
circumstances bigger than the magnitude we want to bound, in our case, the
airborne code-phase multipath error. At the same time, the overbound model
should have the minimum distance possible to the multipath error, to avoid extra
conservatism.

Overbounding the error in the time (autocorrelation) domain does not guaran-
tee it will be bounded in the position domain [15]. However, it has been proven that
overbounding the error in the frequency domain does indeed ensure the position
domain bounding [37]. Once we have the overbounding model that characterizes
the error is obtained, it can be implemented in a Kalman Filter. This overbounding
model should be as simple as possible to facilitate its incorporation in the Kalman
Filter equations.

Similarly to recent work regarding high integrity time-correlated error models
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[3][4][15][25], we chose to also use the theoretical First Order Gauss Markov
Process (FOGMP) as the frequency domain overbounding model, which is sta-
tionary and easily parameterized as discussed in Section 3.3. In this work, we
have found that the theoretical FOGMP can adjust the multipath error behavior in
the frequency domain in most cases. Nevertheless, we decided to add a third pa-
rameter to the model besides the variance (σ2) and the time-correlation constant
(τ ) of the FOGMP. Adding a base level of constant white noise allows us to more
tightly bound the multipath error in some instances where using only the FOGMP
results in an overly conservative bound. It also allows for a more consistent imple-
mentation in the measurement model of Kalman filters [37]. To better understand
this difference, Figure 5.6 displays the PSD of two identical FOGMPs with the
following parameters: ∆t = 0.2, σ2 = 1 and τ = 20s. However, a constant value of
W/Hz (white noise) is added on top of only one of the FOGMPs. In Chapter 7 we
will see that the addition of a white noise will be especially useful when bounding
the L5 and E5a unsmoothed multipath.

Figure 5.6: PSD comparison between two identical theoretical FOGMPs when
adding a base level of constant white noise to one of them.

The final outcome of the frequency domain overbounding process is finding
the value of the 3 parameters of the FOGMP model (σ2, τ ) and white noise that
overbound each of the mulitpath types defined in Table 5.1 for each frequency
band (L1, E1, L5 and E5a). This results in 16 different multipath overbounding
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models: L1 Unsmoothed Normalized, E5a Smoothed Unnormalized, etc.

To find the optimal overbound, a triple loop is performed, sweeping each pa-
rameter and obtaining the corresponding theoretical FOGMP PSD for that spe-
cific combination of σ2, τ , and white noise values. Then, the Mean Squared Error
(MSE) is computed between the overbound and each processed multipath seg-
ment PSD. Next, all the resulting MSE are added up together to form a total MSE.
The optimal combination of the 3 parameter values is that for which the over-
bound is always bigger than all the multipath segments PSD and the total MSE is
minimum.
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6. Flight Data

This thesis focuses on the development of new airborne GNSS models. One es-
sential element is therefore the usage of data in representative operational sce-
narios. This chapter gives an overview of the data used in this work which was
obtained from real tests flights.

6.1 Test Flights

The purpose of these test flights was to provide empirical data to develop multi-
path models for civil aviation GPS L5 band and Galileo E1 and E5a bands and
they belong to the European Commission’s DUFMAN project. For that purpose,
several test flights equipped with a Multi-Model Receiver (MMR) were conducted
to gather GNSS data. Unlike the standard L1 single-frequency receivers currently
used in civil aviation, the experimental MMR is a multi-frequency receiver capable
of operating simultaneously with signals from L1, L5, E1 and E5a bands.

Figure 6.1: Example of the Airbus A320 model (DLR’s ATRA test aircraft).

The thesis evaluates the proposed methodology with real flight data from the
DUFMAN project. It encompasses a total of 10 test flights, each of them using one
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of these 4 Airbus aircraft models: A320, A321, A330 and A350. All of these flights
were conducted throughout the year 2019 and most of them have a approximate
duration of 2.5/3 hours. Table (6.1) lists all the aircraft model types and the test
flights performed with each of them.

A320 A321 A330 A350

F0502 F0324 F0314
F0638

F0640

F0503 F0325 F0315
F0641

F0642

Table 6.1: All test flights which data is available for this thesis and their respective
aircraft model type.

Figure 6.2: Flight F0640 position in the NED coordinate frame with respect to the
take-off/landing point.

As an example, Figure 6.2 shows the flight F0640 position in local frame us-
ing the take-off/landing point as the origin of coordinates (0,0). Its altitude with
respect to the ground is also represented color coded.
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For every flight, GNSS data and aircraft attitude data is available:

6.1.1 GNSS Data

All the GNSS data was obtained from an aircraft MMR using a sampling frequency
(fs) of 5 Hz, and a correlator with 0.1 chips spacing and 20 Hz of bandwidth. Now,
we will focus on explaining all the relevant information recorded.

• GPS time: in order to know when each measurement was taken it is neces-
sary to have timestamps. In the case of this data, these are given in GPS,
which provide the gps week, and the second of the week respectively. Al-
though the timestamps are in GPS time format, it is important to clarify that
all the data (including Galileo measurements) share these timestamps.

