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Abstract—Modern space applications require high computing
power and high reliability from on-board processors. To meet
these requirements, the German Aerospace Center (DLR) is
developing a Scalable On-board Computer for Space Avionics
(ScOSA) system with a distributed non-shard memory architec-
ture. As performance is an important criterion in the selection
of hardware for space missions, the European Space Agency has
published an open source benchmark suite called OBPMark. It
is a set of benchmarks based on typical space applications and
designed to measure system-level performance. However, there
is currently no standard tool for evaluating the performance of
distributed on-board computers. In this paper, we propose a par-
allelization strategy for running the OBPMark image processing
benchmark on a distributed on-board computer. We used a split-
map-reduce model to integrate the #1.1 image calibration and
correction benchmark of OBPMark into the ScCOSA system. We
evaluated the developed distributed benchmark on the existing
ScOSA High Performance Nodes (HPNs) consisting of 5 Xilinx
Zynq 7020 SoCs. The results show a significant reduction of
the benchmark execution time from 9.0 to 2.8 seconds using
5 nodes. In the case of dual-core with 4 nodes, the execution
time was reduced to 2.5 seconds. We conclude that OBPMark
is a valuable tool for evaluating the performance of distributed
on-board computers with non-shared memory architectures and
contributes to the standardisation of performance evaluation in
the space domain.

Index Terms—parallel computing, image processing, space
application, data processing, benchmarking, OBPMark, ScOSA

I. INTRODUCTION

Today’s space missions generate large amounts of data.
Due to limited downlink capacity and contact opportunities,
on-board computers (OBCs) must be powerful enough to
process this data directly on board. Furthermore, more and
more space applications include artificial intelligence, data
analysis or edge computing approaches, which are usually
computationally intensive [1], [2]. One class of state-of-the-
art on-board computer architectures are heterogeneous dis-
tributed systems consisting of reliable low-performance nodes
and high-performance COTS nodes [3]. The heterogeneous
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architecture distributes the workload and provides redundancy
in case of failures due to the harsh space environment. The
German Aerospace Center (DLR) is developing an on-board
heterogeneous distributed computer through the Scalable On-
Board Computer for Space Avionics (ScCOSA) project [4], [5].

In space missions system engineers often chose performance
as a criterion to select the OBC that fulfills the mission require-
ments. Benchmarks are a standard way to evaluate a system
based on certain qualities such as reliability, performance, and
security [6].

In the space domain, there have been attempts to evaluate
space-grade hardware based on different benchmarks. For
example, NASA developed the NAS Parallel Benchmarks
(NPB) to measure the performance of parallel supercomput-
ers [7]. The EDN Embedded Microprocessor Benchmark Con-
sortium (EEMBC) has developed benchmarks for industrial
automotive, networking, and telecommunications applications.
EEMBC has also been used to evaluate the performance of
space-qualified single- and multi-core LEON processors [8],
[9]. The Graphics Processing Unit for Space Application
(GPU4S Bench) project is a benchmarking suite for space
GPU on-board devices [10], [11].

Finally, the On-Board Processing Benchmarks (OBPMark)
is a benchmark suite that targets on-board devices regardless
of the type of processing unit. OBPMark is being developed by
the European Space Agency (ESA). It includes a set of sub-
benchmarks inspired by common space applications: image
processing, data compression, standard encryption, processing
building blocks, and machine learning inference [12]. OBP-
Mark has the potential to become a standard for benchmarking
state-of-the-art and future OBCs.

However, OBPMark does not yet take into account dis-
tributed on-board computers with non-shared memory. Bench-
marking distributed systems can be challenging because of
the need to develop an appropriate workload distribution
strategy and account for data transfer and synchronization
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delays. Therefore, this work describes a strategy to extend
OBPMark’s #1.1 Image Calibration and Correction pipeline to
support distributed on-board benchmarking using the ScSOA
framework.

This paper explains the selected OBPMark benchmark
workload, then describes the proposed parallelization and dis-
tribution strategy, followed by an explanation of the evaluation
setup and scalability test results using the available SCOSA
on-board computer development model.

