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Abstract

Multi-swath SAR systems are attractive solutions for monitoring the large-scale motions occurring over non-stationary
areas. The main limitation of such interferometric systems is the variable sensitivity along the flight direction, which
results in phase jumps between adjacent bursts in the interferograms. In this paper, we present a convolutional neural net-
work that decouples the interferometric phase from the along-track phase contribution by simultaneously solving multiple
tasks, (1) separating the phase due to displacements in the line-of-sight direction from that due to displacements in the
along-track direction, and (2) predicting a proxy for the along-track displacement. The benefits of the proposed algorithm
are verified using Sentinel-1 TOPS interferometric pairs over Greenland to track the inland glacier flow occurring within
a time frame corresponding to the revisit time.

1 Introduction

Burst modes such as Scanning Synthetic Aperture Radar
(ScanSAR) [1] and Terrain Observation by Progressive
Scans (TOPS) [2] are among the most widely used acqui-
sition modes in SAR satellite missions in order to achieve
a large coverage. They offer extensive coverage by cycli-
cally sweeping the antenna beam through different range
channels, called subswaths, forming a sequence of SAR
image units, named bursts. They are often used in repeat-
pass interferometry for topographic mapping in stationary
scenarios and for tracking large-scale displacements over
non-stationary areas. The main challenge of using the burst
mode systems is the retrieval of interferometric outputs
along the edges of the bursts. Indeed, the sweep of the
antenna beam introduces a dependence on the flight di-
rection, which results in phase discontinuities across the
bursts in the mosaicked interferograms whenever motion
is present across the overlap area. In the case of station-
ary scenarios, the phase jumps are minimized by evaluat-
ing a global constant azimuth misregistration offset for the
whole image. In particular, this global shift is measured as
the weighted average of the azimuth offset values estimated
in each overlapped area using the Enhanced Spectral Diver-
sity (ESD) [4] approach, which guarantees a significantly
higher accuracy than conventional methods such as Spec-
tral Diversity (SD) [3] and Incoherent Cross-Correlation
(ICC) techniques [4]. The global misregistration offset
approximation does not apply to non-stationary scenarios,
because surface displacements are spatially varying within
the swath. In the conventional ScanSAR burst mode, this
problem can be solved using a 2-look technique [5], which
observes the same target on ground two times within a data
take and exploits the large spectral separation between at
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the overlap areas. In the case of the TOPS acquisition
mode, we are usually limited by the small overlap area,
so the problem has to be approached from a different per-
spective. TOPS is an advanced multi-swath burst mode
in which the antenna beam is further electronically rotated
from backward to forward in the flight direction. This
property improves and compensates for the image qual-
ity in the azimuth direction compared to the conventional
ScanSAR mode, guaranteeing a wider burst coverage and
reduced overlap areas, which saves data storage. Sentinel-
1 (S-1) is the first SAR mission implemented by the Euro-
pean Space Agency (ESA) in the framework of the Coper-
nicus Programme [6]. Its main acquisition mode, the In-
terferometric Wide swath (IW) mode operated as TOPS
mode, provides a large swath width of 250 km at a ground
resolution of 5 × 20m in range and azimuth, respectively
[7]. In this system, the beam swap creates a variable sen-
sitivity to the surface displacement of the interferometric
system along the azimuth direction that is difficult to de-
couple in along-track and across-track (or zero-Doppler)
phase contributions.
In this paper, we present a new multi-task convolutional
neural network (CNN) to jointly reconstruct the along-
track (AT) and zero-Doppler (ZD) phases and a proxy for
the associated along-track deformation. Section 2 gives
an overview of previously published works to mitigate the
TOPS phase discontinuities in non-stationary scenarios.
Section 3 describes the proposed methodology and the se-
lected CNN, while Section 4 presents the materials used
for the development of this work: the Sentinel-1 acquisi-
tions in the inland region of Greenland and the PROMICE
ice velocity maps over the selected site. Section 5 shows
(1) a comparison of the network’s prediction with the pre-
viously described state-of-the-art algorithms on real data
and (2) the results on a selected portion of the S-1 IW sub-
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swath. Section 6 draws the conclusions and outlooks.

