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One of the challenges faced by reinforcement learning agents are the significant
time resources, i.e. number of interactions with the environment, required for
learning. We demonstrate that the learning time can be significantly reduced by
implementing a hybrid agent leveraging quantum effects, using the example of a

quantum tic tac toe task.

The Hybrid Agent [1]
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@ Steps of a quantum round:

O Quantum epoch:

1. State preparation: Prepare the state |¢)4|—)r.

Superposition of all action states:

[V)a = Za vV p(a@)|a)a

- VWV~
= cos(§)|)a +sin(§)lw)a = V1 —ell)a+/elw)a

2. Effect of environment (Oracle):

Apply unitary U.., on the prepared state, marking the searched

states: Ueno|V)al=)r = [V1—€ll)a = elw)a]|-)r
k X] 3. Reflection: Apply a reflection over the initial state:
Ur = 2|9} (¥4 — 14

This leads to an increased amplitude of the winning states [3].

4. Measurement: A measurement of the action register in
the computational basis results in a basis action state|ad) 4

associated with the classical action a .

O Classical epoch:

5. State preparation: Prepare the state |@)4|0)x.

@ Assumptions:

6. Effect of environment (Oracle): Apply the oracle unitary U.,, :

@) al1) g if 7(@) > 0

Uenv‘a>A|O>R — { |6>A’O>R if T(CY) <0

The oracle decides if the chosen action sequence a is a rewarded one (r(a@)>0).

7. Policy update (learning):

The basis action states and basis reward states can be associated with the
classical action ¢ and reward r.The agent updates its policy 7(a;|ay, ..., a;—1)
based on this feedback classically (e.g. projective simulation method [2]).
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O Deterministic strictly epochal environment (DSE)
O Effect of environment can be modeled as quantum oracle

Ressource requirements

O Standard tic tac toe: action qubits:
Results 5.6-4-2 =340 < 2 - n=8 qubits (with symmetry)
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Noisy Simulation

Mean and standard deviation: 196.55 and 67.61
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Average learning time of 600
hybrid agents on
ibmg_ehningen for
simplified task and optimized
gate decomposition:

(To) = 123.77

5 qubits
(3 action, 1 reward, 1 ancilla)

. . . agents CNOT

noise level (device) configuration c%unt (To) o’ count

noiseless 9 action qubits 2500 (i 1.55 | (1724)
noiseless 4 action qubits 300 78.27 | 51.86 222
noisy simulation 4 action qubits 300 196.55 | 67.61 222
noisy simulation | 3 action qubits, product state 300 101.84 | 44.78 67
noisy QC 3 action qubits, product state 600 123.77 | 67.61 67

1reward qubit and 2-(n — 1ancilla qubits

— CNOT count for n action qubits: n =3

2"—2+2-(n—1)-6—|—1+2-(2”—2)—|—2-(n—1)-6+1i932

(+ gates from swapping)

O Simplified tic tac toe + optimized gate decomposition
8 =23 > n=3 action qubits (@ = (ay, a1, as)
1 reward qubit and 1ancilla qubit
— CNOT count: n =3
2.(n—2)-6+64+2-(2"—2)+2-(n—2)-6+1 i43
(+ gates from swapping)

Challenges on NISQ Devices

1.) Noisy devices: gate errors, measurement errors
2.) Limited number of qubits
3.) Limited connectivity of qubits
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