
MASTER THESIS

Optimized Task Allocation to Enhanced
Multi-core Real-time Scheduling

Author:
Khushbu Gajera

Supervisor:
Dr.-Ing. Zain Alabedin Haj

Hammadeh

Supervising tutor: Prof. Dr.-Ing. Oliver Prenzel

A thesis submitted in fulfilment of the requirements for the degree of Master of
Science in the

Embedded Systems Design

BREMERHAVEN UNIVERSITY OF APPLIED SCIENCES

February 11, 2024

https://www2.hs-bremerhaven.de/organisation/personen/personenverzeichnis/prof-dr-ing-oliver-prenzel/
https://www.hs-bremerhaven.de/

i

Declaration of Authorship
I, Khushbu Gajera, declare that this thesis titled, “Optimized task allocation to
enhanced multi-core real-time scheduling” and all its work is my own. I confirm
that:

• This work was completed entirely or mostly while pursuing a research degree
at this university.

• I always give the source when I quote from other people’s work.

• Whenever I refer to external published works, I conscientiously acknowledge
their contributions.

• I have duly recognized all significant forms of support received.

• I independently authored and composed this present thesis, relying
exclusively on the literature and resources referenced within.

Signed:

Date: February 11, 2024

ii

Abstract

On-boarding software system

Deutsches Zentrum für Luft- und Raumfahrt - DLR

Master of Science

BREMERHAVEN UNIVERSITY OF APPLIED SCIENCES

Optimized task allocation to enhanced multi-core real-time scheduling

by Khushbu Gajera

To handle the increasing computational needs of onboard data processing
and complicated control algorithms, modern autonomous systems require
high-performance computer resources. With the rise of embedded real-time systems
in a variety of industries, including as automotive, avionics, and aerospace,
multi-core platforms have evolved as a compromise between performance and
power efficiency. However, due to their intrinsic complexity, scheduling and
schedulability analysis offer difficulties when switching from single-core to
multi-core systems. As a result of the intensive research, global, partitioned and
clustered scheduling were proposed.

Arbitrary Processor Affinity (APA) scheduling has been proven to achieve a better
schedulability for periodic tasks. APA is a clustered scheduling in which the clusters,
i.e., affinity sets, are not necessarily disjoint. APA is implemented in Linux via
the pull/push scheduling method, and it is also implemented in the Real-Time
Executive for Multiprocessor Systems or RTEMS which is an open source Real-time
Operation System (RTOS) by assigning an affinity set to a tasks. A schedulability
analysis has been already proposed for APA scheduling. However, optimizing
affinity sets for a set of real-time tasks such that to achieve the best scheduling is
still an open question.

This research project aims to provide an effective method for defining affinity
sets and task assignments, with the ultimate goal of improving schedulability in
multi-core real-time systems.

Keywords: multi-core real-time systems, scheduling, affinity sets, schedulability
analysis, APA, clustered scheduling, partition-first methodology, bin-packing
heuristics, Integer Linear Programming (ILP), resource optimization

https://www.dlr.de/de/das-dlr/standorte-und-bueros/braunschweig
HTTPS://WWW.HS-BREMERHAVEN.DE/

iii

Acknowledgements
I would like to extend my heartfelt appreciation to my colleagues at DLR for their
invaluable support throughout the duration of my thesis work. Additionally, I
want to acknowledge the members of the On-boarding software system for their
contributions.

I am deeply grateful to my external supervisor, Dr.-Ing. Zain Alabedin Haj
Hammadeh, for believing in my capabilities and entrusting me with the execution of
this thesis. His exceptional guidance and unwavering belief have been instrumental
to my progress. His practical and theoretical insights have significantly enhanced
my understanding of the subject matter, and his enthusiastic assistance has been a
constant source of motivation.

I extend my thanks to Prof. Dr.-Ing. Oliver Prenzelat Hochschule Bremerhaven for
his mentorship and guidance throughout the course of my thesis. His expertise and
support have been crucial to my academic journey.

Engaging in programming activities during work has significantly enhanced my
understanding of how embedded systems works. These hands-on experiences have
played a pivotal role in deepening my knowledge in this domain.

Lastly, I wish to convey my appreciation to my friends at Hochschule Bremerhaven
for their consistent encouragement and motivation.

I am truly grateful to everyone who has been a part of my academic and personal
journey.

