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Abstract

In the field of energy science especially related to combustion technologies, the impact of tur-

bulent reacting multi-phase flows determines the efficiency and performance capability of many

industrial processes. Applications such as aero engines are tested and engine operability, thermo-

dynamic efficiency and emissions are determined by understanding the dependability of fuel spray,

turbulent flow and the chemistry behind the combustion process. Insufficient atomisation of the

fuel and droplet dispersion of a spray system can lead to emission fails and poor performance. For

better results from the industrial spray, a deeper understanding of controlling turbulent flow and

combustion chemistry are required. In this project, the physical and chemical state of the injected

droplets in the latter stage are identified and detected using deep learning. Exploration of Deep

learning models has made an exquisite breakthrough in the field of computer vision problems.

Mask R-CNN is currently one of the states of the art algorithm in which object detection, object lo-

calization, and semantic segmentation pipelines are combined to achieve good results much faster

and accurate. The main goal of this study is to implement an instance segmentation model such

as Mask R-CNN on the field of combustion technology where the sprayed droplets from the fuel

injector are detected and categorized according to size, shape, and solidity. The secondary goal of

this study is to create a Synthetic dataset of the droplets using machine vision techniques that are

similar to a real dataset. The Mask R-CNN model is used to train these datasets and the trained

weights are used to evaluate on the test dataset using the evaluation metric, mean IoU. For com-

parison of the results, the model has been trained with different sets of synthetic image data and

different hyperparameters. Finally, the trained model has been used for the statistical analysis of

the real images which are in the format of im7 files.

Keywords: Combustion technology, Deep learning, Mask R-CNN, Instance segmentation, Combus-

tion technology, Synthetic dataset
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1

1 Introduction

Intelligence can be defined as an approach that our brain takes to solve complicated problems in

real life. When we learn some skills, depending on our intelligence our brain will utilize this skill

to solve the various problems. But in the early days, it was really hard for scientists to interpret

how the brain functions while the whole process was deep and complex. Creating an intelligent

system similar to the human brain was a challenging task during this time. But Marvin Minsky said

that its possible to create an intelligent system by considering our brains as machines [MINS90].

The basic computational operations such as generating, codifying, storing, and using the informa-

tion are performed by human brains. Implementation of these operations to logical machines to

solve the problems is one of the pioneers for building an intelligent system. Combination of these

automata theory and neuroscience had led to the proposal of artificial neurons.” The perceptron”

concept which was originated from these artificial neurons is considered as the first computa-

tional intelligence algorithm [PERE18]. When a computer program can learn by itself without the

intervention of humans on later phases is considered as machine learning. It has been executed in

bigger platforms such as data mining and big data analytics.

Abbildung 1.1: CNN representation consists of an input layer, two hidden layers, and an output

layer.

As a different form ofmachine learning technique, deep learning was introduced and used to solve

more complex tasks such as computer vision techniques, natural language processing (NLP), and
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other computationally overhead tasks. As compared to traditional machine learning approaches,

deep learning consists of neural networks which consist of many layers that are used to extract

complex features from the data as data representation through its hierarchical learning process

as shown in figure 2.16. As the number of layers increases, more complex data can be abstracted

which makes the neural network deeper. Hence it is called a deep neural network. Therefore deep

learningmodels can outperform traditional machine learning techniques [WEHL17]. Deep learning

models have been implemented on computer vision tasks to achieve higher accuracy and for sa-

ving time. But the challenging tasks such as object detection, classification, and localization were

always been a core problem respective to the application where a deep learning model has been

implemented.

1.1 Motivation

Artificial intelligence (AI) has made a huge leap in the field of intelligent combustion systems. Mo-

re researches have been carried out to improve AI modelling as well as algorithm optimization

for these specific applications which can lead to a better economy, the safety of related combus-

tion application [XI19]. Advancement of convolutional neural networks (CNNs) made remarkable

progress in deep learning tasks especially in the field of machine vision [SIMO14]. CNN based ap-

proaches for analysing images has expanded the applicability of AI throughout many applications

such as diagnosing Diabetic Retinopathy (DR) by analysing the images and classify them [PRAT16]

and also classification of skin lesions for the identification of skin cancer by training a CNN [ESTE17].

Apart from classification tasks, object localization, object detection, semantic segmentation, and

instance segmentation can also be achieved using deep neural networks(DNNs). Analysing images

for simultaneous detection and delineation of objects are achieved through Instance segmenta-

tion which can be produced combining object detection and semantic segmentation [WATA19].

Instance segmentation of cell nuclei from a wide range of microscopic images using Mask-RCNN

performed very effectively and efficiently [JOHN19]. Using an instance segmentation model for

analysing and identifying physical and chemical states of the fuel droplets from the latter images

of the industrial spraying mechanism that are obtained from the laboratory is a challenging task

which can lead to further quantitative data analysis by using AI techniques in the future.

1.2 Objectives

The following are the main objectives of this work

• Objective 1 Creation of synthetic image dataset similar to the images acquired from the labora-

tory using previously extracted droplet regions from the real images.
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• Objective 2 Training the Mask R-CNN model using the synthetic dataset by tuning different hy-

perparameters.

• Objective 3 Evaluating the model on test dataset by using the evaluation metrics mean iou.

• Objective 4 Statistical analysis of the real dataset

1.3 Methodology

The research method elaborates on the approaches regarding the evaluation and analysis of the

droplets from the image acquired from the droplet generator. Generation of synthetic dataset and

training and evaluation on this dataset will be conducted and the trained weights are used for real

data analysis. Depending on performance during analysis, the hypothesis is defined whether the

model should be trained on a different synthetic dataset which consists of much more complex

features and with different hyperparameter tuning. One of the major problems is the dataset pre-

paration while manual annotation of raw images takes more time which leads to a potential need

for an alternative. The challenging task is to create a synthetic image similar to a real image and

has to be annotated which needs an innovative approach. In the end, the trained model has been

evaluated and data is formulated. The analysis of the real data by using the trained deep learning

model is visualized.
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2 Background

This section covers the information for understanding the concepts in the field of Artificial intelli-

gence and its subfields such as machine learning and deep learning. An inclusion of introduction

regarding the field of machine vision approaches and techniques and also about choosing a deep

neural network for training is presented. The concepts of machine vision approaches are vital for

understanding synthetic image generation.

2.1 Artificial intelligence

AI ormachine intelligence is the development of a computer program thatmakes amachine intelli-

gent similar to human beings which can be used to perform and solve complex tasks. AI focuses on

building and analysing of an intelligent entity which has been designed for specific purposes. The

general subfields of AI include visual perception, speech recognition, natural language processing,

and logical reasoning [NILS96].

Abbildung 2.1: Relation between AI, Machine learning, and Deep learning in a glance.
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2.2 Machine learning

As a subset of artificial intelligence, machine learning involves programming which makes the ma-

chine capable of learning the data automatically and performs according to each situationwithout

explicit programming for each instance. For understanding the anomalies and patterns within the

data, most of the industries are using machine learning algorithms and models. Machine learning

algorithms help themodel to learn from the train data and improves the learning process to achie-

ve better outcomes while testing. There are different types of machine learning approaches which

can be used depending on the data type and the quantity of the data available. They are supervised

learning, unsupervised learning, and reinforcement learning [HURW18].

2.2.1 Supervised learning

In supervised learning [HURW18], the dataset contains labelled data that serve as both input and

output for the mathematical model. The model is trained so that the mathematical model maps

these inputs and outputs which consist of patterns or other features in the data that can be used

for the further analytic process by taking input and returns a corresponding output. Classification

and regression tasks are an example of supervised learning. In the classification model, the model

takes input and predicts the class. An example of a classification task is to predict the class of

a random fruit image from a dataset that consists of different images of fruit. Regression analysis

helps to forecast the predictions by learning fromhistorical data. For example,weather forecasting,

predicting recession period can be predicted by teaching the model from the previous data.

2.2.2 Unsupervised learning

When the dataset contains a huge amount of unlabeled data, then unsupervised learning approach

is considered to solve this problem. Unlike supervised learning, corresponding outputs are not

available for the input data during training. Therefore, the unsupervised learning algorithms are

used to find patterns, structures, or commonalities and segment the data accordingly. In this man-

ner, when there are a huge amount of data then unsupervised learning can resolve the outcome.