II. RELATED WORK

Assessing the performance of distributed systems is not a
new idea. Benchmarking real-time distributed systems (RTDS)
has been presented by Kamenoff et. al in [13]. The RTDS
can be thought of as a group of tasks (processes) that run
on different nodes and send messages to each other. Both
the tasks and the messages are time-constrained, and if the
deadline is passed, then the benchmark fails or gets a low
score for that task. Jin et. al in [14] are modeling the
performance of the distributed system by two factors: the
available data and the transmission paths available for it.
Then the algorithm estimates the time for each path and give
the system the freedom to select the shortest path. Some
other frameworks have been developed for evaluating the
distributed cluster of computers like the PEEL framework [15]
and the IPACS-Project (Integrated Performance Analysis of
Computer Systems) [16]. Still, non is expanding benchmarking
for embedded distributed real-time systems in space.

Benchmarking on-board computers has been done before.
For example, Lovelly et. al in [17] and Kosmidis et. al in [11]
have been doing benchmarking for space applications in their
experiments. The closest benchmark to distributed systems
is the NAS parallel benchmark [7]. However, it is used for
supercomputer evaluation and not for embedded on-board
distributed systems.

These attempts to assess the performance of distributed
systems can serve as a basis for developing distributed bench-
marks for space applications. However, there is a gap regarding
benchmarking space targeted distributed on-board computers
with non-shared memory. We consider standardization and the
evaluation of system-level performance as key requirements,
so we decided to adapt the OBPMark benchmark suite to the
ScOSA system.

III. ScCOSA

DLR is developing the Scalable On-board Computing for
Space Avionics (ScOSA) as a hybrid distributed on-board
computer [5]. One of the fundamental goals of ScOSA is
to provide the spacecraft with access to both reliability
and performance by combining reliable space-grade comput-
ing nodes with high-performance commercial off-the-shelf
(COTS) nodes.

ScOSA consists of both hardware and software components.
From a hardware perspective, the SCOSA on-board computer
is a heterogeneous distributed system consisting of Reliable
Computing Nodes (RCNs) and High Performance Computing

Nodes (HPNs) connected via SpaceWire or Ethernet. The RCN
nodes are radiation-tolerant LEON3 processors, while the HPN
nodes are Xilinx Zynq 7020 system-on-chip (SoC) combining
dual-core ARM A9 CPUs and an FPGA in one package,
DDR3 RAM, and two NAND flash memories [5].

The ScOSA middleware consists of three main components:
a communication protocol called SpaceWireIPC, a task dis-
tribution framework called Distributed Tasking Framework,
and a set of System Management Services to provide FDIR
techniques. It currently supports GNU/Linux and RTEMS real-
time operating systems [5]. This work uses the task distribution
capabilities of the SCOSA middleware to implement a bench-
mark application capable of utilizing all available computing
power and measuring system-level performance.
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Fig. 1. ScOSA hardware architecture example [3]. In this configuration, 2
RCNs and as many HPNs as needed are connected via SpaceWire. The system
supports task distribution to remote nodes, and in case of failures, it is able
to reconfigure moving tasks from a failed node to any working node.

Figure 1 shows a possible ScCOSA hardware architecture
configuration. In this configuration, the system consists of two
RCNs and N HPNs connected by the SpaceWire router. Final
configurations are planned with 1 or 2 RCNs and up to §
HPNs; however, the current development model consists of 1
RCN and 5 HPNs. For this work we used 5 HPNs running
Yocto Linux, each of the inter-connected by Ethernet.

IV. THE OBPMARK IMAGE PROCESSING BENCHMARKS

The OBPMark is a new benchmark suite, currently in public
beta version v0.3.1 [18]. The image processing benchmark
is the first in this suite and consists of two sub-benchmarks:
#1.1 Image Calibration and Correction and #1.2 Radar Image
Processing. In this paper, we have selected the #1.1 Image
Calibration and Correction benchmark because it is an ex-
cellent workload example for space applications, as many
satellites today have a camera on board. This benchmark is
based on deep-space telescopes with long exposure times, so
multiple frames are captured and then stacked to form a final
image [19]. Therefore, the workload is computationally and
data intensive.