• Code-phase: code-phase raw measurements (pseudoranges) for all the
visible and tracked satellites in the GPS L1 and L5 bands, as well as Galileo
E1 and E5 bands. Each row represents one epoch and every column is a
different SV.

• Carrier-phase: carrier-phase raw measurements also for all the satellites
tracked in the L1, L5, E1 and E5 bands.

• Satellite positions: computed from the ephemeris data (navigation mes-
sage), it provides the position in the ECEF coordinate frame for each SV of
the GPS and Galileo constellations. Together with the receiver position and
the airplane’s attitude, it is used to calculate the elevation of each satellite
with respect to the body frame in Section 4.4.

• Receiver position: it represents the aircraft’s position also in the ECEF co-
ordinate frame for each epoch. It was computed using the Position-Velocity-
Time (PVT) algorithm.

6.1.2 Attitude Data

The information regarding the airplane’s attitude was obtained from aeronautic
equipment installed inside the aircraft based on its inertial reference system. This
data was sampled at a frequency of 8 Hz and it provides the following information:

• Timestamps: contrary to the GNSS data, the attitude data timestamps are
synchronized with GPS but are not given in the GPS time format. Instead,
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the day of the year (1 to 365) is provided along with the time of the day
(HH:MM:SS) when each row of measurements was obtained. The seconds
have decimal places with a precision of 125 milliseconds due to the sam-
pling frequency.

• Heading: it provides the angle between the direction the aircraft is headed
and the true north. It is given in degrees and varies between [0°, 360°].

• Pitch: is the angle in degrees between the aircraft’s longitudinal axis and
the horizon for each epoch. Its value range is [-90°, 90°].

• Roll: represents the angle of rotation around the longitudinal axis, causing
the wings to tilt. The aircraft’s roll is also given in degrees and with a value
range [-90°, 90°].

6.2 Antenna Model

In Section 4.4.2, a specific antenna model was used to remove the AGDV from the
CMC multipath component. This model is based on JAVAD AIRANT antenna and
it is not an outcome of this thesis [32][38]. In order to develop it, measurements
of the JAVAD AIRANT antenna were performed inside DLR’s anechoic chamber
(Figure 6.3 [38]).

Figure 6.3: JAVAD AIRANT antenna being modeled inside DLR’s anechoic cham-
ber.
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The result of this antenna model is a look-up table containing the AGDV error
in the code-phase for the L1, E1 and L5/E5a bands depending on the elevation
and azimuth angles of arrival of the signal to the antenna. The AGDV values are
available for increments of 2° for the elevation angle θ ∈ [0°, 90°] and the azimuth
angle ψ ∈ [0°, 360°]. In this work, we have decided to perform a 2D interpolation
to determine the AGDV value for a specific elevation and azimuth angles.

6.3 Preprocessing

The GNSS data and the attitude data have different starting and finishing times,
as well as a different sampling frequency. Because of this, the attitude data had
to be preprocessed. First, the attitude timestamps were converted into GPS time
format. Then, the attitude data was interpolated to match the timestamps corre-
sponding to the GNSS data.

The attitude data has a higher sampling frequency than the GNSS data. Fur-
thermore, the attitude data changes at a relatively slow rate compared to its sam-
pling frequency (8 Hz). Paired with the fact that the GNSS data was not modified
at any moment of the preprocessing, its effect on the fidelity of the data can be
considered negligible.
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7. Results and Discussions

This chapter presents the outcome of this thesis after the proposed methodology
was applied to the data shown in Chapter 6. These results include the Auto-
correlation Functions and the Power Spectral Densities of the different multipath
processing options, as well as the final overbounding model for each of them.

7.1 Analysis

This section compares the different results depending on the factors involved in
the multipath processing options: constellation/frequency band, smoothing and
normalization. It is worth noting that each individual line (identified by a specific
color) represented in any figure of this chapter corresponds to one time series of
multipath from a certain satellite and a certain test flight.

7.1.1 GPS vs Galileo

Autocorrelation Analysis

It was mentioned in Section 2.5.3 that current MOPS give a reference value of 25
seconds for the correlation time of the GPS L1 band raw multipath (Unsmoothed
Unnormalized). If a threshold of ±0.2 for the normalized ACF is considered as
a limit of weak correlation (tipical in statistics), this claim also holds true for our
results. As we can see in Figure 7.1a, the majority of the L1 Unsmoothed Unnor-
malized multipath segments ACFs drop below 0.2 after 25 seconds have passed.

On the other hand, the Galileo E1 band Unsmoothed Unnormalized multipath
exhibits a longer correlation time in Figure 7.1b. Using the same ACF threshold as
before, its correlation time appears to be closer to 50 seconds. In the case of the
L5 and E5a Unsmoothed Unnormalized multipath, the obtained results indicate
that they both posses a correlation time of 200 seconds approximately.