Some examples of unsupervised learning are spam detection in email, where the unsupervised

learning algorithm could find patterns and commonalities in these emails and group the datawhich

is accomplished by the clustering technique [HURW18].
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Abbildung 2.2: Supervised and unsupervised learning.

2.2.3 Reinforcement learning

In reinforcement learning, the agent should take action depends on the potentially complex envi-

ronment where it is implemented. During this time the agent starts to learn the behaviour through

trial and error interactions. Therefore it is also called the behavioural learning model. One of the

main differences compared to supervised learning is that labelled training data is not available.

There is a reward or penalty which is available depending on the action or the prediction the agent

makes. The agent is allowed to learn by itself with corresponding actions it takes. Because of this,

the learning and evaluation of the system take place concurrently. The environment works with

theMarkov decision process. The agent makes the next decision depends on the current state and

Abbildung 2.3: Reinforcement learning.

not on the previous state. When the agent makes the right decision, the rewards are added up.

The goal is to maximise the rewards. Some of the applications of reinforcement learning are in
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the field of robotics, industrial automation, game playing, autonomous vehicles. This shows the

AI model can achieve more experience similar to human beings with the help of reinforcement

learning [KAEL96].

2.2.4 Overfitting and Underfitting

A trained neural networkmodel is expected to performwell in real-time cases. It should generalize

well for the application it was intended to perform. But some times the performance of the model

will be absurd. These problems occur depending on how good the model has been trained. The

terms overfitting and underfitting describe the generalization ability of the trained model. Consi-

dering an example related to linear regression. Image ?? shows the model trained to have neither

overfitted nor underfitted. The line shows good predictions when a new input is introduced. The

distance between the points and line are not minimal.

Abbildung 2.4: Generalized fitting [AL-M19].

In the case of overfitting, the line fits through all the points as shown in figure 2.5. The distance

between the points and line becomes smaller and smaller after a few iterations while training. In

this scenario, the model learns too much were features of both the signal and noise are learned

deeply. Therefore the overall cost becomes minimum as possible. But during testing with a new

dataset which lies beyond the other data points, the predicted results will be absurd. In other

words, the accuracy of the training data is higher and test data is very less.

Overfitting can be avoided by:

• Using more number of data

• Removing the features which are not necessary (eg: noise).
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Abbildung 2.5: Overfitted Line [AL-M19].

• Bias-variance trade-off

Underfitting is a scenario where the model couldn’t learn enough from the training dataset which

leads to unreliable predictions. In figure 2.6, the line doesn’t fit correctly across the points [AL-M19]

[JABB15].

Abbildung 2.6: Underfitted Line [AL-M19].
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2.3 Deep learning

Deep learning is a sub-discipline of machine learning where neural networks are introduced. The

neural network consists of consecutive layers of neurons. This helps the model to learn complex

features from the data in an iterative manner. To learn more complex decision boundaries from

unstructured data, more layers can be included in a neural network. This makes the model deeper

which includesmore hidden layers for extraction of features for better learning from complex data

[HURW18]. Deep learning models can learn complex information from the unlabelled and unstruc-

tured dataset by using supervised, unsupervised, and semi-supervised algorithms. The adaptive

technique while training a neural network shows that it readjusts its internal structure based on

the dataset [LIU17].

Abbildung 2.7: Performance analysis between deep learning and traditional learning algorithms

for large datasets [BROW19].

2.3.1 Working of deep neural network

DNN iteratively learns from the data by adjusting the internal structure by adjusting the parame-

ter which is called weights. Weights are numbers that are used to control the communication bet-

ween the neurons. These weights are adjusted each time during training the neural network. The

strength of the signal which is received at the receiver neuron is determined by weights between

the giver and the receiver neurons. Depending on the strength of the signal, it can be represented

as stimulating or inhibiting. Figure 2.8 represents a sample deep neural network. It consists of an
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Abbildung 2.8: Sample DNN architecture [BOEH18].

input layer which is represented as Layer 𝐿1, three hidden layers as layer 𝐿2, 𝐿3 and 𝐿4, and an

output layer as Layer 𝐿5. The features of the input layer are represented as 𝑥1,…,𝑥𝑝. There are

activation functions for neurons that are denoted as a(i). These functions act as the gateway for

the signal to pass from one neuron to another. This depends on the threshold value. When the

signal value is higher or lower than the threshold value from the activation function, the signal

has been sent from the input neuron. The activation function can also act as a mapping function

where the input signals map into the output signal [KRIE07] [SHAR17]. For a deeper understanding

Abbildung 2.9: Sample artificial neuron [SHAR17].

of weights, biases, and activation function, considering an artificial neuron as shown in figure 2.9.
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Bias is a constant which is an additional parameter that is added along with the weighted sum of

the input which goes to the neuron. The corresponding signal vector x and the weight w is multi-

plied and added together as 𝑥1𝑤1+𝑥2𝑤2+...+𝑥𝑛𝑤𝑛 and later the constant bias b is added to this as

shown in figure 2.9. The activation function f is then applied to this value. The activation function

transforms the linear signal which was converted by the action of weights and biases to non-linear

signal. To learn the complex transformations between input and output, it is necessary to convert

the linear signal to non-linear signal. Therefore choosing an activation function while creating a

neural network plays an important role during training[SHAR17].

2.3.2 Activation functions used in DNN

There are two types of activation functions. They are:

• Linear activation function

• Non-linear activation function

The linear activation functions have some complication such as the functionmayprovide the values

which can be in between -infinity to +infinity. When we use a linear function throughout all the

layers in a neural network, there won’t be any difference such that the linear function of the first

layer and the last layer will be linearly connected. The derivative of the linear activation function

is constant. Therefore back-propagation is not possible. The linear activation of the consecutive

layers will return different values which can be greater or lesser than the previous layer. This will

continue till the end of the output layer where the final values lie in between -infinity to +infinity.

To avoid this problem, non-linear activation functions are used. Some of the non-linear functions

are shown below:

Abbildung 2.10: Sigmoid function[SHAR17].

Sigmoid functions have a smooth gradient as shown in figure 2.10. The output values are bounded

between 0 and 1. But someof the disadvantages are the outputs are not zero centered and also the
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prediction for higher and lower values of x remains constant which can lead to vanishing gradient

problem. The equation for the Sigmoid function is given by:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
(2.1)

Abbildung 2.11: Tanh function [SHAR17].

The Tanh function gives out the output between [-1,1]. Since the graph is zero centered as shown in

figure 2.11, depending on the input signal, they are mapped strongly negative, neutral or strongly

positive values. Similar to the sigmoid function, Tanh function is also computationally expensi-

ve.The equation for the Tanh function is given by:

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(2.2)

Abbildung 2.12: ReLU function [SHAR17].

The range of ReLU function is between o and +infinity. This function allows the network to conver-

ge very fast which makes it computationally efficient. But one of the disadvantages of using ReLU

function is the dying neuron problem where most of the neurons become inactive while the gra-

dient of the function becomes zero when the input becomes zero or negative. When the number

of dead neurons increases, the model performance will be declined. The equation for the ReLU
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function is given by:

𝑓(𝑥) = �
0, for 𝑥 < 0

𝑥, for 𝑥 ≥ 0
(2.3)

Abbildung 2.13: Leaky ReLU function [SHAR17].

Leaky ReLU is introduced to solve the dying neuron problem by a slight change on the slope of the

negative x-axis which extends the range of ReLU as shown in the figure 2.13. This will resolve the

dying ReLU problem as explained before. The equation for the Leaky ReLU function is given by:

𝑓(𝑥) = �
0.01𝑥, for 𝑥 < 0

𝑥, for 𝑥 ≥ 0
(2.4)

The non-linear activation functions can create a complexmapping between input and output whe-

re the input data are more complex such as images or videos. Moreover, the derivative of non-

linear functions which are related to the inputs allows performing backpropagation effectively.

[SHAR17] [RIZW18].

2.3.3 Loss function used in DNN

A loss function is essential as a performance metric during the training of the neural network.