Spatial Quiput
Binning P Tage

(2x2) Szt

Raw
Frames
10241024

& £ f  f f

Offset Bad Pixel
Data Data

Olfset
Correction

Bad Pixel
Correction

Particle Gain
Scrubbing Correction

—

Awliary
Frames

S

Fig. 2. OBPMark #1.1 Image Calibration and Correction benchmark pipeline.
Image adapted from OBPMark repository documentation [18].
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Figure 2 shows the pipeline implementation of the image
processing benchmark for Image Calibration and Correction.
The input is a set of frames (8 frames) and the output is a
final processed image output. The benchmark also provides
auxiliary data to process every input frame. The pipeline
process explanation is as follow, where:

I : is the current input pixel.

J : is the output pixel.

F': is the frame.

x,y : are the position of the pixel inside the frame.

1) Image Offset Correction: In the image offset correction
step, a constant offset value C, , is set to each input
pixel I, , of each input frame, and the output J , is the
difference between the input pixel value and a constant
offset value C, ,. However, if the input I, , is less than
Cy.y, then the input is equal to the output. These offset
values are predefined by the benchmark as auxiliary data.

J:L‘,y - I.L,'L/ - Ca;,y (1)

2) Bad Pixel Correction: In the bad pixel correction step,
the look-up table M, , provided by the benchmark de-
termines whether the pixel is corrupted or not. Based on
the M, , value, the output is either the same as the input
or the output pixel is a function of f. The function f is
the average value of good neighboring pixels with a mask
size of 3x3 pixels. To handle corners and edges, the mask
size changes to 2x2 for corners, 3x2 for top/bottom edges,
and 2x3 for left/right edges.

1
!

3) Radiation Scrubbing: In radiation scrubbing, the process
is not a one-to-one operation as in the previous steps,
where the operations are performed on the same frame
for each pixel and auxiliary data predefined by the
benchmark. It depends on the temporal order in which
the frames are captured. After determining that a pixel
is affected by a radiation disturbance, a pixel scrubbing
process starts, where the calculation of the new pixel
value is the average of the values of this pixel from the
previous and future two frames. For a sequence of frames

s Jz,y = f(Iz,yaffay)

v oy =Iay

(@)

from t = 0 to t = 7, four additional auxiliary frames are
provided (t =-2,t=-1,t=8,t=09).

7 _lewi2t leyp i1+ Tyt + Tag) 2
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4) Gain Correction: This step consists of simply multiplying
by a gain value from the auxiliary data. The gain value
ranges from 0.950 to 1.050.

Joy = 1oy-Goy %)

5) Spatial Binning: In the spatial binning process, each 2x2
pixels block within each input frame is added together
to form only one pixel. Thus, the resulting frame is one-
fourth the size of the input frame.

Jz,y = Im,y + Ix+1,y + Iz,y+1 + Ix+1,y+1 (5)

6) Temporal Binning: In this step, the sum for each x,y
location, pixel by pixel, of all eight frames is used to
construct an output frame.

7
> Fiy (6)
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V. PARALLELIZATION AND DISTRIBUTION STRATEGY

We faced several challenges in order to evaluate the perfor-
mance of a distributed system using the #1.1 Image Calibration
and Correction benchmark. First, we need to take into ac-
count the possible data dependencies in the distributed image
processing algorithm. For example, in the radiation scrubbing
equation (3), there is a dependency between the previous and
future two frames. Similarly, in the bad pixel correction (2) and
spatial binning (5) equations, we can see that the operations
depend on the information of neighboring pixels. In addition,
the spatial binning step will shrink the size of the input frames,
which means that we cannot perform this operation until all
the previous steps have been completed [20].

After reviewing the #1.1 Image Calibration and Correction
algorithm implementation of OBPMark, we propose to keep
the pipeline implementation as it is, but instead of using the
entire frames as input, we split them and feed the pipeline with
as many sub-frames as CPUs are available. And at the end,
we get partially processed sub-frame outputs that are merged
to form the final output. This is similar to a split-map-reduce
approach in data processing.

The reason for keeping the pipeline as it is, without splitting
its steps between the processing units, is the dependency
between the steps of the pipeline. In addition, transferring all
eight frames from one processing node step to another would
increase the data transfer latency in the system compared to
transferring only a portion of the input data. In the implemen-
tation, the pixel data is stored in a binary format file with
a one-dimensional representation. Thus, the input frames are
divided into horizontal sub-frames of nearly equal size for a
fair distribution.