2 Related Work

Previous investigations have exploited the spectral separa-
tion for a target on ground observed by two consecutive
bursts to retrieve an accurate estimation of the along-track
displacement. In [8], the authors propose the speckle track-
ing technique, which consists of a local coregistration to
reduce phase discontinuities and increase coherence. First,
the authors use the ICC to evaluate the range and azimuth
offsets over non-stationary scenarios. After a resampling
of the secondary image into the primary grid using the
measured offset matrix, a spatially adaptive range and az-
imuth shift using the SD technique is applied to refine the
results. This solution simplifies phase unwrapping because
the interferograms no longer have phase jumps, but penal-
izes the interferometric phase quality since the estimation
of the shifts has less accuracy and resolution than the in-
terferometric phase. This approach solves extremely large
displacements where the interferometric phase information
cannot be used but increases the noise of the interferomet-
ric phase over areas with low coherence losing the infor-
mation of the small displacements. A second methodol-
ogy published in [9] encourages the usage of the differ-
ential interferogram within each overlap area of the swath
to initialize an image inpainting algorithm, which fills in
the gaps between the overlaps using auxiliary offsets esti-
mated from the external DEM. As a result, it returns the
zero-Doppler interferometric phase. Although reliable in-
formation is present in the overlap areas, the usage of in-
painting requires (1) the implementation of a 2-D phase
unwrapping, which might be subject to errors in complex
scenarios, and (2) a considerable computational time. In
addition, (3) the prediction obtained using the inpainting
algorithm might be visually meaningless, especially in the
gaps.

3 Methodology

Figure 1 Workflow of the ∆-Net. Blocks in orange high-
light the innovative aspects of the presented work.

In this paper, we frame the problem of phase discontinu-
ities across the TOPS bursts in non-stationary scenarios
as a phase source separation problem, proposing a CNN

architecture and a multi-task supervised learning strategy
specifically designed for TOPS interferometric data.
Fig. 1 shows a general overview of the supervised convolu-
tional neural network for the interferometric phase source
separation problem. During the training phase, the CNN
learns by iteratively adjusting the weights (ω) to predict
the correct output for a given set of synthetic inputs. The
resulting model is used for the prediction. In the pa-
per, we are indicating the proposed neural network as ∆-
Net, where the acronym "DELTA" stands for DEforma-
tions over Land using TOPS burst Alignment. In the fol-
lowing, we describe in three separate sections the blocks
depicted in orange in Fig. 1.

3.1 Synthetic dataset generation
We generate the synthetic interferometric pair of acquisi-
tions by applying a reverse approach. Given a user-defined
desired coherence and the noise-free interferometric phase
after the event, the signal model induces the displacement
in the secondary acquisition (i.e. after the event) and, there-
fore guarantees data dedicated for the specific motion. The
displacement maps are selected by different sources: ex-
ternal surface deformation maps, such as the ice velocity
maps produced as part of the Programme for Monitoring
of the Greenland Ice Sheet (PROMICE) [10], and more so-
phisticated mathematical models, such as the one proposed
by Okada for the description of seismic events [11]. As a
result, a set of synthetic TOPS interferograms are provided
to the patch formation step, responsible for the training and
validation set splitting.

3.2 Patch formation
We suggest a methodology for patch extraction based on
the geometric properties of TOPS systems, such as the po-
sition of the junction between two merged TOPS bursts and
the size of each burst. In particular, the patch size is tai-
lored to guarantee a centering in the phase jump and, at the
same time, to ensure the final aggregation of the predicted
patches. The generation of the patches is system-based, in
the sense that their dimension and their selection depend
on geometric properties of the TOPS data. In particular,
this choice results in the selection of a specific window, Ω,
when applying multilooking to the interferogram.

Figure 2 Applied strategy for extracting patches within
a TOPS sub-swath. The squares represent the patches lo-
cated at mid-overlap and the multi-looking (ML) window
size is chosen to guarantee a minimal overlap among the
consecutive M ×M patches along the azimuth direction.

For instance, in the case of Sentinel-1, since the window



Figure 3 Proposed network architecture. The output dimensions at every single layer are shown in gray brackets. For
the sake of simplicity, the used notation implies that the first dimension (i.e., M ) identifies a 2-D (M ×M ) array.

size is chosen according to the azimuth and ground range
resolution of IW mode data, we set the output sampling to
100 m, which corresponds to a 7 × 27 averaging window
size. Fig. 2 shows the main advantage of using this as-
sumption. From the subswath point of view, this approach
guarantees the splitting in patches located at mid-overlap
(green). Indeed, since the burst duration in an S-1 IW prod-
uct is around 3 s and the azimuth time spacing is approx-
imately equal 2 ms [7], the nominal burst size along az-
imuth is always around 1500 lines at full resolution. After
debursting and multilooking the effective burst size along
azimuth, i.e. nML

az in Fig. 2, is around 214 pixels, which is
suitable for a M = 256 patch size and for guaranteeing an
overlap between the patches.