During training the model, the model predicts an output, and the predicted output is compared

to the actual output which is provided along with the training dataset. Then the loss function

calculates the error value by comparing the predicted output and the actual output. One of the

main loss function used in DNN is:

•Mean Squared Error(MSE) MSE is calculated as shown below:

𝑀𝑆𝐸 =
1

𝑁

𝑝

�

𝑛=1

𝑁

�

𝑛=1

(𝑡𝑝𝑖 − 𝑦𝑝𝑖)
2 (2.5)

Where, 𝑡𝑝𝑖 is the predicted value for data point i, 𝑦𝑝𝑖 is the actual value of the data point i and N
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is the total number of data points in the dataset [SING14].

2.3.4 Optimisers used in DNN

Optimisers are used to adjust the attributes such as weights depending on the loss function by

adjusting the hyperparameters such as learning rate andmomentum. Thiswill improve the training

of the model by reducing the losses. Some of the commonly used optimisers [HANS19] are:

• Stochastic Gradient Descent (SGD)

• Adaptive Moment Estimation (Adam)

One of the common optimisation technique performed during training a neural network is a gra-

dient descent. Gradient descent is applicable only for the small dataset which contains very less

number of samples. To find the best fit curve a lot of mathematical computation occurs repeatedly

computing the derivatives and finding the step sizes until the steps become small. In the case of

large datasets having more than 100,000 samples, gradient descent is too slow.

Abbildung 2.14: SGD without having a momentum [RUDE16]

Stochastic gradient descent is one of the variants of gradient descent. One of the advantages of

SGD is that to make the computation process efficient and useful, computation is done on a single

sample or smaller subset or mini-batch of a dataset having a large number of parameters instead

of taking the whole dataset. SGD uses only one sample per step to do computation. Therefore the

number of terms computed by SGD for a larger dataset will be small compared to the gradient de-

scent. If there are redundancies in the data, SGD is useful. SGD is sensitive to the hyperparameters

such as learning rate and momentum. Choosing a learning rate is important during the training

process. Using minibatch, multiple samples can be used to find the best fitting curve by finding

slope and intercept by performing derivation. One of the advantages of SGD is that, if a new sam-

ple is introduced, for fitting the best curve, the model doesn’t need to redo all the calculations

such as slopes and intercepts.
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Abbildung 2.15: SGD having a momentum [RUDE16]

Momentum is crucial hyperparameter for guiding SGD without getting stuck at a local minimum.

There is steep gully around the local optima, where SGD can get stuck while propagating for-

ward. Without using momentum, the SGD oscillates across the gully slopes. Hence the movement

towards the local optimum becomes slower as shown in figure 2.14. Momentum accelerates the

motion of SGD. It dampens the oscillation and pushes SGD faster along the bottom to reach local

optimum.Figure 2.15 shows the movement of SGD with momentum. By using a higher value for

momentum, oscillations are reduced and faster convergence is achieved [KING14] [RUDE16].

2.3.5 Different types of Neural network

The table 2.3.5 shows the comparison between different types of neural networks. According to

different types of the dataset [NIGA18], the architecture of the neural networks is changed to

obtain good results. In a deep neural network, there are a few architectures available such as a

recurrent neural network (RNN), Multilayer Perceptron (MLP) and convolutional neural network

(CNN).Some of the main differences while implementing CNN and RNN are CNN is more suitable

for image dataset because it is considered to be spatial data while RNN is used for sequential data.

RNN uses time-series information which makes it more suitable for handling text and speech data

and analyse them. When compared to CNN, the feature compatibility of RNN is very less.

Features RNN CNN MLP

Datatype Sequence data Image data Tabular data

Parameter sharing yes yes No

Spatial relationship no yes no

Recurrent connection yes no no

Tabelle 2.1: Difference between RNN, CNN and MLP
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2.3.6 About Convolution Neural Networks

In this project, image dataset is used. Therefore CNN is more adaptable than RNN and MLP. CNN

algorithm can take an image and performsmachine vision tasks such as object detection, classifica-

tion, or semantic segmentation. CNN consists of convolution layers, pooling layers, normalization

layers, and fully connected layers.

Abbildung 2.16: CNN which consists of convolutional layers, pooling layer, fully-connected layers,

and normalisation layer which is softmax function [SAHA18]

Each layer of CNN performs different tasks.

The convolutional layer performs a convolution operation. Figure 2.17 shows an image of size

5x5x1. A 3x3x1 filter is convoluting on the image. The output of the image is also 3x3x1. The green

Abbildung 2.17: Convolution operation using a 3x3 kernel [SAHA18].

matrix represents the input image and the kernel is represented by the yellow matrix. The kernel

has a stridemovement of 1 whichmakes the filter/kernel move 9 times across the input image and

perform a matrix multiplication operation. The convolved feature is the result of the convolution

operation. The filters are used for feature extraction from images. Low-level features such as ed-

ges, colours are extracted in the first convolutional layer, and as the number of layers increases the

network can perform better and recognize complex patterns with the help of more filters. Some of
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the other parameters which can affect the convolved feature or the feature map are the depth of

the filter, stride value, and padding. Depth is represented by the number of kernels that are used

for convolution operation. The stride value represents how the kernel should convolve across the

image. As per the figure 2.17, the stride value is 1. As the stride value changes, the feature map

also will change. While doing convolution operation, the dimensionality of the feature map can be

reduced or remain the same depending on another operation which is called padding. There are

two types of padding which are called valid padding and same padding [NIGA18] [SAHA18].

Abbildung 2.18:Max pooling and average pooling operation.

The pooling layer performs pooling operation which is also called a sample-based discretization

process. It is a technique performed to reduce computational overhead by downsampling the di-

mension of the feature maps. It extracts much more relevant features such as positional or ro-

tational invariant. There are three types of pooling operation which are called max pooling, min

pooling, and average pooling. The figure 2.18 shows an example for max pooling and average poo-

ling. Duringmax pooling, only the higher values are chosen among the region covered by the filter.

In figure 2.18, the filter size is 2x2. Each region covered by the filter is shown in different colours.

Sincemax-pooling returns the higher value, it can be used to avoid noises inside the images. During

min pooling, the min value among other values of a specific region is returned. Average pooling

takes the average value of all the values in a specific region which is covered by the kernel.

A fully connected layer connects all the neurons in one layer to all neurons in another layer. In a fully

connected input layer, the output of the previous layers is taken and flatten into a single vector.

The next fully connected layer takes these single vector and predicts the label by applying the

weights. Activation function such as softmax is used to get the probability score of the predicted

labels [SHAB19].

Some of the commonly used CNN architectures are [SAHA18]:
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•LeNEt

•Alexnet

•VGGNet

•GoogLeNet

•ResNet

•ZFNet

2.4 Transfer learning

Transfer learning is a technique where the deep learning model is used to train for a specific da-

taset and later using this pre-trained weights for training another dataset. Training a model from

Abbildung 2.19: Pictorial representation of training from scratch and using a pre-trained weights

for training.

scratch is a tedious process and it takes a lot of time to train the model for each dataset from the

beginning. To avoid this problem, sometimes the model is trained on a general dataset for lear-

ning common features and later use these pre-trained weights for training different dataset for a

specific application. This approach is called the pre-trained model approach [WEIS16].
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2.5 Computer Vision Tasks

Computer vision tasks [BANE19] deal with the tasks related to the understanding of visual environ-

ment similar to human perception. It is one of the important fields in artificial intelligence. Similar

to human beings regarding understanding and performing tasks in their subconscious mind, trai-

ning a computer ismuchmore a hectic task to achieve the sameperformance. But due to advanced

research and development in the field of machine vision techniques using deep neural networks

and advanced peripherals, these tasks are performed and really good results are achieved for dif-

ferent types of applications. Some of the important machine vision tasks are

• Face Recognition

• Visual Relationship Detection

• Image Captioning

• Image Reconstruction or Image Inpainting

• Face Recognition

• Object Detection

• Image Classification

• Instance Segmentation

• Semantic Segmentation

2.5.1 Object Detection

Object detection task is to detect all the objects which are present inside a single image with

the help of rectangular boxes which are called bounding boxes. Through this task, the class of

the object and the position of the object is also determined as shown in figure 2.20. Some of

the important applications of an object detection algorithm are face detection and pedestrian

detection. There are special features that are learned by the model which helps to classify each

object. As shown in the figure, the coffee cup is round compared to the smartphone which is a

square. Some features are unique as the shape of the object become complex.