65



7.1. Analysis

(a)

(b)

Figure 7.1: Normalized ACF of L1 band (a) and E1 band (b) Unsmoothed Unnor-
malized continuous multipath segments from all flights.
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Power Spectral Densities

(a)

(b)

Figure 7.2: PSD of L1 band (a) and E1 band (b) Unsmoothed Unnormalized
continuous multipath segments from all flights.
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(a)

(b)

Figure 7.3: PSD of L5 band (a) and E5a band (b) Unsmoothed Unnormalized
continuous multipath segments from all flights.
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As we can see in Figure 7.2b, the PSD curves of Galileo E1 band raw multi-
path (Unsmoothed Unnormalized) are slightly below the PSD values of the GPS
L1 band raw multipath in Figure 7.2a. The PSDs of Galileo E5a band raw multi-
path also appear to be below the ones of the GPS L5 band (Figure 7.3). However,
in this case the difference between them is smaller.

These results can be considered reasonable since code-phase measurements
from Galileo bands are more resistant to multipath than than GPS bands due to
each constellation using different frequency modulations [39]. This effect is less
prevalent when comparing the E5a and L5 bands. Nevertheless, later in this
chapter, the final overbounding models will provide a more objective metric to
compare them.

Comparing and Figure 7.2 and Figure 7.3, it can be seen that the PSD slope
of the L5 and E5a Unsmoothed Unnormalized multipath is less pronounced than
the L1 and E1 Unsmoothed Unnormalized multipath. As we will see in the next
section, these are the only two instances where the PSD slope does not match
that of a FOGMP.

7.1.2 Raw vs Smoothed

Autocorrelation Analysis

Figure 7.4 and Figure 7.5 compare the autocorrelation sequence of Unsmoothed
Unnormalized multipath of L1 and E1 bands with their respective smoothed ver-
sions. Looking at both figures we can see that the correlation time is greatly
increased when smoothing is performed. Furthermore, it can be seen that the
noise effect is significantly reduced when applying the carrier-smoothing to the
raw multipath.

The reason for the increase of the correlation time is intrinsically tied to the
smoothing process. As we know, carrier-smoothing is a recursive algorithm that
uses previous measurements to average the current one. This introduces a cor-
relation between the multipath samples.
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(a)

(b)

Figure 7.4: Normalized ACF of L1 Unsmoothed Unnormalized (a) and Smoothed
Unnormalized (b) continuous multipath segments from all flights.
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(a)

(b)

Figure 7.5: Normalized ACF of E1 Unsmoothed Unnormalized (a) and Smoothed
Unnormalized (b) continuous multipath segments from all flights.
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Power Spectral Densities

(a)

(b)

Figure 7.6: PSD of L5 Unsmoothed Unnormalized (a) and Smoothed Unnormal-
ized (b) multipath segments from all flights.
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(a)

(b)

Figure 7.7: PSD of E5a Unsmoothed Unnormalized (a) and Smoothed Unnor-
malized (b) multipath segments from all flights.
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7.1.3 Unnormalized vs Normalized

Autocorrelation Analysis

(a)

(b)

Figure 7.8: Normalized ACF of L5 Smoothed Unnormalized (a) and Smoothed
Normalized (b) continuous multipath segments from all flights.
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(a)

(b)

Figure 7.9: Normalized ACF of E5a Smoothed Unnormalized (a) and Smoothed
Normalized (b) continuous multipath segments from all flights.

Figure 7.8 and Figure 7.9 show that process of normalizing multipath does not
have a significant effect on the normalized ACF.
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Power Spectral Densities

(a)

(b)

Figure 7.10: PSD of L1 Smoothed Unnormalized (a) and Smoothed Normalized
(b) multipath segments from all flights.
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(a)

(b)

Figure 7.11: PSD of E1 Smoothed Unnormalized (a) and Smoothed Normalized
(b) multipath segments from all flights.
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Looking at Figure 7.10 and Figure 7.11 we can see that the normalization
of multipath significantly increases the level of the PSDs. On the contrary, their
behaviors are only slightly affected.

Section 2.5.2 and Section 5.3.2 presented the models of the standard de-
viation for smoothed multipath (σmp) and raw multipath (σraw mp), respectively.
According to both models, the standard deviation of multipath for all frequency
bands (L1, L5, E1 and E5a) is always below 1. For this reason, the amplitude of
the multipath error is increased when normalizing it with its standard deviation.
This leads to the observed increase of the PSD values.

7.2 Final Models

After applying the overbounding model described in Section 5.5 to the PSD of all
16 multipath processing options, the resulting parameter combination of σ2, τ (in
seconds) and white noise (σ2

WN ) in m2/Hz, can be summarized in the following
tables:

L1 Unsmoothed
Unnormalized

Unsmoothed
Normalized

Smoothed
Unnormalized

Smoothed
Normalized

σ2 23 114 0.2 6

τ 2 2 219 303

σ2
WN 0 0 0 0

Table 7.1: Final overbounding parameters of the proposed FOGMP model for
GPS L1 band multipath.