However, there is a challenge with the spatial dependencies
of the bad pixels and spatial binning steps in this approach.



For example, if the frames are simply divided equally without
taking into account the newly constructed edges and corners,
the bad pixel function f will treat the corners and edges as
if it were a full image, and the pipeline output will not be
the same. Also, spatial binning requires that the height of the
input frame be an even value so that it can be shrinked by half,
which should be taken into account in the newly constructed
subframes.

To overcome such challenges, we consider an overlapping
area when splitting the sub-frames to preserve information
about neighboring pixels.

Fig. 3. Overlapping Splitting of a frames into 4 sub-frames. The red dashed
lines represent the fair split without overlapping. The algorithm then creates
an overlapping region for each sub-frame S; to S4. As shown, the sub-
frames Sz and S3 contain an overlapping area of the previous and following
sub-frames, while sub-frames S| and S4 contain an overlapping area of the
following or previous sub-frame respectively. Backgrounds images are the
frames 1 (left) and 2 (right) of the OBPMark #1.1 Image Calibration and
Correction benchmark input data [18].

Figure 3 shows a simplified illustrative example of how a
frame can be split among four CPUs; however, the splitting
is done for all eight input frames and auxiliary data in the
same way, and the algorithm can handle more than four nodes
with the constraint that the number of nodes is less than the
height of the input frame and that the input frames are of even
height value in size, which is necessary for the spatial binning
equation (5) to work properly.

Algorithm 1 Splitting
Input: frame (F'), frame height (H), divisions (Ngiyisions)
QOutput: list of sub-frames (SubFrame;)

I: S+ H/Ndi'uisionsa R+ H- (S * Ndivisions)
2: for @ < Ngjyisions do
3: kup — 27 kdoum — 2

4: if i == 0 then

5: Kyp < 0

6: else if i == Ny;pisions — 1 then

7: Kdown < R

8:  end if

9:  HeightSlice; < [S* 4 —kyp : S * (i + 1) + Kaown)

10:  SubFrame; < Flyeighstice, width]
11: end for

In the splitting algorithm Alg. 1, the S value is the height of
the sub-frame size without including the overlap. Ngivisions
represents the number of sub-frams for the available nodes.
R is the remainder in case the division has a remainder the
last sub-frame will take this reminder. The overlap area is
represented as Ko,/ qown, Where one row is added to hold pixel
information for the bad pixel correction step, and another row
is added to hold pixel data for the spatial binning step. Thus,
we will end up with overlap areas at the top and bottom of
the sub-frames; however, for the first and last sub-frames, the
overlap area is only at the top or bottom.

With this approach, we will end up with a processed row
of pixels as redundant values in each overlapping area, which
we can ignore in the merge process to get the same output
result as the original benchmark.

VI. PARALLELIZATION AND DISTRIBUTION WITH SCOSA

We used the Distributed Tasking Framework (part of
the ScOSA Middleware) to parallelize and distribute the
benchmark. The Distributed Tasking Framework is based on
the Tasking Framework, which is an event-driven, multi-
threaded execution platform for real-time on-board software
systems [21]. The Tasking Framework is developed by DLR
and is published as open source [22]. The framework allows
the user to run multiple functions in parallel without worrying
too much about the complexities going on underneath. Thus,
a Distributed Tasking Framework application will use the
following building blocks:

1) Tasks are processing units that implement the applica-
tion’s main functionalities. Tasks can be mapped to any
node in the distributed system and can be connected via
Channels to form an execution graph. Tasks execution
is triggered by Events or data arriving on the connected
Channels.

2) Channels are data generators or containers that separate
data acquisition from data processing and transfer it
between Tasks as the application requires.

3) Events are a special type of Channel that can be used
to trigger Tasks periodically or once, depending on the
application implementation.

4) Writers/Readers are a special type of Task that allow
nodes to communicate and send data to each other.