Thank you everyone. . .

iv
Contents

Declaration of Authorship i

Acknowledgements iii

Contents v

List of Figures vi

List of Tables vii

List of Abbreviations viii

1 Introduction 1
1.1 Use Case Scenario . 2
1.2 Chapter Overview . 3

2 System Model & Problem Statement 5
2.1 System Model . 5
2.2 Problem Statement . 7
2.3 Related Work . 8

3 Background on Schedulability Analysis 10
3.1 Scheduling Approaches for Multi-core Systems 10

3.1.1 Global Scheduling Approach . 10
3.1.2 Partitioned Scheduling Approach 11
3.1.3 Cluster Scheduling Approach . 12
3.1.4 Arbitrary Processor Affinities (APA) Scheduling 12

3.2 Schedulability Analysis . 14
3.2.1 Busy-window Analysis . 14
3.2.2 Response Time Analysis (RTA) for Global Scheduling 16
3.2.3 Schedulability Analysis for APA Scheduling 18

4 State-of-the-Art on Task Allocation 19
4.1 Tasks Allocation Methods for Multi-core Architectures 19

4.1.1 Bin-packing Heuristics . 19
4.2 Task Allocation Approaches for APA . 26

4.2.1 Global First APA (gAPA) Approach 27
4.2.1.1 Shrinking Based Analysis 27

4.2.2 Partitioned First APA (pAPA) Approach 29

5 Optimized Affinity Sets for APA 33
5.1 Integer Linear Programming (ILP) . 33
5.2 An Efficient ILP Solution . 34

5.2.1 Tailored Task Scheduling Solutions: Versatility of ILP in
Adapting to Varied Constraints 36

5.3 ILP Objective: Utilization vs Priority as Weight 36
5.3.1 System Model . 37

5.4 Evaluation of ILP Strategies: Utilization-Centric vs. Priority-Driven
Task Allocation . 39
5.4.1 Results and Interpretation of Outcomes 41

v

6 Experiments 43
6.1 Synthetic Test Case Generation . 43
6.2 Priority Assignment Algorithms: Their Influence on Various

Approaches . 46
6.2.1 Deadline Monotonic Policy . 47
6.2.2 DkC Assignment Policy . 49
6.2.3 Results and Interpretation of The Outcome 51

6.3 Evaluating Different Bin Packing Algorithms within pAPA and
Partitioned Scheduling . 52
6.3.1 Results and Interpretation of the Outcome 53

6.4 A Comparative Analysis of the Effectiveness of Different Approaches . 55
6.4.1 Results and Interpretation of the Outcome 55

6.5 A Comparative Analysis of the Execution Time of Various Approaches 57
6.5.1 Results and Interpretation of the Outcome 58

7 Conclusion and Future Work 59
7.1 Conclusion . 59
7.2 Future Work . 60

Bibliography 61

vi
List of Figures

1.1 Overview of the ReFEx mission sequence [12]. 3

2.1 Basics of schedulability analysis. 5

3.1 Global scheduling, grey color box represent as a cores (π), green box’s
are represent as a tasks (τ) and the scheduler specified in between
tasks and cores. 11

3.2 Partitioned scheduling approach. 11
3.3 Clustered scheduling approach. 12
3.4 APA, illustrated that tasks τ0, τ5 are allocated to π0 and π1 cores

affinity, whereas core affinity π1 and π3 also has different tasks which
are τ2, τ3, τ4, τ7 shows that π1 is common for some affinities. 13

3.5 Scenario described for Equation 3.2 [14]. 16
3.6 Elaboration of gAPA approach, where can see how task are assign to

the core. It’s global-like sub-problem. 18

4.1 Example of the bin packing algorithm where items have different
sizes but the bin has fix size. 20

4.2 Illustration of the first-fit bin packing algorithm. 21
4.3 Illustration of the best-fit bin packing algorithm. 22
4.4 Illustration of the next-fit bin packing algorithm. 24
4.5 Illustration of the worst-fit bin packing algorithm. 25
4.6 gAPA, shrinking based task assignment technique. 27
4.7 pAPA, merging based task assignment technique. 30

5.1 Tasks τ from 0 to 7 needs to assigned to the core affinities using ILP
based approach by defining objective function, constrains and variables. 34