E1 Unsmoothed
Unnormalized

Unsmoothed
Normalized

Smoothed
Unnormalized

Smoothed
Normalized

σ2 6 65 0.2 6

τ 2 2 54 66

σ2
WN 0 0 0 0

Table 7.2: Final overbounding parameters of the proposed FOGMP model for
Galileo E1 band multipath.
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L5 Unsmoothed
Unnormalized

Unsmoothed
Normalized

Smoothed
Unnormalized

Smoothed
Normalized

σ2 4 22 0.5 25

τ 33 98 263 351

σ2
WN 0.5 6 0 0

Table 7.3: Final overbounding parameters of the proposed FOGMP model for
GPS L5 band multipath.

E5a Unsmoothed
Unnormalized

Unsmoothed
Normalized

Smoothed
Unnormalized

Smoothed
Normalized

σ2 2 22 0.5 28

τ 31 63 122 197

σ2
WN 0.9 16 0 0

Table 7.4: Final overbounding parameters of the proposed FOGMP model for
GPS E5a band.

There are only 4 out of the 16 multipath models that have a white noise value
different than zero: L5 Unsmoothed Unnormalized and L5 Unsmoothed Normal-
ized as seen in Table 7.3, and E5a Unsmoothed Unnormalized and E5a Un-
smoothed Normalized as seen in Table 7.4. The reason for this is that their PSD
slopes are less pronounced than the slope of a theoretical FOGMP, as it can be
seen in Figure 7.16 and Figure 7.18.

In this situation, we could have simply used a FOGMP model without white
noise to overbound these multipath processing options, causing an overestima-
tion of the error. However, we decided to add the white noise parameter to more
closely overbound the multipath error in these instances. Although the rest of the
multipath models do not need the white noise parameter for the overbounding,
we opted to unify all into one single model for the sake of simplicity.

Figure 7.12 and Figure 7.13 present two examples of the final overbounding
models for the L1 band. Similarly, Figure 7.14 and Figure Figure 7.15 show two
out of the four final overbounding models for the E1 band. Lastly, two examples
of the final overbounding models for smoothed multipath in the L5 and E5a band
can be seen in Figure 7.17 and Figure 7.19, respectively.
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Figure 7.12: Final PSD overbound model with σ2 = 23, τ = 2 s, white noise = 0
for the L1 Unsmoothed Unnormalized multipath.

Figure 7.13: Final PSD overbound model with σ2 = 6, τ = 303 s, white noise = 0
for the L1 Smoothed Normalized multipath.
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Figure 7.14: Final PSD overbound model with σ2 = 65, τ = 2 s, white noise = 0
for the E1 Unsmoothed Normalized multipath.

Figure 7.15: Final PSD overbound model with σ2 = 0.2, τ = 54 s, white noise = 0
for the E1 Smoothed Unnormalized multipath.
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Figure 7.16: Final PSD overbound model with σ2 = 4, τ = 33 s, white noise = 0.5
m2/Hz for the L5 Unsmoothed Unnormalized multipath.

Figure 7.17: Final PSD overbound model with σ2 = 25, τ = 351 s, white noise = 0
for the L5 Smoothed Normalized multipath.
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Figure 7.18: Final PSD overbound model with σ2 = 22, τ = 63 s, white noise = 16
m2/Hz for the E5a Unsmoothed Normalized multipath.

Figure 7.19: Final PSD overbound model with σ2 = 0.5, τ = 122 s, white noise
= 0 for the E5a Smoothed Unnormalized multipath.
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8. Conclusions and Outlook

This chapter is dedicated to summarize the main achievements of this master
thesis and present the key conclusions derived from the obtained results. In
addition, the last section provides potential future research to continue with this
line of work.

8.1 Achievements

Before the achievements of this thesis are discussed, it is important to outline
again all the research contributions developed by other parties that served as a
basis for this work:

- Raw data format: the GNSS data of each flight was preprocessed by DLR
to have a MATLAB file format (Section 6.1.1).

- AGDV model: it was developed in [38][32] and allowed us to correct the
AGDV error from the JAVAD AIRANT antenna (Section 6.2).

- σmp model: it was developed in [2] and it allowed us to normalize the 100-s
smoothed multipath for the L1, E1, L5 and E5a bands (Section 2.5.2).

- Overbounding theory: the bounding criteria in the frequency domain was
proven in [3][25] for high-integrity time-correlated error models (Section 3.2
and Section 3.3).

The following list includes all the achievements obtained as a result of this
master thesis:

1) Multipath error isolation: in this work, we have presented a methodology
to isolate the multipath error together with the thermal noise but excluding
the receiver antenna error (Chapter 4). This methodology was then used to
process flight data and extract the multipath error.
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2) σraw mp model: combining the multipath error data extracted from all flights,
we developed a standard deviation model of the raw multipath error for the
GPS L1 and L5 bands and the Galileo E1 and E5a bands. This model
(σraw mp) depends on the elevation of the satellite with respect to the aircraft
in the NED frame (Section 5.3.2).

3) Multipath error modeling: all the raw multipath (L1, E1, L5 and E5a bands)
was processed to also obtain the 100 seconds carrier-smooth multipath er-
ror. Subsequently, both the raw multipath and smoothed multipath were nor-
malized with their respective standard deviation models (σraw mp and σmp).
Lastly, the ACF and PSD were computed for the continuous segments of all
16 multipath processing options from all flights (Chapter 5).