3.3 ∆-Net model
The peculiarity of our proposed strategy is the way we train
the network using a multi-task learning strategy, i.e., we
simultaneously estimate the two phases to be separated (in
along-track and in across-track) and the displacement in
the along-track direction. Fig. 3 shows the scheme of the
general functioning of our proposed approach.
First, the ∆-Net considers C = 4 input variables repre-
sented in Fig. 4: the (a) real ξRe = Re{ξ} and (b) imagi-
nary ξIm = Im{ξ} parts of the interferometric phase, (c)
the associated coherence ρ, and (d) a map describing the
sensitivity of the TOPS primary image retrieved by adding
a linear azimuth dependency to each S-1 Doppler centroid
range variant vector fnorm

dc .

Figure 4 Input features used on a patch located at mid-
overlap: (a) and (b) are the real and imaginary parts of the
interferometric phasor, denoted in the paper as Re{ξ} and
Im{ξ}, respectively; (c) is the interferometric coherence
ρ, while (d) is the normalized Doppler centroid fnorm

dc .

Therefore, in Fig. 3 we can observe that the ∆-Net is
based on the U-Net model [12]. In particular, one layer is
removed from the original implementation, using a three-
layer design for the encoder-like and decoder-like blocks.
The former is followed by a bridge layer and two branches,
each one comprising a three-layer predictor with skip con-
nections: the upper branch estimates the real and imaginary



parts of the along-track phasor (ξRe
at , ξ

Im
at ), then uses the re-

constructed along-track phase ϕat together with the inter-
ferometric phase ϕ associated with the real and imaginary
parts (ξRe, ξIm), i.e., the inputs of the network, for predict-
ing the zero-Doppler phase, ϕzd, directly derived from the
corresponding real and imaginary parts (ξRe

zd , ξ
Im
zd ). The

same reconstructed along-track phase is used in compar-
ison with the same phase measured from the output of
the lower branch, i.e., the along-track displacement uat.
In particular, given the normalized Doppler centroid fre-
quency fnorm

dc used as input to the network, it is possible to
apply a root mean square error (RMSE) regularization on
the along-track phase estimated in the upper branch and on
the same quantity estimated starting from the along-track
displacement in the lower branch. In this way, the network
is able to set the weights on both branches in order to sat-
isfy even the relationship among the outputs. In addition,
regularizations on the unitary modulus in the along-track
phasor ξat and on the continuity of the zero-Doppler phase
ϕzd are considered during the training.

Figure 5 Loss function convergence graph for training
(solid) and validation (dashed) using overall 50 epochs.
Real and imaginary components of the zero-Doppler pha-
sor, ξzd, are depicted in orange and blue, respectively, and
are overlapped. Real and imaginary parts of the along-
track phasor, ξat, are marked in red and green, respec-
tively. Along-track displacement, uat, is drawn in olive,
while the overall loss function is highlighted in black.

Fig. 5 shows that the loss curves are scaled to the same
value because we selected the RMSE loss function in all
the tasks. The orange and blue curves are respectively as-
sociated with real and imaginary components of the zero-
Doppler phase and are overlapped. This result is in agree-
ment with the absence of phase jumps in the zero-Doppler
phase. On the contrary, the loss functions of the real and
imaginary components of the along-track phase drawn re-
spectively in red and green are different because the imag-
inary part of the along-track phase contains the main infor-
mation about the phase jump.

4 Materials

Training and test stages have been conducted over Green-
land by geographically separating a set of Sentinel-1 ac-
quisitions in the inland region.

Figure 6 Overview of the S-1 footprints selected as train-
ing and test data set over Greenland, superimposed to an
optical image from Google Earth. Footprint number 6,
indicated as a green rectangle, is used for testing the pre-
trained network.

The training data set has been created following the patch
formation strategy described in Section 3.2 and consider-
ing the nine red footprints drawn in Fig. 6. Several syn-
thetic interferometric pairs have been generated by induc-
ing on the secondary SAR image the displacement associ-
ated with the ice velocity maps of the PROMICE project.
This external data set consists of mosaicked products de-
scribing the displacements, in meters per day, occurring
in the whole Greenland during the Winter season. In our
work, we selected the six available products from Winter
2016-2017 to Winter 2021-2022. Each geospatial product
spans between November 1 and February 28 the following
year, with a nominal grid spacing of 500 m, including all
the ascending and descending SAR images acquired in this
time frame.

Figure 7 From left to right: (a) East, (b) North, and (c)
Vertical components of the ice velocity map retrieved on
Winter 2021-2022 [13].



For example, Fig. 7 shows the ice velocity map mea-
sured in Winter 2021-2022 over Greenland and displayed
as ENU components, projected in the World Geodetic Sys-
tem (WGS84). The remaining green footprint in Fig. 6 has
been only used to test the network, as we selected a 12-
day real interferometric pair with a negligible ionospheric
contribution.