5.2 Core affinity assignment strategy. 37
5.3 Divide and conquer in the top down order. 38
5.4 Divide and conquer in the bottom up order. 38
5.5 Flowchart showing the setup for an ILP experiment. 40
5.6 Experimental graphs to compare utils vs priority with various cores. . 42

6.1 DM scheduling method, where shows 3 different task represent as T,
and their execution time and deadline. 48

6.2 Experimental graphs to compare priority assignment algorithms for
all scheduling algorithm with different number of cores and 100 tests. 52

6.3 Experimental graphs to comparison between best-fit, first-fit, next-fit
and worst-fit bin packing algorithms with 5 cores for pAPA and
partitioned. 54

6.4 Comparison of all best algorithms with ILP algorithm for different
cores and 100 tests. 56

6.5 Execution time for all algorithms considering 4 cores. 58

vii
List of Tables

2.1 Overviews of system model. 7

6.1 Task allocation to understand DMS works. 47

viii
List of Abbreviations

Abbreviation Full Form
APA Arbitrary Processor Affinity
BF Best Fit

CPU Central Processing Unit
DMS Deadline Monotonic Scheduling

DLR-OSS DLR-On Board Software System
EDF Earliest Deadline First
FF First Fit

FPP Fixed Priority Preemptive
gAPA Global First Arbitrary Processor Affinity

ILP Integer Linear Programming
LP Linear Programming

MIAT Minimum Inter Arrival Time
NF Next Fit

OBC On-Board Computer
pAPA Partitioned First Arbitrary Processor Affinity
ReFEx Reusability Flight Experiment
RTOS Real Time Operating System

RTEMS Real-Time Executive for Multiprocessor
Systems

RTA Response Time Analysis
SMP Symmetric Multiprocessing

WCRT Worst Case Response Time
WF Worst Fit

WRR Weighted Round-Robin

1Chapter 1

Introduction

As the use of multi-core systems spread across all domains, efficiently using the
promise of hardware parallelism for real-time applications has arisen as a critical
concern. The optimization of task assignment algorithms for multi-core real-time
systems is a critical issue in this regard. Over the last decade, significant efforts
have been dedicated to addressing this issue, leading to the proposal of diverse
scheduling algorithms.

The performance improvements with a multi-core system are dependent on both
the nature of the application and its software implementation. It’s important to use
the right methods for dividing software into tasks (threads) and fairly distributing
these tasks across processors to maximize overall performance in order to take use
of the explicit parallelism given by multi-core architectures. Real-time systems
are frequently multi-threaded, which makes them more adaptable to multi-core
platforms than sequential programs that are only one threaded. Simultaneous
execution can be used to improve performance when tasks are independent. Many
legacy real-time systems that are now in use are large and complex, frequently
including millions of lines of code that have been years in the making and
maintenance. The option of getting rid of these legacy systems and starting a new
one from scratch is often not practical due to the significant expenditures made in
them.

In the modern technological world, there are two fundamental methods used for
scheduling real-time tasks on multi-core systems, which are 1) Partitioned approach,
2) Global approach (Detail discussion in Chapter 2). In the partitioned approach,
each task is statically allocated to a single core, and migration between cores is
prohibited. Conversely, the global approach allows tasks to migrate freely and be
executed on any available core. However, when dealing with extensive multi-core
platforms, both these approaches encounter limitations that limit the levels of core
utilization that can be achieved.

Additionally, researchers have also extensively investigated hybrid techniques.
Clustered scheduling is a well-known hybrid strategy in which processors are
divided into disjoint clusters, each task is statically allocated to a particular
cluster, and a "global" scheduling policy is carried out inside each cluster. The
multiprocessor platform is divided into clusters, with each cluster containing cores.
Tasks are assigned to clusters in a static manner, resembling partitioning, while being
subjected to global scheduling within each individual cluster. This method provides
a good solution for addressing the limitations of traditional partitioned and global
scheduling strategies.

Since, real-time operating systems for multi-core computers differ from the
conventional scheduler solutions that have been discussed in the literature [27].
Instead, they acquire a more adaptable migration method based on the concept
of "processor affinity". Processor affinity allows tasks or threads to be bound to
certain subsets of available processors, limiting their execution on unaffiliated ones
[38]. With the help of this dynamic approach, heterogeneous platforms with various
core types can be optimized. The application performance in throughput-oriented
computing is enhanced, real-time and non-real-time tasks are split up onto different
cores, and the approach can be tailored to meet the needs of particular tasks (like
those that must be completed quickly and with little consideration for cache) [44].