Some of the models that are used for object detection are [LE18]

• Region-based Convolutional Neural Network (R-CNN)

• Fast R-CNN

• Faster R-CNN

Ross Girshick et al. in 2014 introduced R-CNN for object detection. Instead of the sliding window
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Abbildung 2.20: Object detection task where detected objects are shown alongwith the bounding

box[BANE19].

approach, R-CNN uses the selective search algorithm to determine the region proposals effectively

as shown in figure 2.21.

Abbildung 2.21: R-CNN representation [LE18].

In this approach, more than 2000 region proposals can be proposed and later pass on these propo-

sals to each CNN. The output of each CNN is passing on to a support vector machine (SVM) model

for classification of the object and also for finding out bounding box regressor for localization of

the object. But some of the drawbacks of R-CNN is the time consumption to compute all the pro-

posed regions and the space utilization for saving these convolved features of region proposals.

Therefore the computational expense for training and analysing the data is higher. To overcome

this problem Fast R-CNN is introduced.The figure 2.22 represents Fast R-CNN architecture.
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Abbildung 2.22: Fast R-CNN representation [ABDU18].

Instead of talking each region proposals separately to CNN architecture, it takes the image as a

whole and the region proposals in one forward propagation. The SVMmodel is replaced by a soft-

max layer for better accuracy and speed. But still, due to the selective search algorithm, the time

taken during detection is much higher.

Abbildung 2.23: Faster R-CNN representation [LE18].

Faster R-CNN is much more advanced compared to Fast-RCNN. To avoid the bottleneck created

by the selective search algorithm in Fast R-CNN, Region proposal network (RPN) is introduced in

Faster R-CNN. The figure 2.23 shows the architecture of Faster R-CNN. In this model, the input

image is fed to the backbone network such as Resnet or other architecture to obtain convolved

features. By using RPN, the anchors are predicted with the help of these feature maps. Thus RPN

reduces overall computational overhead by deciding where to search inside the image during ana-

lysis. The proposals from the RPN are fed to the classification and regression layer for performing
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classification and localization task [LE18].

2.5.2 Image Classification

During image classification tasks, the whole image is considered for prediction and it is classified

into its corresponding class label. The classes are predefined by the user for each input images

while training the model.

Abbildung 2.24: Image of a droplet which can be used for the classification task.

2.5.3 Semantic Segmentation

Semantic segmentation is also known as pixel-wise segmentation where the task is to identify

different objects in the image and provide a pixel-wise representation for each class. This task is

also known as the dense prediction [JORD18b]. The figure 2.25 shows an example of a semantic

segmentation task.

During semantic segmentation, each pixel of the image is assigned to a certain class. If there are

more objects which belong to the same class, semantic segmentation cannot distinguish between

these objects. Some of the main application of semantic segmentation are:

• Autonomous vehicles

• Medical image diagnostics
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Abbildung 2.25: Application of semantic segmentation in different scenario [BANE19].

During semantic segmentation, An RGB image or a grayscale image can be used as an input and

the segmentation map is returned as an output. This segmentation map consists of pixel-wise

Abbildung 2.26: Segmentation map representation [JORD18b].

information regarding where and to which class each pixel belongs to. The figure 2.26 represents

an example of semantic segmentation. For understanding the image the author has provided a

low-resolutionmap corresponding to the imagewhile in reality, the resolution of the segmentation

maps is equal to the input image. The segmentation map is created by collapsing multiple output

channels which are the predictions created by a one-hot encoding process for each class. Each

prediction for each class can be represented as a mask [JORD18b].
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2.5.4 Instance Segmentation

Instance segmentation is the combination of other machine vision tasks such as object detection

and semantic segmentation. Instance segmentation models are used to predict each instance se-

parately along with the pixel-wise segmentation. The figure 2.27 shows an example for instance

segmentation.

Abbildung 2.27: Instance segmentation [LIU20].

One of the current state of the art for instance segmentation is the Mask R-CNN. The basic func-

tionality of Mask R-CNN is to perform object detection and then followed up by the segmentation

approach [LIU20].

2.6 Previous works

As a prior development that led to the instance segmentation model, the concepts of bounding

box object detection-based Region-based CNN (R-CNN)were implementedwhich uses pre-trained

CNNs for extracting the image features by performing a forward computation. Because of the slow

speed, many follow up alterations have been made to speed up the evaluation and higher accura-

cy. Faster R-CNN was one of the follow-ups by replacing the selective search method for attention

mechanismwith Region Proposal network [REN15]. Many approaches have been experimented to

achieve instance segmentation by combining object detection and semantic segmentation tech-

niques. Deep Mask is an example for instance segmentation. Deep mask was slow while the seg-

mentation and recognition tasks were not executed parallelly and the performance was less accu-

rate [PINH15]. For achieving faster performancewithout compromising the accuracy, the approach

was to make the model simpler and more flexible by parallel prediction of masks and class labels.

Li et al [LI17] introduced fully convolutional instance segmentation (FCIS). But the accuracy of the

model was declining during the evaluation of overlapping instances. Mask R-CNN follows the basic

structure of Faster RCNN and introducing a fully convolution layer for locating the objects at the

pixel level. Instead of ROI pooling, the ROI alignment layer is used which helps to retain spatial



Kapitel 2: Background 25

information through bilinear interpolation of the feature maps. For producing instance segmenta-

tion, a fully convolutional neural network is added as a network head as shown in figure 2.28.Mask

R-CNN is based on ResNet-FPN backbone which indicates a feature pyramid network (FPN) which

uses ResNet-50 or ResNet-101 [HE17].

Abbildung 2.28:Mask R-CNN representation

2.7 Mask R-CNN

Mask R-CNN consists of 2 stages. Figure 2.28 represents the Mask R-CNN structure. The input

image is taken and analysed. With the help of region proposal networks, anchors/proposals are

generated. In the second stage of the architecture, the proposals were classified and bounding

boxes and masks are generated. The backbone structure plays a crucial role in these two stages

[HE17][ABDU18].

2.7.1 Backbone network and style

The backbone network used in Mask R-CNN is a CNN which can be Resnet or VGG combined with

feature pyramid network (FPN). Usually, pretrained weights from Resnet model are used for the

training of a custom dataset. These convolutional neural networks are used for extracting the fea-

tures from the input image. In the initial layers of CNN, small features such as edges and corners

are extracted. These are called low-level features. The deeper layers will extract high-level fea-

tures such as the complex shape of the actual object. In deep neural networks, as the architecture

goes deeper, the network struggles to train effectively while it will come across a problem call

vanishing gradient. During backpropagation, the gradient is sent back to the previous layers and

further mathematical computation such as multiplying these gradients repeatedly will make this

gradient small. Therefore the performance of the model could decline rapidly or achieve satura-
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tion while training. To avoid this problem, Resnet consists of a residual block which works as an

identity shortcut connection. Figure 2.29 shows a residual block that consists of a skip connection

between multiple layers to avoid vanishing gradient problem.

Abbildung 2.29: Residual block representation [HE16]

This identity shortcut connection performs identity mapping. As in the figure, the identity “x”

which is the output of the previous layer is added to the output of the next layer “F(x)” through

skip connection [HE16]. FPN style consists of bottom-up, top-bottom approach which consists of

lateral connection as shown in figure 2.30.

Abbildung 2.30: FPN architecture [ABDU18].

As in the figure 2.30, the bottom-up stage of the FPN is performed by Resnet for feature extraction

from the input images. The feature maps are shown as normal blue outlines. The resolution of the

image decreases from bottom to top but the feature extraction is low at the bottom and strong at
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the top. The feature pyramid maps are generated during the top-bottom path. With the help of

lateral connection which is convolution and addition operation, strong features with less resoluti-

on from the top-bottom stage are converted into semantically strong features as represented as

thicker blue line as shown in figure 2.30 [ABDU18][KUMA19].