4) Overbound model: a model to overbound the airborne multipath error in
the frequency domain was provided. This model is based on a FOGMP with
an added constant level of white noise. The final parameter combination of
the model for each multipath type is also presented in this work (Section
7.2).

8.2 Conclusions

For the first time and as a result of this thesis, the GNSS airborne code multi-
path error (and the thermal noise) was characterized using a high-integrity time-
correlated error model. This model was derived from real test flights and includes
the raw multipath and the 100-s smoothed multipath (unnormalized and normal-
ized) for the GPS L1 and L5 band, as well as the Galileo E1 and E5a bands.

We hope that this work contributes to provide useful insight for future research
and standardization efforts regarding dynamic error modeling using GNSS multi-
constellation multi-frequency receivers for civil aviation, which promise to substi-
tute current single-constellation single-frequency (GPS L1 band) receivers.

8.3 Future Work

There are several study aspects that were not included within the scope of this
thesis due to time constrains. The following points highlight some potential direc-
tions to continue this work.

• Implement the final models in a Kalman filter: the final overbound mod-
els (σ2, τ and white noise) can be implemented in a Kalman Filter, as shown
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in [5]. This would allow to verify the fidelity of the proposed dynamic model
for multipath error and compare its performance with current models.

• Assessment of the non-stationary effect on the overbound: in theory,
overbounding in the frequency domain only guarantees the overbound in the
position domain if the error is a WSS process. Although the multipath error
exhibits non-stationary traits, our experience points to the possibility that this
non-stationarity is not severe enough to affect the validity of the multipath
error overbound. Nevertheless, normalized multipath was also modeled in
case this assumption is not true so as to minimize its non-stationary nature.

• Different overbound model: other overbounding models were experimented
with during the development of this thesis. For instance, the sum of two dif-
ferent FOGMP promised to provide tighter bounding of the multipath error,
especially when dealing with the L5 and E5a unsmoothed multipath. How-
ever, this also proved to be considerably more complex to implement.

• Carrier-phase multipath models: derive time-correlated models also for
carrier-phase measurements.
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A. Aircraft’s Attitude

In flight dynamics, the attitude of an aircraft is described by three parameters:
heading, pitch, and roll. These parameters represent the orientation of the aircraft
through the rotation of its own axes, as it can be seen in Figure A.1.

Figure A.1: Attitude parameters and their relation to the axes of the aircraft.

They can be described as follows:

• Heading: also referred to as yaw, it indicates the direction in which the air-
craft’s nose is pointing with respect to a reference point, usually expressed
in degrees. It represents the horizontal angle between the aircraft’s longi-
tudinal axis (from the nose to the tail) and a reference direction, generally,
true north. The heading can be easily measured with instruments such as
a magnetic compass or an inertial navigation system.
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• Pitch: it refers to the up-and-down rotation of the aircraft’s longitudinal axis.
It indicates the angle between the aircraft’s longitudinal axis and the horizon.
Positive pitch values indicate the nose is pointing above the horizon, while
negative values indicate the nose is pointing below the horizon. Pitch mainly
affects the aircraft’s ability to climb or descent.

• Roll: also known as bank, it refers to the rotation of the aircraft around its
longitudinal axis, causing one wing to move upward and the other wing to
move downward. It indicates the angle between the aircraft’s wings and the
horizon. Positive roll values indicate the aircraft is banking to the right, while
negative roll values indicate banking to the left. Roll is most prevalent when
the aircraft is performing horizontal turns.

Because attitude parameters represent an angle of rotation, they are typically
expressed in degrees. Table A.1 shows the valid ranges of these angles.

Attitude

Heading [0, 360°]

Pitch [-90°, 90°]

Roll [-90°, 90°]

Table A.1: Attitude parameters valid angle range.
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B. Conclusiones y Propuestas Futuras

Este capítulo está dedicado a resumir los principales logros de este trabajo fin
de máster y a presentar las conclusiones principales derivadas de los resultados
obtenidos. Finalmente, la última sección ofrece propuestas futuras posibles para
continuar con esta línea de trabajo.

B.1 Logros

Antes de exponer los logros de esta tesis, es importante destacar de nuevo todas
las contribuciones de investigación desarrolladas por otras personas y que han
servido como base de este trabajo:

- Formato de los datos originales: los datos GNSS de cada vuelo fueron
preprocesados por DLR para que tuvieran un formato de archivo MATLAB
(Sección 6.1.1).

- Modelo del AGDV: fue desarrollado en [38][32] y nos permitió corregir el
error asociado al AGDV de la antena JAVAD AIRANT (Sección 6.2).

- Modelo de σmp: fue desarrollado en [2] e hizo posible que normalizaramos
el error multicamino suavizado 100 segundos para las bandas L1, E1, L5
and E5a (Sección 2.5.2).

- Teoría de delimitación: el criterio de delimitación en el dominio de la fre-
cuencia fue demostrado en [3][25] para modelos de error de alta integridad
correlacionados en el tiempo (Sección 3.2 y Sección 3.3).