Chapter 1. Introduction 2

Moreover, It makes it easier to implement different scheduling concepts like
global, partitioned, and clustered scheduling, with the added benefit of allowing
Arbitrary Processor Affinity (APA) to be assigned on a task-by-task basis. This
provides greater flexibility and versatility in migration strategies when compared
to traditional scheduling methodologies.

In 2013, Brandenburg released a paper outlining the benefits of APA scheduling,
demonstrating how it provides better schedulability and dominates global,
partitioned, and clustered scheduling [27]. The Linux push and pull scheduler was
examined by the authors [27]. Although more prominent two schedulers based on
APA were added to Real-Time Executive for Multiprocessor Systems (RTEMS) in
2015. Nevertheless, the 2020 version of the RTEMS space profile does not have this
functionality [45]. The focus of this thesis is an in-depth analysis of the partitioned
first APA technique originally presented by the DLR-On Board Software System
(DLR-OSS) group. This strategy proposed for assigning tasks using a partitioned
first APA approach, which aims to improve task assignments by utilizing various
bin packing methods. Furthermore, the thesis attempts to examine the impacts of
pAPA technique when combined with other priority assignment methods and to
give better understanding of the combined effect of bin packing algorithms, and
priority assignment techniques on partitioned first APA and its impact on system
scheduling and performance optimization.

This thesis explores the topic of optimised task allocation to enhance multi-core
scheduling in real-time systems using Integer Linear Programming (ILP) for better
task assignments for APA scheduling. The key focus is on developing a better
method of task assignment using ILP, with a particular emphasis on core affinities
using divide and conquer strategies. This will be explained more in details in the
following chapters. This method is to provide a complete structure that optimizes
their assignment based on core affinities, hence improving the overall performance
and responsiveness of real-time applications operating on multi-core architectures.

1.1 Use Case Scenario

In the world of multi-core platforms, task scheduling efficiency is critical. This
study explores several options for reducing over-provisioning and optimizing task
allocation within this computational framework.

The German Aerospace Center’s project Reuseability Flight Experiment (ReFEx) aims
to perform an autonomous re-entry into earth’s atmosphere from hypersonic speeds
in high altitudes down to subsonic speeds in low altitudes [12].

In this project, the necessary state estimation and control algorithms needed to fuse
the information of multitudes of sensors and derive control signals for all actuators
will become complex and computationally demanding. Therefore, a multi-core
platform has been selected for the on-board computers to handle these control
tasks with high real-time accuracy, while collecting high frequency science data and
processing general command and data handling tasks at the same time [47].

Figure 1.1 depicts the ReFEx mission sequence, including basic information such
as, time and altitude. Based on the basic requirements, Real-Time Executive for
Multiprocessor Systems (RTEMS) was selected as operating system [12]. RTEMS,
an open-source real-time operating system, is compatible with a wide range of

Chapter 1. Introduction 3

FIGURE 1.1: Overview of the ReFEx mission sequence [12].

hardware architectures and has a long track record in space applications. In its
most recent version, RTEMS includes a real-time executive and real-time schedulers
for Symmetric Multiprocessing (SMP) on multi-core systems. In particular, the
programming interface allows numerous scheduling groups and thread pinning,
allowing for the strategic allocation of tasks among processor cores while following
to certain limitations [3]. The RTEMS version for x86-based hardware platforms,
which has a 4-core multi-core system, requires that tasks be assigned to cores in
a way that maximizes schedulable tasks. RTEMS port for x86-based hardware
platform has been extended to support SMP for the x86- based On-Board Computer
(OBC) of ReFEx. However, this allocation method uses a global scheduling
technique for task scheduling, which may not be the most efficient option.

This work draws inspiration from the ReFEx project, with the goal of providing a
less conservative or pessimistic solution. The objective is to improve schedulability
and decrease over-provisioning. In order to achieve this goal, APA were used as a
strategy.

1.2 Chapter Overview

This master thesis is divided into eight different chapters. This section of the
introduction offers a quick summary of the following chapters:

Chapter 2: Chapter 2 describes the system model and problem statement.