Thus, the distribution strategy is basically a split-map-
reduce scheme (see Section V) using the Distributed Tasking
Framework. Figure 4 shows the tasking diagram of the bench-
mark application that guided the implementation. It consists
of the following blocks:

1) SplitTask: In the SplitTask the data is loaded from the file
system and then divided into N sub-frames (where N is
the number of processing nodes in the SCOSA system)
according to the split algorithm 1. The sub-frames are
then packed into a msg structure (see Listing 1) and
pushed to the SubFrames channels. The SplitTask runs
on the first node (coordinator node). For benchmarking,
we include the time spent in the split algorithm and the
time spent sending the sub-frames to the remote nodes.



2) OBPMarkTask: The OBPMarkTask is the map step.
Here, the sub-frame data is received and processed us-
ing the original #1.1 Image Calibration and Correction ]“
benchmark code. The partial results are packed into a s
msg_output structure (see Listing 1) and pushed to "’
the ProcFrames channels. The OBPMarkTask tasks run ]‘,
on all nodes in parallel (worker and coordinator nodes). -
In our performance measurements, we consider the time *'
required to receive the sub-frame data, apply the original
benchmark process, and send the partial result sub-frames -«
back to the coordinator node. In addition, we measure the >
time spent in the original benchmark code alone (elapsed '
time) so that we can compare it to the total execution »s
time and determine the added overhead. 2

(

MergeTask: The MergeTask is the reduce step where all ';'
partial sub-frame results are received and merged to form
the output image. This task is executed on the coordinator
node. The execution time takes into account the time .
needed to receive the partial results and create the output s
image. Similar to the original code, we do not consider
the time needed to store the output image in the file

9
system.

3)

40

Finally, after the system has been properly configured byji
the ScOSA middleware, an Event triggers the execution of .
the benchmark application. Due to the event-driven nature of
the Distributed Tasking Framework, all processing steps are
synchronized using Channels and are only executed when all
necessary data have arrived [23].

Coordinator node
Execution time
[ Event_f>Co spiitrask of subFramest -5 0BPMarkTask1 o] F
Elapsed time MergeTask
" =
N-1
‘SubFramesN
N-1 N-1
N-1 Working nodes
‘SubFramesN )-o:?oaPMarkTaskN H ProcFramesN _
Elapsed time

T
T
R o= e e

link (API call) link (SpW/Eth)

Fig. 4. Tasking diagram of the benchmark application to implement a split-
map-reduce scheme. The coordinator node splits the input frame (SplitTask)
and sends N sub-frames to the remote node’s map tasks (OBPMarkTaskN).
The coordinator node also process one sub-frame (OBPMarkTaskl). The par-
tial results are sent back to the coordinator node to merge them (MergeTask)
and generate the output image. An Event triggers the application execution.

Listing 1. Structures used for data serialization.

#define NNODES 3 ///< Nnumber of nodes (or CPUs)
#define MSG_STIZE ((int) (1024/NNODES)+1) %1024 //H+W
#define MSG_SIZE_HALF (((int) (1024/NNODES)+1)/2)

x1024 //H*W
#define NUM_FRSME 12 // 8 Frames + 4 Auxiliary
/x* Struct to serialize a frame x/
typedef struct
{

uintl6_t frame[MSG_SIZE] =
} frame_msg;

{0};

/** Struct to input data =*/
struct image_data_msg
{
unsigned int num_frames = {0};
frame_msg frames [NUM_FRSME];

uintl6_t offsets[MSG_SIZE] = {0};
uintl6_t gains[MSG_SIZE] = {0};
uint8_t bad_pixels[MSG_SIZE] = {0};
uint8_t scrub_mask[MSG_SIZE] = {0};

uint32_t binned_frame[MSG_SIZE_HALF] = {0};
uint32_t image_output [MSG_SIZE_HALF] = {0};

bi

/** Struct to send sub-frame data. */

struct msg

{
image_data_msg image_msg;
unsigned int w_size = {0};
unsigned int h_size = {0};
unsigned int h_overlap_array[NNODES] = {0};
unsigned int h_output_array[NNODES] = {0};
struct timeval starttime;

bi

/** Struct to send processed partial results. =/

struct msg_output

{
uint32_t image_output [MSG_SIZE_HALF] = {0};
unsigned int w_size = {0};
unsigned int h_size = {0};
unsigned int h_output_array[NNODES] = {0};

struct timeval starttime;

bi

VII. EVALUATION SETUP

The selected system to test our approach is a development
model of the SCOSA on-board computer. It consists of 5 Xilinx
Zyng-7020 SoC high-performance nodes, each with a dual-
core ARM Cortex-A9 processor @ 886 MHz and 1 GB RAM.
The nodes are connected via Gigabit Ethernet in an isolated
local network.