La siguiente lista incluye todos los logros conseguidos como resultados de
este trabajo:
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1) Aislamiento del error multicamino: en este trabajo, hemos presentado
una metodología para aislar el error multicamino junto con el ruido térmico
pero excluyendo el error asociado a la antena del receptor (Capítulo 4).
Esta metodología se utilizó posteriormente para procesar los datos de vuelo
y extraer el error multicamino.

2) Modelo de σraw mp: combinando los datos del error multicamino extraídos
de todos los vuelos, desarrollamos un modelo de desviación estándar del
error multicamino sin suavizar para las bandas L1 y L5 de GPS y las bandas
E1 y E5a de Galielo. Dicho modelo (σraw mp) depende de la elevación del
satélite con respecto a la aeronave en el sistema de coordenadas NED
(Sección 5.3.2).

3) Modelado del error multicamino: se procesó todo el error multicamino re-
sultante (bandas L1, E1, L5 y E5a) para obtener también el error de mul-
ticamino con suavizado de 100 segundos. A continuación, tanto el multi-
camino sin suavizar como el multicamino suavizado se normalizaron con
sus respectivos modelos de desviación típica (σraw mp y σmp). Por último, se
calcularon la función de autocorrelación y la densidad espectral de poten-
cia para los segmentos continuos de las 16 opciones de procesamiento del
error multicamino de todos los vuelos (Capítulo 5).

4) Modelo de delimitación: se presentó un modelo para delimitar el error
multicamino aéreo en el dominio de la frecuencia. Este modelo se basa
en un Proceso Gauss Markov de Primer Orden con un nivel constante de
ruido blanco añadido. La combinación final de parámetros del modelo para
cada tipo de multicamino también se presenta en este trabajo (Sección 7.2).

B.2 Conclusiones

Por primera vez y como resultado de este trabajo, se ha caracterizado el error
multicamino aéreo del código de GNSS (y el ruido térmico) utilizando un mod-
elo de error de alta integridad correlacionado en el tiempo. Este modelo se ob-
tuvo a partir de vuelos de prueba reales e incluye el multicamino sin suavizar y
suavizado de 100 s (sin normalizar y normalizado) para las bandas L1 y L5 de
GPS, así como para las bandas E1 y E5a de Galileo.

Esperamos que este trabajo contribuya a proporcionar una perspectiva útil
para futuros esfuerzos de investigación y estandarización relacionados con el
modelado dinámico de errores utilizando receptores GNSS multiconstelación mul-

96



B.3. Líneas Futuras 97

tifrecuencia para aviación civil, los cuales prometen sustituir a los receptores
monofrecuencia de una sola constelación actuales (banda L1 de GPS).

B.3 Líneas Futuras

Hay varios aspectos del estudio que no se pudieron incluir en el alcance de este
trabajo debido a las limitaciones de tiempo. Los siguientes puntos destacan al-
gunas líneas futuras posibles para continuar este trabajo.

• Implementación de los modelos finales en un filtro de Kalman: los
modelos de delimitación finales (σ2, τ y ruido blanco) pueden implemen-
tarse en un filtro de Kalman, como se muestra en [5]. Esto permitiría veri-
ficar la fidelidad del modelo dinámico propuesto para el error multicamino y
comparar su funcionamiento con los modelos actuales.

• Evaluación del efecto de no-estacionariedad en la delimitación: en
teoría, la delimitación en el dominio de la frecuencia sólo garantiza la de-
limitación en el dominio de la posición si el error es un proceso estacionario
en sentido amplio. Aunque el error multicamino presenta rasgos no esta-
cionarios, nuestra experiencia apunta a la posibilidad de que dicha no-
estacionariedad no sea lo suficientemente grave como para afectar a la
validez de la delimitación del error multicamino. No obstante, también se
modeló el multicamino normalizado en caso de que esta suposición no
fuera cierta, con el fin de minimizar su naturaleza no-estacionaria.

• Modelo de delimitación diferente: durante el desarrollo de este trabajo se
experimentó con otros modelos de delimitación. Por ejemplo, la suma de
dos Procesos Gauss Markov de Primer Orden diferentes prometía propor-
cionar una delimitación más ajustada del error multicamino, especialmente
en el caso del multicamino no suavizado de las bandas L5 y E5a. No ob-
stante, también resultó ser considerablemente más complejo de implemen-
tar.

• Modelar el error de multicamino de la portadora: obtener modelos de
error correlados en el tiempo también para medidas de la portadora GNSS.

97





Bibliography

[1] “Minimum Operational Performance Standards (MOPS) for GNSS Aided In-
ertial Systems". DO-384. RTCA, 2020.

[2] Mihaela-Simona Cîrciu. “Integrity Aspects for Dual-Frequency Dual-
Constellation Ground Based Augmentation System (GBAS)”. Phd thesis,
RWTH Aachen University, 2020.

[3] E. Gallon, M. Joerger, and B. Pervan. “Robust Modeling of GNSS Tropo-
spheric Delay Dynamics”. IEEE Transactions on Aerospace and Electronic
Systems, 57(5):2992–3003, 2021.