In this chapter, system model is comprehensively defined. Additionally, this chapter
provides a real-time task structure with several sub-tasks that are assigned and
executed. Furthermore, the specific problem that the research intends to address

Chapter 1. Introduction 4

is clearly stated, highlighting the gap in existing solutions and and motivating the
need for the proposed approach.

Chapter 3: Chapter 3 explains the prior work and background.

This chapter presents a critical examination of the literature on real-time systems,
scheduling approaches, multiprocessor architectures, and multi-core technologies.
It also outlines the expected consequences of the full background understanding,
highlighting important concepts and insights necessary for understanding the next
discussions. It explains the types of schedulability analysis for single-core and
multi-core real-time systems.

Chapter 4: This chapter explains task allocation methods.

Building upon the groundwork established in Chapter 3, this section delves deeper
into the complexities of schedulability analysis within real-time systems and show
types of task allocation methods. It offers an exploration of the existing solutions
and techniques for assessing the feasibility of task schedules, identifying their
strengths and limitations. Also, it is concentrating on the use of the Partitioned First
Arbitrary Processor Affinity (pAPA) method and Global First Arbitrary Processor
Affinity (gAPA). This approach’s theoretical basis and practical implementation are
discussed, demonstrating its potential to improve real-time task scheduling.

Chapter 5: Chapter 5 describes the optimized affinity sets for APA approach.

The heart of the thesis lies in this chapter, where the proposed approach is presented.
The concept of optimized affinity sets is introduced, with a primary emphasis
on employing the ILP strategy. This chapter provides a full examination of the
theoretical foundation and actual implementation of this technique, clarifying its
power to significantly improve real-time task scheduling with detailed explained
it’s mathematical formulations.

Chapter 6: Following that, chapter 6 highlights the development of experimental
investigation.

In this empirical phase of the research, Chapter 6 undertakes a comprehensive
examination of the proposed approach. Diverse scenarios are considered, varying
factors such as the number of cores, tasks, utilization levels, priorities, and
task periods. Through carefully experimentation, the chapter offers a thorough
evaluation of the approach’s effectiveness and performance.

Chapter 7 and 8: Conclusion and future directions.

The concluding chapter draws together the findings from the previous chapters. It
presents a brief summary of the results achieved through the proposed approach
and experimentation. Additionally, the chapter reflects on the broader effects of
the research, suggesting potential directions for future investigations in the areas of
optimal task allocation and real-time task scheduling on multi-core systems.

5
Chapter 2

System Model & Problem Statement

This chapter introduces the system model and formally outlines the problem
addressed in its main contribution. The chapter includes formal definitions of the
key concepts on which the thesis is based, such as task assignments, task scheduling,
and minimum inter arrival time.

2.1 System Model

This section will introduce the basic modeling framework required for this thesis.
Table 2.1 (page no. 7) contains on an extensive list of notations that are required to
understand the next topics.

Key Components for Schedulability Analysis:

Schedulability analysis involves several key components which are followings:

a. Task Arrival Times: The timing at which tasks task becomes available for
execution in the system. It is the time when a task is submitted to the scheduler
and is ready for execution on one of the processor cores.

b. Task Execution Times: The duration of time it takes for a task to complete
its execution after it begins executing on a CPU core. This statistic is critical for
predicting overall performance in a multicore system. This is illustrated in Figure
2.1.

c. Task Preemption: Task preemption in scheduling is the ability to temporarily
pause a lower-priority task’s execution, allowing a higher-priority task to run.
Preemption is critical for supporting tasks with varying degrees of priority and
maintaining balanced resource allocation in a multicore system.

FIGURE 2.1: Basics of schedulability analysis.

Definition 2.1 (Task): A task is defined as a tuple τi = (prioi, Ti, Di, Ci, αi) having
tasks with task’s priority (prioi), a minimum inter-arrival time (MIAT) or period (Ti),

Chapter 2. System Model & Problem Statement 6

a relative deadline (Di), a worst-case execution time (WCET) (Ci), and task’s core
affinities (αi).

Definition 2.2 (Periodic task): A periodic task is a type of task in real-time systems
that occurs at regular intervals and follows a predictable pattern or schedule.
Mathematically, a periodic task is characterized by having a fixed inter-arrival time
between successive occurrences of the task. This work considers the periodic task
model.