5 Experimental Results

In the following, we present the results using a real inter-
ferometric pair acquired in a time frame of 12 days during
the Winter season over an inland region in Greenland.

Figure 8 Input features extracted from a real interfer-
ometric pair over Greenland. From left to right: (a) co-
herence ρ, (b) interferometric phase ϕ, and Normalized
Doppler-centroid frequency fnorm

dc . Three sample patches
(i), (ii), and (iii) of 256×256 pixels are marked with white
squares.

For the sake of simplicity, we selected a vertical strip from
one of the three S-1 IW subswaths associated with the in-
terferometric pair, and in Fig. 8 we report the input quanti-
ties: (a) the coherence ρ, (b) the associated interferometric
phase ϕ, and (c) the sensitivity map fnorm

dc . As expected,
the coherence appears almost uniform and on average close
to 0.7. On the contrary, in Fig. 8(b) we can notice the phase
discontinuities in the azimuth direction; in particular the
phase jumps at the beginning of the strip look larger than
the ones at the end of it, hence indicating a larger along-
track displacement. Furthermore, we can notice that the
interferometric phase jumps are linked with the comb-like
profile of the sensitivity map in Fig. 8(c), obtained by nor-
malizing the Doppler centroid matrix for 2.8KHz, a value
not exceeded in S-1 TOPS data [7], that guarantees the fea-
ture to be between -1 and 1.
In order to better analyze our result with the previous meth-
ods, we selected three sample patches of 256 × 256 pixels
from Fig. 8(b) highlighted with white squares and denoted

as (i), (ii), (iii). Fig. 9 compares the results of three differ-
ent methodologies. First, we can see that in all the patches
the correction of the phase jumps in the input data, pre-
sented in column (a), is better performed using the ∆-Net,
whose results are shown in (d).

Figure 9 Predictions using different methodologies
(columns) on different patches (rows). From left to right:
(a) interferometric phase used as input to the network,
and zero-Doppler phase reconstructed using (b) speckle-
tracking [8], (c) image inpainting [9], and the proposed
(d) ∆-Net. Both the three sample patches (i), (ii), and (iii)
are selected with white 256× 256 squares in Fig. 8.

Both speckle tracking and image inpainting do not fully
mitigate the discontinuity. The former, reported in column
(b), introduces noisy jumps over the patches (i) and on the
top overlap of patch (ii). The latter, reported in column (c),
appears in general more robust thanks to the DEM-based
image inpainting applied to the deformation linked with
the differential interferogram. On the other hand, we might
associate the slight residual jumps in patch (iii) of column
(c) to the implementation of the inpainting methodology
which is overwriting part of the known information stored
in the overlapped areas.
Fig. 10 shows the final aggregation of the patches pre-
dicted from the input features reported in Fig. 8. The phase
jumps are almost completely removed in the zero-Doppler
phase ϕzd in Fig. 10(a). By comparing the predicted along-
track parameters, ϕat in Fig. 10(b) and uat in Fig. 10(c),
we can see a matching with the jumps in the interferometric
phase ϕ, in Fig. 8(b). In particular, the higher the density
of fringes in the overlap area of ϕ, the greater the discon-
tinuity in ϕat, which corresponds to a large deformation in
the along-track direction uat. Furthermore, we can observe
that the along-track motion is accurate on the overlap but
is an approximation at mid-burst because of the different
sensitivity along the TOPS burst.



Figure 10 Output features predicted by the ∆-Net. From
left to right: (a) zero-Doppler phase ϕzd, (b) along-track
phase ϕat, and along-track displacement uat.

6 Conclusions and Outlooks

The current work presents a supervised multi-task learn-
ing architecture for separating the phase contributions due
to zero-Doppler and along-track displacements. The ap-
proach of fusing SAR system models with machine learn-
ing techniques demonstrates physics-based machine learn-
ing in our network architecture and loss functions. Results
over an inland glacier flow in Greenland using Sentinel-1
interferometric wide-swath data show the outstanding per-
formance of the proposed network in estimating displace-
ments ranging from a few centimeters to tens of centime-
ters. In addition, our method solves the limitations of
speckle tracking to properly estimate small displacements
and offers greater robustness in handling diverse deforma-
tion patterns compared to burst-overlap differential phase-
based methods. The technique could be exploited for mon-
itoring glaciers in the Arctic, e.g., over Greenland by us-
ing Sentinel-1 data, measuring large deformations over ice
land areas, e.g., glacial flows, but also over solid earth,
e.g., earthquakes. Finally, we believe that the proposed ap-
proach could mitigate the phase jumps present in TOPS
interferograms in the presence of along-track motion in the
scene as a generalization of the ESD technique.
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