Scalability tests were performed by running the distributed
benchmark workload on up to 5 nodes in single-core mode and
up to 4 nodes in dual-core mode (8 CPUs). For each number
of nodes, the following steps were performed

e Build and deploy the benchmark application for the
selected number of nodes.

o Clean the output data in the coordinator node.

« Run the distributed benchmark application on the selected
number of nodes.

o Compare the output with the validation data in the
coordinator node.

« Repeat the experiment X times.

We choose X = 10 times to ensure that the results are
consistent, reliable, and reproducible. We checked that the
results of the distributed benchmark application were valid.
We then averaged the execution time to account for the OS
and network usage disturbances on the data. The code was
built using the Xilinx Yocto 3.0 SDK with the following
optimization flags —03 and -mcpu=cortex—a9. We used
ScOSA framework version 1.2.0.We consider the one-node
benchmark results as a basis for fair comparison. The one-
node version is not the original benchmark application, but



the distributed version running on a single CPU, including
the initialization, data transfer, and merging steps described in
previous sections.

VIII. RESULTS

The benchmark results for the single-core test case are
shown in Table T and Figures 5 and 6. It is observed that
it is possible to distribute the benchmark workload to speed
up the execution time. We observed a speedup of 3.2x using
5 nodes with a total execution time reduction from 9.0 to 2.8
seconds. This means that 5 ScCOSA HPN nodes can process
0.37 Mpixels per second. Figure 5 shows the difference
between elapsed time time and execution time. The elapsed
time refers to the average time spent by each node in the
original OBPMark #1.1 Image Calibration and Correction
benchmark code, while the execution time refers to the total
time required to execute the benchmark application including
the split, distribute, and merge steps. We can observe an
overhead added by the distribution strategy and the ScOSA
framework itself. This overhead represents 23% of the time
in the two-node case and up to 53% of the time in the five-
node case. In our tests, we found that most of this overhead
is caused by the data transfer protocol. In total, about 36 MB
of data is transferred from the split task to the remote nodes
and 2 MB of data is transferred back to the merge task.

TABLE I
BENCHMARK SCALABILITY RESULTS. SINGLE CORE.

Nodes  Execution time (ms)  Mpixels/s  Speedup

1 9054 0.12 1.0

2 5105 0.21 1.8

3 3957 0.26 23

4 3265 0.32 2.8

5 2828 0.37 32
Image size 1024x1024 pixels
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Fig. 5. Benchmark execution time results for the single core test case.
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Fig. 6. Benchmark speedup results for the single core test case.

The results of the multi-core test cases are shown in Table II
and Figures 7 and 8. The benchmark was distributed over up to
8 CPUs using 2 cores per node. We observed a speedup of 3.7x
using 8 CPUs with a total execution time reduction from 9.0 to
2.5 seconds. Thus, 4 dual core SCOSA HPN nodes can process
0.47 Mpixels per second. Similar to the single core case,
Figure 8 shows an overhead of up to 66% when using 8 CPUs
(4 nodes). In this case, the overhead may worsen because CPU
cores are used by communication protocol and task execution
threads. This is especially noticeable when moving from 3 to
4 CPUs. In the first case, only one of the two cores per node is
used by the task execution threads, while in the second case,
both cores are used by the task execution threads, but also by
other parts of the framework.

TABLE II
BENCHMARK SCALABILITY RESULTS. DUAL-CORE.

Nodes CPUs  Execution time (ms)  Mpixels/s  Speedup
1 1 9056 0.12 1.0
2 5675 0.18 1.6
5 3 3923 0.27 2.3
4 3680 0.28 2.5
3 5 3209 0.33 2.8
6 2987 0.35 3.0
4 7 2711 0.39 33
8 2459 0.43 3.7

Image size 1024x1024 pixels.