Definition 2.3 (Sporadic task): A task is classified as sporadic when it is triggered
by events that happen infrequently and at unpredictable intervals. Mathematically,
this unpredictability is denoted by signifies the smallest time gap between successive
occurrences of these events [28].

Definition 2.4 (MIAT or Period): It represents the time interval or duration between
the successive run of execution or activation of those tasks. If the activation and
execution times of two tasks denote as t1 and t2, respectively, then the period (T)
between these tasks can be defined as:

T = t2 − t1

Definition 2.5 (Relative deadline): The relative deadline, denoted as Di, for a task
τi specifies a time window in which the task must be completed.

The relative deadline can be implicit, constrained, or arbitrary. The deadline is
implicit when it is equal to the period of the task (Ti) (Di = Ti).

When Di ≤ Ti, then the deadline is constrained. However, if the specific task
deadlines might be shorter, equal to, or longer than their duration Di ≥ Ti, then
the deadline is arbitrary [20].

In this work, implicit deadlines are considered.

Definition 2.6 (Worst Case Execution Time (WCET)): The WCET refers to the
longest duration that a task requires to complete its execution on a particular
hardware platform [32].

Definition 2.7 (Core affinity): Each task τi also has a core affinity αi, where αi is
the set of cores affinities that τi may be scheduled on. The joint core affinity of a
taskset as the set of cores on which at least one task in the taskset can be scheduled.
Similarly, a taskset is defined as the set of tasks that may be scheduled on at least a
single affinity among a set of affinities.

Core affinity is the capability that allows the assignment of a process or multiple
processes to a particular CPU cores, ensuring that these processes exclusively run on
that specified cores. This strategy enhances CPU utilization by effectively utilizing
the available cores for concurrent processing [2].

The determination of core affinities involves a pivotal formula that establishes the
number of available affinities, denoted as Number of affinities. This calculation
is mathematically expressed as number of affinities 2M − 1 where M signifies the
number of processor cores within the system.

Chapter 2. System Model & Problem Statement 7

Definition 2.8 (Utilization): The task’s utilization is:

ui =
Ci

Ti
(2.1)

In this thesis, the challenge of assigning a set of n independent periodic real-time
tasks τ1, τ2, . . . τn is considered which are running on a set of M identical cores
π1, π2, . . . πM where tasks are assigned with fixed priorities where the priorities of
the tasks doesn’t change during run-time.

Definition 2.9 (Interfering taskset): A task τk can (directly) interfere with another
task τi, i.e., delay τi’s execution, only if αk overlaps with αi. In general, the exact
collection of conflicting tasks is determined by the scheduling policies. Therefore,
the interfering taskset is defined if τi is scheduled under any scheduling algorithm.
For example, in an fixed priority scheduler, only higher-priority tasks can interfere
with τi. Considering priok to be τk’s fixed priority, where priok > prioi indicates that
τk has a greater priority than τi (i.e., τk can preempt τi).

The interfering taskset Ii is defined as the set of tasks that can potentially interfere
with Ti when planned using any scheduling method. For example, in an fixed
priority scheduler, only tasks with higher priorities can be included in the interfering
taskset [27].

Ii = {Tk | priok > prioi ∧ αk ∩ αi ̸= ∅} [27] (2.2)

Symbol Description
M Set of identical cores
π Number of cores
τ Taskset
τk Kth task in τ

Ti Period or minimum inter-arrival time of τi

Ci Worst-case execution time of τi

Di Arbitrary deadline of τi

αi Processor affinities
ui Utilization of τi, Ci

Ti

U Total utilization
Ii Interference on τi

TABLE 2.1: Overviews of system model.

2.2 Problem Statement

This section describes the problem scenery and outlines the thesis objectives for
improving task allocation in a multi-core real-time scheduling context. The thesis
aims to optimize task allocation within a multi-core real-time scheduling, focusing

Chapter 2. System Model & Problem Statement 8

specifically on the task set τ, comprised solely of periodic tasks denoted as τi =
(prioi, Ti, Di, Ci, αi).

The goal is to maximize resource utilization, adhere strictly to timing constraints,
and ultimately enhance the performance and reliability of real-time systems.

• Maximizing Resource Utilization: Using available computational resources
on several cores as efficiently as possible.

• Strict Adherence to Timing Constraints: Consistently ensuring that tasks are
completed within their specified time frames.