[4] E. Gallon, M. Joerger, and B. Pervan. “Robust Modeling of GNSS Orbit and
Clock Error Dynamics”. NAVIGATION: Journal of the Institute of Navigation,
69(4), 2022.

[5] S. Langel, O. García Crespillo, and M. Joerger. “A New Approach for Mod-
eling Correlated Gaussian Errors Using Frequency Domain Overbounding”.
In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS),
pages 868–876, 2020.

[6] P. Teunissen and O. Montenbruck. “Springer Handbook of Global Navigation
Satellite Systems”. Springer International Publishing, 2017.

[7] J. Avila-Rodríguez, G. Hein, S. Wallner, J.Issler, L. Ries, L. Lestarquit, A. De-
Latour, J. Godet, F. Bastide, T. Pratt, and J. Owen. “The MBOC Modulation:
The Final Touch to the Galileo Frequency and Signal Plan". Navigation,
55(1):15–28, 2008.

[8] E. Lohan, H. Hurskainen, and J. Nurmi. “GALILEO Positioning Technology".
Springer Netherlands, 2014.

[9] J. Sanz Subirana, J. M. Juan Zornoza, and M. Hernández-Pajares. “GNSS
Data Processing”, volume I: Fundamentals and Algorithms. ESA Communi-
cations, 2013.

99



100 Bibliography

[10] J. Avila-Rodríguez, S. Wallner, G. Hein, E. Rebeyrol, O. Julien, C. Macabiau,
L. Ries, A. DeLatour, L. Lestarquit, and J. Issler. “CBOC- an implementation
of MBOC". Proceedings of 1rst CNES-ESA Workshop on Galileo Signals
and Signal Processing, 2006.

[11] M.-S. Circiu, S. Caizzone, M. Felux, C. Enneking, M. Rippl, and M. Meurer.
“Development of the dual-frequency dual-constellation airborne multipath
models". NAVIGATION, 67(1):61–81, 2020.

[12] R. Hatch. “The synergism of GPS code and carrier measurements". vol-
ume 2, pages 1213–1231. Proceedings of the 3rd International Geodetic
Symposium on Satellite Doppler Positioning DMA/NOS, 1983.

[13] “Minimum Operational Performance Standards for Global Positioning
System/Satellite-Based Augmentation System Airborne Equipment". DO-
229E. RTCA, 2016.

[14] “Minimum Operational Performance Standards for GPS Local Area Augmen-
tation System Airborne Equipment". DO-253D. RTCA, 2017.

[15] Omar García Crespillo. “GNSS/INS Kalman Filter Integrity Monitoring with
Uncertain Time Correlated Error Processes”. PhD thesis, École Polytech-
nique Fédérale de Lausanne (EPFL), 2022.

[16] James D. Hamilton. “Time series analysis". Princeton Univ. Press, 1994.
Description based on publisher supplied metadata and other sources.

[17] S. M. Kay and S. L. Marple. “Spectrum analysis - A modern perspective".
Proceedings of the IEEE, 69(11):1380–1419, 1981.

[18] M. S. Bartlett and J. Medhi. “On the Efficiency of Procedures for Smooth-
ing Periodograms from Time Series with Continuous Spectra". Biometrika,
42:143, 1955.

[19] P. Welch. “The use of fast Fourier transform for the estimation of power spec-
tra: A method based on time averaging over short, modified periodograms".
IEEE, 15(2):70–73, 1967.

[20] Douglas Lyon. “The Discrete Fourier Transform, Part 4: Spectral Leakage".
The Journal of Object Technology, 8(7):23, 2009.

[21] Chris A. Mack. “More systematic errors in the measurement of power spec-
tral density”. Micro/Nanolithography, MEMS, and MOEMS, 14(3), 2015.

100



Bibliography 101

[22] B. DeCleene. “Defining Pseudorange Integrity - Overbounding". Proceed-
ings of the 13th International Technical Meeting of the Satellite Division of
The Institute of Navigation (ION GPS 2000), pages 1916–1924, 2000.

[23] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems".
Journal of Basic Engineering, 82(1):35–45, 1960.

[24] O. García Crespillo, S. Langel, and M. Joerger. “Tight Bounds for Uncertain
Time-Correlated Errors With Gauss–Markov Structure in Kalman Filtering".
IEEE Transactions on Aerospace and Electronic Systems, 59(4):4347–4362,
2023.

[25] S. Langel, O. García Crespillo, and M. Joerger. “Overbounding the ef-
fect of uncertain Gauss-Markov noise in Kalman filtering". NAVIGATION,
68(2):259–276, 2021.

[26] R. G. Brown and P. Y. Hwang. “Introduction to random signals and applied
kalman filtering", volume 3. Wiley New York, 4th edition, 2012.

[27] N. Jeremy Kasdin. “Discrete Simulation of Colored Noise and Stochastic
Processes and 1/fα Power Law Noise Generation". Proceedings of the
IEEE, 83(5):802–827, 1995.

[28] M. Joerger, S. Jada, S. Langel, O. García Crespillo, E. Gallon, and B. Pervan.
“Practical Considerations in PSD Upper Bounding of Experimental Data".
ION GNSS+, 2023.