2.7.2 Mask R-CNN Stage I

In the first stage of Mask R-CNN, a lightweight neural network called region proposal network

(RPN) is used to generate proposals that represent the region of interests (ROI) from the convolved

features. RPN works during the top-bottom stage of FPN and generates proposals. The feature

maps are scanned in such a way that, there are boxes with specific dimensions that are placed

on already known locations which are called anchors. There are around 200K anchors of different

dimensions and aspect ratios that covers most of the image by overlapping. RPN uses a sliding

window feature which is a convolutional operation on the feature maps to obtain relevant anchor

boxes. These anchor boxes undergo binary classification such as foreground (fg) which consists of

an object or background (bg) and bounding box regression to determine the class as well as to

refine bounding boxes. Each anchor has an Intersection over Union (IoU) value which determines

whether the anchor has a positive or negative label. If the anchor box for the foreground has

higher IoU value when overlapped with the actual ground truth box, the anchor can be classified

as a positive label. The threshold IoU value can be changed.When there aremultiple anchor boxes

which has positive labels, the anchor which has the highest foreground score is chosen and send

it to the next stage while the rest of the anchor boxes are avoided. This technique is called non

maximum suppression. The advantage of using RPN is that it reuses the feature maps efficiently

and also to avoid duplicate calculations [ABDU18][KUMA19]. Non maximum suppression [HOSA17]

acts as a filter to choose the most appropriate anchor and discard all other anchors depending on

the threshold value. The figure 2.31 represents the non maximum suppression technique.

• Out of the limited number of bounding boxes, only one bounding box which is having the

highest confidence score is chosen.

• The Intersection over Union value is calculated between the chosen bounding box and the

rest of the bounding boxes one by one.

• A specific value for IoU is chosen to be the threshold and all the calculated IoU values are

compared to this threshold value.

• This process is repeated until all the bounding boxes are suppressed leaving only one ade-

quate bounding box is left behind.
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Abbildung 2.31: Using non-max suppression for choosing the best anchor box [HOSA17].

2.7.3 Mask R-CNN Stage II

In the second stage, the chosen ROI is used to extract feature maps for performing classification,

bounding box regression, and segmentation mask. This can be done in two ways

• ROI pooling:

The region of interest will be chosen from the provided feature map by cropping accordingly. After

cropping, the size of the feature map will be decreased. Figure 2.32 shows an example of an ROI

pooling. In the figure 2.32, the feature map is of size 8x8 and the ROI has a size of 7x5 which is

situated at the bottom left corner.

The ROI pooling layerwhich followsmax pooling or average pooling gives an output of a 2x2 feature

map as shown. Here max pooling is considered as an example. By taking this output, the fc layer

performs the classification of the objects and also refines bounding boxes for each class [KUMA19].

• ROI Align:

One of the drawbacks during performing ROI pooling is that the entire process is quantized. For

predicting class and refine bounding boxes, ROI pooling does not have any negative impact. But

for generating a segmentation mask, ROI pooling does not function as expected. For fixing this

problem, ROI align is introduced.

ROI align can preserve spatial information whereas, in ROI pooling, this finer spatial information is
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Abbildung 2.32: ROI pooling [KUMA19].

Abbildung 2.33: Pictorial representation of ROI align [KUMA19].

inaccurate andmisaligned. ROI align performs binary interpolation as shown in figure 2.33 instead

of pooling operation to create the feature maps. Mostly in the second stage of Mask R-CNN, ROI

pooling is substituted by ROI align [KUMA19] [HE17]. The positive output from the ROI align is taken

and fed to a fully convolutional network (FCN) for generating a segmentation mask.
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Abbildung 2.34: Segmentation mask [ABDU18].

Figure 2.34 shows a 28x28 soft mask generated for an object.The generated masks are having

a low resolution. But since these masks are holding float numbers instead of binary numbers,

more information is stored. The ground truth mask is scaled down to the soft mask dimension to

calculate the loss and while inferencing the predicted mask is resized to the original dimension of

the ROI bounding box and generates segmentation masks [HE17][ABDU18].

There are 5 losses while training the model, they are:

•rpn_class_loss, 𝐿𝑐𝑙𝑠1 : RPN (bbox) anchor binary classifier loss

•rpn_bbox_loss, 𝐿𝑏𝑏𝑜𝑥1 : RPN bbox regression loss

•fastrcnn_class_loss, 𝐿𝑐𝑙𝑠2 : loss for the classifier head of Mask R-CNN

•fastrcnn_bbox_loss, 𝐿𝑏𝑏𝑜𝑥2 : loss for Mask R-CNN bounding box refinement

•maskrcnn_mask_loss, 𝐿𝑚𝑎𝑠𝑘 : mask binary cross-entropy loss for the mask head

The loss function of Mask R-CNN can be represented as:

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (2.6)

Where 𝐿𝑐𝑙𝑠 is the classification loss represented as (𝐿𝑐𝑙𝑠1 + 𝐿𝑐𝑙𝑠2). 𝐿𝑏𝑏𝑜𝑥 is the bounding box loss

represented as (𝐿𝑏𝑏𝑜𝑥1 + 𝐿𝑏𝑏𝑜𝑥2) and 𝐿𝑚𝑎𝑠𝑘 represents themask prediction loss. Classification loss

andbounding box loss showshowwell themodel performsduring classification and localization. By

performing binary cross entropy between ground truthmask and predictedmask, mask prediction

loss can be calculated [KUMA19].

2.8 Evaluation metrics

Evaluation metrics are used to measure the quality of DNN model. Some of them are mentioned

below.
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• Intersection Over Union

Intersection over union also called Jaccard Index is a metrics system that can be implemented

directly using TensorFlow. IOU is calculated by the division of the area of intersection between

the predicted segmentation image and the ground truth image (A to the union of the predicted

segmentation image and the ground truth image (B) [JORD18a]. It can be represented as

𝐼𝑜𝑈 =
|𝐴| ∩ |𝐵|

|𝐴| ∪ |𝐵|
(2.7)

For calculating Mean IoU, the groundtruth, as well as the prediction mask, has to be generated as

input for the function provided by TensorFlow. To generate ground truth as a ternary image, first,

the image has been visualized by using the segmentation boundary information for generating the

masks, and also the class id which is stored in the JSON file which will be explained in section 3.1.2.

After visualization, the region has been saved as an image with ternary values of 0,1,2 according

to the class ids give to each class and also the same dimensions such as height and width. The

predicted output is also saved as a ternary image . Figure 2.35 represents the ground truth and

predicted mask of a sample image from the synthetic dataset.

Abbildung 2.35: Representation of ground truth mask (a) and predicted mask (b).

• Pixel Accuracy:

Pixel accuracy is represented as the percentage of pixels in an image that is correctly classified.

Pixel accuracy is calculated by

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.8)

Where TP denotes true positive which is the actual number of pixels that are correctly classified as

the corresponding class according to ground truth mask. TN represents true negative which is the
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actual number of pixels that are correctly predicted that does not belong to the corresponding class

according to ground truth mask. FP indicates false positive, which is the actual number of pixels

incorrectly classified but belong to the corresponding class and FN denotes false negative in which

the predicted pixel values are incorrectly classified and also does not belong to the corresponding

class [JORD18a].
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3 Implementation and Approaches

In this project, for understanding the droplets that are sprayedusing a fuel injector, an instance seg-

mentationmodel in whichMask R-CNN is chosen throughout the experiment. 3 different synthetic

datasets are generated and used for training throughout the experiment. The synthetic images dif-

fer in the resolution and number of objects placed in each image. Finally, the best model will be

chosenwhile training each dataset and thismodel will be evaluated using an evaluationmetricme-

an iou. Furthermore, an analysis is conducted on the raw data using these models to understand

the statistics of the real data.

3.1 Synthetic dataset generation

The real images are obtained in the laboratory using the shadowgraphy technique. From these

images, the droplets are acquired using computer vision-based object detection algorithm (CVOD)

using python. Preprocessing includes normalization, thresholding, denoising. The final ROIs are

shown in 3.1. These ROIs are sorted and saved into different folders inside the database. Depending

on the physical parameters such as solidity, shape, size the droplets are saved as regular droplets

or irregular droplets. CVOD algorithm will be changed accordingly to the complexity of the raw

images.

Abbildung 3.1: ROI which shows irregular droplet on the left and regular droplet on the right
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The synthetic dataset consists of 2 parts.

•Synthetic Images

•JSON files

3.1.1 Synthetic image

Synthetic images are generated based on the computer vision algorithmwith a random number of

objects placed on a background image having similar noise compared to the real images. From the

database, an image has been selected depending on the random probability that was manually

assigned. The probability ratio of choosing the regular droplets to the irregular droplets are assi-

gned to 7 : 3. The number of objects is defined with a random number generator between 0-150

or 0-300 per synthetic image. Once an image is chosen, it is passed through a data augmentation

function which does data augmentation which produces diverse images. There are two functions

defined for irregular droplets and regular droplets. If an irregular droplet has been chosen, it un-

dergoes the smoothing technique, where the gradients are smoothened using a Gaussian filter.