• Enhancing Performance and Reliability: Improving the overall performance
and dependability of real-time systems.

Within the context of a task τi ∈ τ, This thesis focuses on the challenge of effectively
assigning a growing number of tasks without missing deadlines within the system.
Because of the fundamental complexity of job assignment in real-time systems, it
is a difficult challenge. In order to resolve these problems, the thesis will conduct
a detailed analysis of the fundamental approaches which are current in use for task
assignment. Understanding the details of task allocation in order to provide creative
ways that meet the expanding demands on multi-core systems while maintaining
the integrity of real-time constraints is important.

In summary, following studies will look at the difficulties of task scheduling in order
to provide solutions and insights that improve the performance and dependability
of real-time systems.

Our contributions to this report include the following:

• The implementation of an efficient task allocation technique aimed at reducing
task blocking time and enhancing task schedulability within the system
architecture.

• Presenting a complete comparison of outcomes with gAPA, pAPA, partitioned,
and global scheduling algorithms.

• Comparative evaluation of execution times across different approaches to
examine the scalability of approaches.

2.3 Related Work

Scheduling more tasks to the embedded system can reduce the over-provisioning
which reduces the cost and the power consumption. The most efficient utilization of
a processor is to reach 100% by using an optimal scheduler. In single-core platforms
that can be achieved by the earliest deadline first scheduling algorithm (EDF) [22].
EDF suffers from high number of preemption, i.e., context switching, [17]. Another
direction of improving the schedulability is to exploit tolerable deadline misses.
These tasks are called weakly-hard real-time tasks [13]. In this direction, A Linear
Programming (LP) based weakly-hard schedulability analysis has been presented
in [49] for overloaded systems. It is extendable for more scheduling policies.

Chapter 2. System Model & Problem Statement 9

Fixed Priority Preemptive (FPP) and non-preemptive are covered in [49], Weighted
Round-Robin (WRR) in [29], and EDF in [30].

In multi-core platforms, the challenge is harder. Similar to the single-core, there
were efforts to propose optimal scheduling algorithms. Some global scheduling
approaches are optimal such as the pfair algorithms [4, 11] and U-EDF [40]. The
optimal global scheduling approaches have the same problem that the EDF has
for single-core platform, namely the high scheduling overhead. there is no RTOS
implement any of them. Since the partitioning problem is NP-hard, i.e., no optimal
partitioning algorithm exists, plenty algorithms have been proposed, e.g., [24, 31,
34, 35]. Most of the proposed partitioning algorithms depend on the standard
bin-packing heuristics of first-fit, worst-fit and best-fit [10]. APA scheduling is a
promising approach to improve the schedulability on the multi-core platforms. As
mentioned earlier in this chapter, this thesis aims to propose an allocation approach
for APA scheduling to improve the schedulability.

10
Chapter 3

Background on Schedulability Analysis

As noted in the introduction, APA scheduling works on the idea of processor
affinities to provide a flexible migration approach [27]. As a result, we begin
by categorizing real-time scheduling algorithms based on various migration
techniques which are already proposed, then compare them to the APA scheduling.
Subsequently, it will describe which task assignment strategies have been applied in
the proposed scheduling algorithms.

3.1 Scheduling Approaches for Multi-core Systems

Real-time scheduling techniques can allow unrestricted migrations, no migrations,
or a hybrid approach with intermediate migrations. In order to effectively manage
the distribution of tasks or processes among various cores in a multi-core system,
multi-core scheduling is a crucial component of contemporary operating systems.
There are primarily two ways for scheduling real-time systems on multi-core [9],
[19] which are the following.

• Global scheduling

• Partitioned scheduling

These approaches serve different purposes and are applied based on the
characteristics and requirements of the system. The choice between global and
partitioned scheduling depends on factors such as the system architecture, timing
constraints and resource availability.

3.1.1 Global Scheduling Approach

The Global scheduling approach employs a single scheduler to manage tasks,
enabling each task to execute on any core [41]. As depicted in Figure 3.1, it is a
centralized strategy in which a single scheduler is in charge of distributing tasks
to all of the system’s available processing cores. The scheduler makes choices
depending on the workload and priorities of the entire system. A task can be
preempted on a core and resumed on another core, i.e., migration of tasks among
cores is permitted.