[29] M.-S. Circiu, S. Caizzone, M. Felux, C. Enneking, and M. Meurer. “Improved
Airborne Multipath Modelling”. In Proceedings of the 31st International Tech-
nical Meeting of The Satellite Division of the Institute of Navigation (ION
GNSS+ 2018), pages 2195–2209. Institute of Navigation, 2018.

[30] Michael S. Brash. “Isolation of GPS Multipath and Receiver Tracking Errors”.
NAVIGATION, 41(4):415–434, 1994.

[31] L. Wanninger, H. DUmaya, and S. Beer. “Group delay variations of GPS
transmitting and receiving antennas". Journal of Geodesy, 91(9):1099–
1116, 2017.

[32] S. Caizzone, M.-S. Circiu, W. Elmarissi, C. Enneking, M. Felux, and K. Yi-
nusa. “Antenna influence on Global Navigation Satellite System pseudo-
range performance for future aeronautics multifrequency standardization”.
NAVIGATION, 66(99–116), 2019.

101



102 Bibliography

[33] Paul Groves. “Principles of GNSS, Inertial, and Multisensor Integrated Nav-
igation Systems". Second edition, 2013.

[34] B. Park, K. Sohn, and C. Kee. “Optimal Hatch Filter with an Adaptive Smooth-
ing Window Width". Journal of Navigation, 61(3):435–454, 2008.

[35] V. Wullschleger. “FAA Performance Type 1 LAAS Specification: Perfor-
mance, Operations, and ATC Requirements". Proceedings of the 2000
National Technical Meeting of The Institute of Navigation, pages 194–199,
2000.

[36] “Minimum Operational Performance Specification for Global Navigation
Satellite Ground Based Augmentation System Ground Equipment to Sup-
port Category I Operations". ED-114A. Eurocae, 2013.

[37] O. García Crespillo, M. Joerger, and S. Langel. “Overbounding GNSS/INS
Integration with Uncertain GNSS Gauss-Markov Error Parameters. In 2020
IEEE/ION Position, Location and Navigation Symposium (PLANS), pages
481–489, 2020.

[38] S. Caizzone, M.-S. Circiu, W. Elmarissi, C. Enneking, M. Felux, and K. Yi-
nusa. “Effect of Antenna Pattern Uniformity on the Pseudorange Tracking
Error". 2017.

[39] D. Prochniewicz and M. Grzymala. “Analysis of the Impact of Multipath on
Galileo System Measurements”. Remote Sensing, 13(12):2295, 2021.

102




	Abstract
	Resumen
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Objectives
	1.4 Structure of the Thesis

	I Preliminaries
	2 GNSS Navigation for Civil Aviation
	2.1 General GNSS Concepts
	2.1.1 Principle of Use
	2.1.2 GNSS Structure
	2.1.3 GPS and Galileo Constellations

	2.2 Civil Aviation Navigation
	2.3 GNSS Error Sources and Models
	2.3.1 GNSS Measurements
	2.3.2 Integer Ambiguities

	2.4 GNSS Processing
	2.4.1 Cycle-Slips
	2.4.2 Carrier-Smoothing

	2.5 Current Multipath Error Models
	2.5.1 MOPS Multipath Model
	2.5.2 Multifrequency Multipath Models
	2.5.3 Dynamic Error Models


	3 Stochastic Error Modeling
	3.1 Autocorrelation Function
	3.2 Power Spectral Density
	3.3 First Order Gauss-Markov Process
	3.4 PSD Estimate Considerations


	II Methodology
	4 Multipath Isolation
	4.1 Multipath Definition
	4.2 Preliminary Checks
	4.2.1 Sanity Check
	4.2.2 Cycle-Slip Detector

	4.3 Code-Minus-Carrier Method
	4.4 Antenna Group Delay Variation
	4.4.1 Coordinate Transformation
	4.4.2 AGDV Model

	4.5 Integer Ambiguities Removal

	5 Multipath Analysis and Modeling
	5.1 Flight State Classification
	5.2 Smoothing
	5.3 Standard Deviation Normalization
	5.3.1 Smoothed Multipath Normalization
	5.3.2 Raw Multipath Normalization

	5.4 Autocorrelation and Power Spectral Density
	5.5 Frequency Domain Overbounding


	III Evaluations and Results
	6 Flight Data
	6.1 Test Flights
	6.1.1 GNSS Data
	6.1.2 Attitude Data

	6.2 Antenna Model
	6.3 Preprocessing

	7 Results and Discussions
	7.1 Analysis
	7.1.1 GPS vs Galileo
	7.1.2 Raw vs Smoothed
	7.1.3 Unnormalized vs Normalized

	7.2 Final Models


	IV Closing
	8 Conclusions and Outlook
	8.1 Achievements
	8.2 Conclusions
	8.3 Future Work


	V Appendixes
	A Aircraft's Attitude
	B Conclusiones y Propuestas Futuras
	B.1 Logros
	B.2 Conclusiones
	B.3 Líneas Futuras

	Bibliography