The standard deviation of the gaussian kernel is chosen randomly within a range of values. The

probability of an irregular image to undergo this data augmentation function is 20 %. Since the

image is already distorted, it is not necessary to perform smoothing augmentation on all irregular

drop images. If a regular droplet has been chosen, first the histogram of the image has been plot-

ted which represents the frequency distribution of the data. 3.2 shows the histogram of a regular

drop image. Histogram returns two values such as values of the histogram and the bin edges. It

represents the pixel count on the x-axis and pixel values on the y-axis. The pixel value is chosen

from a specific bin which consists of more general pixels values. The average of these pixel values

is calculated in prior and saved in an empty array which is later used to create noise value for the

generated background image while to avoid the sharp edges of the augmented droplet images

while placing it on the background image of size 512x512 or 1024x1024 resolution. This technique

used to avoid sharp edges while pasting drop images on to the background. The augmentation

techniques that follow for regular droplets are the image is rotated with a random angle which lies

between 0 to 360. The rotated image performs smoothing technique using Gaussian filter as exp-

lained earlier. Not all the rotated images perform smoothing technique. Later the returned image

from the previous augmentation carries out resizing operation. The height and width during re-

sizing will be randomly generated but does not cross the limit, while the droplets are meant to

be average-sized or much smaller in the real image. The output of the augmented image is later

passed through another function which defines the category/class label for these droplets. Curr-

ently, there are only two classes are defined. They are “drop” and “nodrop”. Using the histogram

of the model, the minimum and maximum values of the pixel values are found out. Later these

values are used to normalize the actual image by subtraction and division operation. Some of the
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Abbildung 3.2: Histogram representation of an ROI from the database

key parameters regarding the size and intensity of the pixel values, conditions are specified for la-

belling whether the input image belongs to “drop” or “nodrop” category. This function will return

the label of the image. The augmented image is passed on to the next procedure where it is placed

randomly on the predefined background as shown in 3.3 An offset is generated which is chosen

Abbildung 3.3: Placing augmented regions on the background image.

randomly within the boundary of the background image. This will be the initial coordinates for

the augmented images which have to be placed. A mask image with value zero is generated which

has a similar resolution of the background image. Once the image has been placed, there will be

a value in the mask image instead of zeros. When a new augmented image is introduced, the new



Kapitel 3: Implementation and Approaches 36

calculated random offset will be compared with the previous offset value saved in the mask image

so that the images won’t get overlapped to each other. A counter is provided so that when the

background image gets crowded with many droplet images, there won’t be any place to paste the

image in the background. Once all the objects are placed on the background, the rest of the spaces

are filled with the mean value of the pixel values which are stored previously on an array from the

histogram.While generating synthetic images, the label of the object, position of the object which

includes bounding box as well as the contour of the object are also saved and written parallelly

on the JSON file which is explained in the next section. The contour of the object is saved by per-

forming threshold operation on the augmented object and saving the remaining pixel values on

a mask image of a similar size of the object image filled with zeros. Coordinates along the side if

these pixel values are noted and the actual offset/coordinates of the background image are added

or subtracted to obtain the actual contour with reference to the coordinates of the background

image.While creating synthetic images, the total number of synthetic images are predefined. After

generating a single image, the program saves this image to respective folders which are train, va-

lidation and testing. The probability of saving these images to the train, validation and test folder

are 50:30:20 and 60:30:10 for dataset 3. In this study, 3 types of synthetic datasets are generated.

The first two datasets are created with regular and irregular droplet images while the third dataset

is created with complex objects which consist of distorted droplets. The 3.4 shows the difference

between the regular dataset and complex dataset.

Abbildung 3.4: The difference in synthetic image generation while creating regular dataset(on the

left) and complex dataset (on the right).



Kapitel 3: Implementation and Approaches 37

3.1.2 JSON file

The dataset has been created according to the COCO dataset format inspired by a programming

tool created by Waspinator. The annotation format is given in 3.5.

Abbildung 3.5: JSON file format similar to coco dataset

Inside the info, the general data such as the description of the dataset, year of the generation of

the dataset, contributor, and also the date in which the data has been created.Under categories,

each class that is drop or nodrop is assigned to a category id such as 1 or 2. The supercategory

remains the same as “Spray” because the classes belong to the same category. Under images,

Abbildung 3.6: JSON file format: further details
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an image id is given to each synthetic image that is generated using python programming. Image

information such as width and height of the images are given. 3.6 consists of annotation details

such as the annotation id or id which represents a single object inside an image.A single image

consists of more number of objects which can come under category id 1 or 2. Depending upon

the annotation for a single object or crowded object(overlapping), the option “is crowded ” is

set to 0 or 1. The information about the object bounding box is saved under”bbox”.The binary

mask annotation which is the coordinates of the contour has been stored in the segmentation.

The binary mask format has been generated according to the COCO dataset style format. While

generating synthetic images, the JSONfile iswritten parallelly. while creating each synthetic images

the program runs in a loop where the where all the information are stored and dumbed in JSON

file [WASP18].

3.2 Hyperparameter tuning

Hyperparameters [SMIT18] are the key factors to train a neural network more efficiently. While

training themodel, the validation or test loss shows how efficiently themodel has been trained. By

plotting the graph between training loss and validation loss will showwhether themodel has been

overfitted or underfitted. 3.7 shows a representation of a graph plotted with prediction error on

y-axis andmodel complexity on the x-axis. There is a trade-off between underfitting and overfitting

Abbildung 3.7: Tradeoff between overfitting and under fitting[SMIT18]

where an optimal point is laying between these two. As the test data line passes horizontally near



Kapitel 3: Implementation and Approaches 39

to the training data, the model is said to be trained effectively for generalizing the prediction on

new data. Therefore by referencing the test data graph, hyperparameters can be tuned to achieve

good training. The main parameters which are tuned accordingly are:

•Learning rate

•Batch size

•Momentum

•Weight decay

Learning rate plays a crucial role while training the model. Overfitting might occur if the learning

rate is too small. If the value is too large, it will lead to superconvergence. Superconvergence is a

situation where the model has been trained with less number of iterations. The training can be

done using a single value for the learning rate or a range of value for the learning rate throughout

the training. According to the [SMIT18], the author proposes to train the model with a range of

learning rate value which starts from a low value at the beginning of the training and gradually

increases the value during the training process. Batch size variations can also lead to underfitting

and overfitting. Using smaller batch size can provide regularization effect. The regularization ef-

fect tunes the learning algorithm in such a way that the model can generalize better. The batch

size has to be selected in such a way that while training the model, the system should not run

out of memory. By using a higher value of momentum, the network training can be speeded up.

Learning rates and momentum has a similar effect while updating the weights during training. As

per the author, the momentum can also be changed during training. While training the model,

the momentum can be set up to a value in between 0.95-0.9 and decrease the value to 0.85 and

later to 0.8. During the cyclic update of learning rate and momentum, the relation should be in

such a way that learning rate decreases as the momentum increases. Weight decay also performs

regularization effect. As per the author, cyclic change in the value of weight decay is not effective

during training. Therefore the value has to be set constant. When the dataset is smaller and also

the architecture of the model is not large, larger values of weight decay are suitable for training.

For larger dataset and architecture, a smaller value for weight decay is effective during training. In

this project, the training will be done with cyclic learning rate and momentum and also for single

value for learning rate and momentum. Weight decay will be chosen between 0.001-0.00001.

3.3 Training the model

Matterport Inc.’s Mask R-CNN version which is written in python and deep learning libraries such

as TensorFlow with Keras backend with further modification is used in this project [ABDU17]. The

convolution backbone of theMask R-CNN is the Resnet-101-FPN backbonewhich is used to extract

the features from the image. For classification and regression, the network head is used(Bounding-
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box recognition) and predictedmask output is applied over each ROI separately [HE17]. Themodel

was trained by using pre-initialized weights obtained by training the model on the MS COCO data-

set [LIN14]. This helps to train themodel faster with the help of a technique called transfer learning

where the pre-trained weights on theMS COCO dataset are customized using transfer learning for

our application [WEIS16]. The training can be done in 3 stages such as training the network heads

or training the upper layer such as from stage 4 and up in the ResNet model or training all the

layers which can be considered as an end to end training [HE17]. During training, image-centric

training is used. There are 3 different datasets used to train the model.