IX. DISCUSSION

The results show the ability of the ScOSA framework to
distribute heavy workloads and to make use of all the available
computing resources in a distributed on-board processing
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Fig. 7. Benchmark execution time results for the dual-core test case.
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Fig. 8. Benchmark speedup results for the dual-core test case.

platform. The ability to scale the application in different
configurations also shows that SCOSA applications are flexible
and reconfigurable with little effort.

However, the results also show an overhead in execution
time compared to the time actually spent in the benchmark
code. In fact, this overhead worsens as more nodes are added to
the system or as more parallel tasks are added to a node. There
are several reasons for this. First, the parallelization strategy
takes into account an overlap region when splitting the input
data, so the more parallel tasks we add, the more redundant
data is transferred and processed. Also, when more nodes are
added, the coordinator node has to handle more concurrent
connections to send and receive partial data and results,
which consumes CPU time. Finally, there is an overhead due
to the communication protocol implemented in the ScOSA
framework. ScOSA uses the custom protocol SpaceWireIPC
to send management and data messages to remote nodes.
SpaceWireIPC supports the UDP and SpaceWire protocols

as underlying data transfer layers. It implements reliable and
unreliable communication mechanisms. During these tests, we
used only UDP over Ethernet in a local network to interconnect
the computing nodes, but we still used SpaceWireIPC reliable
messages to send the input and partial results data. These
effects were particularly noticeable in the dual-core tests,
where CPU time is shared among worker threads, system
management threads, and communication protocol threads.

Nevertheless, during this work the distributed version of the
OBPMark #1.1 Image Calibration and Correction benchmark
was used to polish parts of the SCOSA framework codebase
and to measure the impact of the changes on performance.
Therefore, we expect further improvement of the results based
on this application.

During this work, we did not focus on performance com-
parisons with other platforms, but rather on the scalability
characteristics of the SCOSA framework. Thus, the baseline
measurements consist of exactly the same distributed applica-
tion running on a single node. As shown in the results, these
base execution times also include some overhead due to the
internal task communication and synchronization methods. It
would be possible to obtain better results for the single node
(single or dual core) case by using the original benchmark
code with different parallelization strategies. However, such
tests were beyond the scope of this work.

X. CONCLUSIONS

The paper presented a strategy for benchmarking a novel
distributed on-board computer architecture. We chose the
OBPMark #1.1 Image Calibration and Correction benchmark
because it is based on typical space application workloads and
provides realistic system-level performance measurements.
Therefore, we developed a parallelization and distribution
strategy for the benchmark using the SCOSA framework. We
designed a split-map-reduce ScOSA application and mapped
the processing tasks to remote nodes to effectively distribute
the workload across the available processors. By scaling the
application from 1 to 5 nodes, we showed that the ScCOSA
framework can indeed utilize all the available computing
resources and can be adapted to different hardware configura-
tions with little effort. The OBPMark #1.1 Image Calibration
and Correction parallelization strategy consisted of horizon-
tally splitting the input frame, taking into account overlapping
regions, and processing each section independently and in
parallel to finally merge the results. This shows that the
OBPMark benchmark suite is portable and can be adapted
to different use cases.

We were able to reduce the execution time from 9.1 to 2.8
seconds in the 5 nodes single-core configuration and to 2.5
seconds in the 4 nodes dual-core configuration, which is a
speedup of 3.2x and 3.7x respectively. In fact, we observed
that the benchmark was able to stress the processing and net-
working parts of the system. The results showed an execution
time overhead caused by the additional data generated by the
overlapping split strategy, the transmission of input data and
results to and from remote nodes, and the communication



protocol, all of which limited the scalability of the solution.
Thus, the selected benchmark resulted in a valuable tool that
guided improvements to the SCOSA framework code base.

We expect to continue to use the OBPMark benchmarks as a
standard tool for measuring the performance of on-board pro-
cessing platforms. In particular, an in-orbit demonstration of
the ScOSA distributed on-board computer on a 12U CubeSat
is planned for launch in late 2024. On this mission, a similar
benchmarking application will be run periodically during the
mission lifetime to study the processing capabilities of the
platform under realistic conditions. We would also like to
extend the work by integrating the rest of the OBPMark suite
as a distributed version with the ScOSA system for future
work.
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