•Dataset 1: which contains normal and distorted droplets. Image resolution is 512 x 512.

•Dataset 2: which contains normal and distorted droplets. Image resolution is 1024 x 1024.

•Dataset 3: which contains complex droplets figures. Image resolution is 512 x 512.

While training progresses, the images are resized into 512x512 except for dataset 2. The images

are resized as square images by resizing and padding with zeros. As per the Matterport’ versi-

on of Mask RCNN, it was introduced to improve the accuracy rather than memory efficiency, the

number of images per GPU is assigned to 1 during training to avoid out of memory error. In our

application, for making the model more memory efficient, a better mask/groundtruth generation

technique has been introduced. As per the normal approach, a mask has been generated for each

object in an image separately. For example, if there are 100 objects, there are 100 masks produ-

ced each mask has an actual resolution of the original image.The figure 3.8 represents a sample

input image having four objects. The figure 3.9 shows the corresponding mask generated for one

Abbildung 3.8: A synthetic image which includes 4 objects.

object among 4 objects. Creating masks separately for each object takes more memory. To avoid

this problem and to make the training faster and memory-efficient, only one groundtruth mask

is generated for a single input image irrespective of the number of objects. Inside a single mask

image, instead of one object, all the objects are placed accordingly with specific pixel values for

each class. Pixel value for the background can be” 0”, for droplets its “1” and nodroplets will have

the value “2”. Therefore one single mask is generated with all the ground-truth information for

training the model. The model is trained by using a stochastic gradient (SGD). The training has be-



Kapitel 3: Implementation and Approaches 41

Abbildung 3.9: A mask image having only one object.

en done as an end to end training. The default learning rate and weight decay are 0.01 and 0.001

respectively. While training themodel, the learning rate and weight decay have been set to 0.0001

and 0.00001. These hyperparameters are chosen after multiple trails of training approaches. The

transfer learning technique has also been used by calling the previously trained model weights for

the next training. RPN anchor sizes are reduced as the size of the droplets is quite small. To improve

memory efficiency and to fasten the training process, the number of channels in the input image

has been changed to a single-channel image. While during training, no augmentation techniques

are used while most of the major changes have been made during the generation of the synthe-

tic image dataset. The training was done on Nvidia RTX 2070 with a VRAM of 8 gigabytes and 16

gigabytes of Ram.

Dataset Resize resolution No of epochs Learning rate Momentum Weight decay

Dataset 1 512x512 150 0.0001 0.9 0.00001

Dataset 2 1024x1024 150 0.0001 0.9 0.00001

Dataset 3 512x512 111 0.0001 0.9 0.00001

Dataset 3

(cyclic)
512x512

50

50

50

0.0001

0.001

0.005

0.95

0.88

0.82

0.0001

Tabelle 3.1: Tabular description regarding training procedure.

Dataset 1 and dataset 2 are trained for 150 epochs and the learning rate is 0.0001 and the mo-

mentum is 0.9 and it remains constant throughout the training. The trainingwas initialized by using

pre-trained model weights that were trained on the COCO dataset. Dataset 3 is used to train the

model twice. In the first training approach with dataset 3, the learning rate and momentum re-

main the same till the end of the training. The learning rate is 0.0001 and the momentum is 0.9.

Weight decay is set to be smaller and has a value of 0.00001. The model has been trained for 111

epochs. In the second training process, the dataset has been trained with a cyclic learning rate and

momentum. There are a total of 150 epochs where in the first 50 epochs, the momentum is set

to be 0.95 and the learning rate will be 0.0001. The second 50 epochs are trained by increasing

the value of the learning rate to 0.001 and the momentum is decreased to 0.88. Last 50 epochs
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are trained by changing the learning rate to 0.005 andmomentum of 0.82. In this training process,

weight decay remains the same and has a value of 0.0001.

3.4 Evaluation procedure

Evaluation metric that is used in this project is Intersection-Over-Union metric. This is a common

evaluationmetric that is used for semantic segmentation of the images. Tensorflow providesmean

IoU function where te predictions are saved inside a confusion matrix. From this confusion matrix,

IoU for individual classes as well as mean IoU for the entire tested samples is calculated. IoU is

calculated by :

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(3.1)

For the evaluation of themodel, A ground truth image and a predicted image are needed. By using

the information from the JSON file, the mask images are created as ground-truth for each image

in the dataset. By using the trained model, the prediction has been made for respective images in

the dataset and from these predictions, another mask image is generated. These two images are

fed along with the number of classes to the mean IoU function. The prediction can be done in two

different ways.

• The image is fed as a whole for prediction.

• The image is tiled and stitched back after prediction.

Feeding image in itswhole resolution is a commonpractice followed for prediction. But if the image

resolution is higher, It takes a lot of time for prediction because of the computational overhead.

For avoiding this situation, the images are tiled and fed one by one for prediction and rejoined

after completing the prediction of all the tiles.

3.4.1 Image tiling

Larger images which are having dimensions greater than the expected input image size for the

trained model is considered for tiling. The number of tiles is determined by the relation between

the expected input size and the actual size of the image. There will be a predefined pixel/region

overlap for avoiding the cutting edge while stitching back the images together. The overlapping

value will be equal to the largest size of the droplet which can be obtained from the raw images in

the laboratory. The bounding box of the actual image is saved as the boundary line.While tiling the

images, the tiling coordinates are saved corresponding to the actual position from the real images.

The figures 3.10 and 3.11 shows an example for tiling and stitching of the input image. For the

evaluation of the model, Image tiling is not required while the synthetic datasets are generated
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Abbildung 3.10: Visual representation of tiling an input image.

Abbildung 3.11: Stitching the tiles back to its original resolution.

with a resolution of 512 x 512 and 1024 x 1024 respectively. In this project, for analysing and

retrieving statistical data from each raw images, Image tiling is used.

During prediction, there is a possibility that the same objects can be present in two different tiles.

In this situation, during stitching back the image tiles, a comparative evaluation has been made

concerning objects in the boundary line and also duplicated objects are eliminated through veri-

fication procedures. Hyperparameters such as pixel overlap and tiling dimensions are crucial for

evaluation.
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4 Data evaluation, analysis, and inference

In this chapter, the epoch loss graphs that are obtained from Tensorboard for each training con-

ditions is plotted and compared. All the trained models are evaluated on the corresponding test

data set. The evaluation of the model is based on the evaluation metric mean iou. With the help

of Keras backend TensorFlow, mean iou is calculated and the results are compared. The trained

models are also used to visualize the prediction (semantic segmentation) of a random image from

the dataset and also from the raw image dataset that acquired from the lab. Finally, using these

trained weights, analysis of the real dataset is carried out. The physical parameters such as area,

contour, perimeter, solidity, centroid are measured and saved in JSON file. These parameters are

plotted into graphs for further visual analysis and understand the commonality of the physical and

chemical state of the fuel droplets in the real dataset.

4.1 Visualization using Tensorboard

Tensorboards helps to monitor as the training progresses. From the tensorboard graphs, both trai-

ning and validation losses are mapped on the y-axis and the number of epochs is mapped on the

x-axis. By interpreting these graphs, we can understand whether the training leads to underfitting

or overfitting. In these graphs, the orange curve illustrates the training loss and the blue curve

represents validation loss. Both graphs are smoothened to the factor of 0.6. The actual represen-

tation of these learning curves can be seen as a shaded curve on the graph. For saving the best

model, tensorboard provides a callback function which monitors the validation loss or validation

accuracy during the training. If the validation loss is monitored, the mode should set to “min” and

for validation accuracy, themode has to be set to ”max”. In this project, four training sections have

been carried out as explained in the section 3.3.

Graph 4.1 represents the training with dataset 1. As the training progresses, the training loss is

consistently decreasingwhile the validation loss has somefluctuationswhere somepoints, the loss

is higher. This might be due to the less number of validation samples used during the validation

of the model. To evaluate the generalizing ability of the model, more validation samples has to

be provided. Therefore the validation loss decreases inconsistently and the validation loss can go

under the training loss at some points. This shows that the validation dataset might be easier to

predict by the model compare to the training dataset. In this training process, the best model was
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saved at epoch 143.
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Abbildung 4.1: Train and validation learning curves for dataset 1.
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Abbildung 4.2: Train and validation learning curves for dataset 2.

The second graph 4.2 illustrates the training with dataset 2. In this training process, the training

loss is decreasing gradually. But the validation loss has some noise similar to graph figure 1. But

the noisy movement of the validation loss is less compared to the graph figure 1. This might be

because of the more number of objects present in a single image in dataset 2. Even though the

validation steps assigned during training is the same in both scenarios, an increasing number of

objects have a similar impact onmore validation samples. This makes the validation loss less noisy.

In this training process, the best model was saved at epoch 137.

The third graph 4.3 describes the training with dataset 3. These datasets consist of more complex

droplet figures. Even though the image resolution of dataset 1 and dataset 3 are the same, the

validation learning curve is different because of the complexity of the dataset 3. The more com-

plex validation data have more information for evaluation compared to dataset 1. In this training

process, the best model was saved at epoch 58.

The fourth graph 4.4 represents the cyclic training procedure by varying the hyperparameters. The

training has been done using dataset 3. In this training, the hyperparameters are changed every

50th epoch. Therefore a peak in the graph can be seen at 50th and 100th epoch. During the first 50

epochs, the training loss and validation loss is decreasing gradually. But there is some noise in the
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Abbildung 4.3: Train and validation learning curves for dataset 3.

validation loss. After 50th epoch, the validation loss has more noise and loss started to increase

while the training loss was decreasing. This phenomenon is called overfitting. This might be due

to fewer samples in the validation loss or the hyperparameter has to be tuned in a better way to

reduce the validation loss. In this training two best models are being saved. The first model is at

epoch 46 and the second model is at epoch 126.
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Abbildung 4.4: Train and validation learning curves for dataset 3 with cyclic hyperparameter tu-

ning.

For further evaluation, the best models that were saved during training are used. These models

are used to evaluate on both normal and complex test dataset.

4.2 Evaluation results

The results that are obtained by evaluating each model are formulated in the form of a table as

given below. The evaluation is performed on 400 test samples from corresponding datasets where

the model has been trained.

The table illustrates some of the interesting results from each trained model. It helps to compa-

re the results and choose some model for further statistical analysis. With the help of table 3.3

and 4.2, the results and the coresponding hyper parmeter that were used during training can be
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compared to choose best hyper parameters for future training of the model.

The background IoU value is almost similar in all cases. In the first case, the drop IoU value and

nodrop IoU value is less than 0.8 whereas in case 2, the model achieved good result where the

drop IoU value and nodrop IoU is around 0.9. the mean IoU value obtained in case 2 is the highest

among all other cases. The value obtained in case 2 is 0.92. On the other hand, case 3 results are

not up to the mark while the mean IoU value achieved during the evaluation was 0.65. However,

the case 4 has shown better results compared to case 1 and case 3. In case 4 the model is trained

cyclically as explained before. The mean IoU achieved in with two different models are 0.84 and

0.86 respectively.

Dataset Best epoch Background IoU Drop IoU nodrop IoU Mean IoU

Dataset 1 (Case 1) 143 0.993150 0.794735 0.724253 0.836933

Dataset 2 (Case 2) 137 0.998257 0.905204 0.884862 0.929441

Dataset 3 (Case 3) 58 0.97990 0.383152 0.58382 0.648961

Dataset 3 (Case 4)
43

126

0.987421

0.991189

0.722528

0.728870

0.829574

0.880576

0.846508

0.866878

Tabelle 4.1: Evaluation results of each trained model.

To understand how these models behave in complex scenarios, the cross-evaluation technique

can be used. For cross-evaluation, the trained model in case 2 can be used on test samples in case

4 and vice versa. In case 4, the trained weight at epoch 126 is used for evaluation. The table 4.2

shows the result of cross-evaluation.

Dataset

used

Trained weights

used
Background IoU Drop IoU nodrop IoU Mean IoU

Dataset 1
Case 4

(epoch 126)
0.993614 0.514264 0.570983 0.692954

Dataset 2
Case 1

(epoch 137)
0.962267 0.171429 0.279537 0.471078

Tabelle 4.2: Cross evaluation result .

However, for a better understanding of the model results, the semantic segmentation results of

each model are shown in 4.2.1.

4.2.1 Visualisation of the test dataset

In this section, the predictions obtained from each trained model for a few sample images are

illustrated in the form of figures. A sample input image is taken from the test dataset and its

ground-truth image is generated as a ternary image. Similarly, the corresponding prediction is also

converted into a ternary image for the easiness of understanding. The yellow regions represent
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“nodrop” regions whereas the blue regions represent “drop” regions. Finally, the prediction is vi-

sualised along with the input image where each object in the image are semantically segmented

with a bounding box and corresponding predicted label.

Final visualisation

Abbildung 4.5: Case 1: A sample test image with the prediction result (a)

Final visualisation

Abbildung 4.6: Case 1: A sample test image with the prediction result (b)
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Final visualisation

Abbildung 4.7: Case 2: A sample test image with the prediction result (a)

Final visualisation

Abbildung 4.8: Case 2: A sample test image with the prediction result (b)

Case 2 shows better evaluation results compared to all other datasets. One of the possibilities for

good evaluation is that the dataset is bigger compared to case 1 and contains more number of

objects.
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Final visualisation

Abbildung 4.9: Case 3: A sample test image with the prediction result (a)

Final visualisation

Abbildung 4.10: Case 3: A sample test image with the prediction result (b)

In case 4, there are 2 models available. But only the last one is used for predicting the result

while by comparing the evaluation metric results between these two models, the trained weight

at epoch 126 shows a slightly better result than the trained weight at epoch 43.
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Final visualisation

Abbildung 4.11: Case 4 (epoch:126): A sample test image with the prediction result (a)

Final visualisation

Abbildung 4.12: Case 4 (epoch:126): A sample test image with the prediction result (b)
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4.2.2 Visualisation of the raw dataset

In this section, a sample image is chosen from the raw dataset and the trained models are used

to predict the results. For better visual analysis and compare the robustness of the trained model,

the same image is used for testing for all the trained models.

Abbildung 4.13: A sample image taken from the raw dataset for prediction.

Abbildung 4.14: Prediction using the trained model from case 1.

Image 4.13 shows a sample of the droplet spraying through an injector. This image illustrates the

complexity of the actual dataset. As the fuel is sprayed through an injector, the physical and che-
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mical state of the fuel droplets are changed in a matter of seconds. Some of the droplets do not

diffuse to the surrounding that easily. The complexity of the dataset is determined by the distribu-

tion of fuel droplets.

Abbildung 4.15: Prediction using the trained model from case 2.

Abbildung 4.16: Prediction using the trained model from case 3.

Image 4.14 shows the predicted result obtained from the trained model of case 1. The model

detects more number of nodrop regions which is represented as blue regions with blue outline

compared to the drop regions which is represented as a yellow region with a red outline.
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Abbildung 4.17: Prediction using the trained model from case 4 (epoch:43)

Abbildung 4.18: Prediction using the trained model from case 4 (epoch:126)

However, Image 4.15 shows much more good results compared to Image 1. The trained model

from case 2 had detected more drop regions. Image 4.16 and 4.17 shows the detection of nodrop

region as blocks and failed to detect drop regions. Image 4.18 shows much better predictions of

nodrop region in the form of small blue circles but failed to detect drop regions compare to image

4.15.
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4.3 Analysis of the real data
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5 Discussion and future work

This chapter summarises the implementation of DNNand analysis of the results of the previous sec-

tion. The discussion leads to new ideas for future progress in the field of research and development

of efficient combustion systems or other applications which involves fuel injectors.

5.0.1 Summary

5.0.2 Conclusion and inference

5.0.3 Future work

As the data acquisition is from the industrial cameras that are unstructured and complex, the pre-

processing of these data is tedious while data preprocessing takes the 1/3 rd of the actual time

provided for most of these projects. Semi automatization of synthetic data generation which re-

sembles the actual data can make remarkable progress in terms of time and money. By creating

more complex images for expanding the database and make it more robust will provide a signifi-

cant change for training a deep neural network and improve the results for the future outcome.
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