Chapter 3. Background on Schedulability Analysis 11

FIGURE 3.1: Global scheduling, grey color box represent as a cores
(π), green box’s are represent as a tasks (τ) and the scheduler

specified in between tasks and cores.

In global scheduling, a central scheduler manages the task assignment across all
cores in a multi-core system. This means that the scheduler can reallocate tasks to
cores based on real-time system conditions, such as changes in workload or resource
availability. This dynamic assignment approach enables global schedulers to adapt
to changing system dynamics and maintain optimal performance.

3.1.2 Partitioned Scheduling Approach

Under partitioned scheduling tasks are statically assigned to the cores, and the tasks
within each core are scheduled by a single-processor scheduling algorithm [41].
Each task is assigned to a core where it will run. Each core has its own ready queue
for scheduling tasks (As shown in Figure 3.2).

FIGURE 3.2: Partitioned scheduling approach.

Task assignment is static, which is one of the key characteristics of partitioned
scheduling. This means that the task assignment remains fixed throughout the
execution of the application. To assign tasks to cores statically, partitioned
scheduling often employs bin packing algorithms. In the context of partitioned
scheduling, bin packing algorithms are used to efficiently allocate tasks to cores,
minimizing the number of cores required or balancing the load on the available cores
[42] which is explained in detail in Chapter 4, specifically in Sub-section 4.1.1.

Depending on the number of migrations permitted, researchers have also explored
hybrid techniques in details that has been proposed with an intermediate degree

Chapter 3. Background on Schedulability Analysis 12

of migration include the clustered scheduling [18], semi-partitioned scheduling [5],
and restricted-migration scheduling [5].

3.1.3 Cluster Scheduling Approach

Cluster scheduling, another approach for scheduling can be defined as
a generalization of partitioned and global scheduling methods. It is a
middle-of-the-road technique that divides cores into clusters. The system can
contain more than one cluster, and each cluster has its own scheduler. Tasks are
statically assigned to clusters and tasks within each cluster are globally scheduled
[48] (As shown in Figure 3.3).

FIGURE 3.3: Clustered scheduling approach.

Global scheduling is appropriate for systems that require optimal load balancing and
global priority management yet can handle the additional complexity. Partitioned
scheduling is suited for applications that require strict isolation, whereas cluster
scheduling provides a balance between isolation and adaptability. Unlike the
conventional descriptions found in literature, many contemporary multiprocessor
real-time operating systems, such as VxWorks, LynxOS, QNX, and real-time variants
of Linux, implement scheduling algorithms that are not strictly based on the
traditional methods [27]. Instead, they rely on processor affinity to provide a more
flexible migration technique. Processor affinities improve application performance
in throughput-oriented computing and separate real-time and non-real-time tasks
by allocating them to independent cores [25, 33, 39, 46].

3.1.4 Arbitrary Processor Affinities (APA) Scheduling

APA, in the context of multi-core systems, refers to the ability to explicitly assign a
specific task, or process to execute on a particular processor core [27]. This affinity
setting allows the programmer or system administrator to dictate where a particular
task or workload should be executed, rather than relying on the system’s default
scheduler.

APA refers to the ability to manually establish or alter the assignment of certain tasks
to individual cores. In APA scheduling, developers take command and direct where
each process executes. This can be effective in some cases when the user is familiar
with the workload and the system’s design.

Global, partitioned, and clustered scheduling are all generalized by APA scheduling.
In other words, APA scheduling forces each task to migrate only among a limited

Chapter 3. Background on Schedulability Analysis 13

group of cores determined by the task’s processor affinity [27]. For this reason, a
taskset can be described as a global, clustered, or partitioned taskset using the proper
processor affinity assignment.

FIGURE 3.4: APA, illustrated that tasks τ0, τ5 are allocated to π0 and
π1 cores affinity, whereas core affinity π1 and π3 also has different
tasks which are τ2, τ3, τ4, τ7 shows that π1 is common for some

affinities.

The Figure 3.4 illustrate the concept of APA scheduling, a technique that allows for
the explicit assignment of tasks to specific cores or clusters based on their processor
affinity. APA scheduling is a powerful tool for optimizing performance in multi-core
systems by controlling the allocation of tasks on specific cores or clusters.

Here, the execution plan based on the processor affinity assignments.

• Seven tasks are denoted as τ0, τ1, τ2, τ3, τ4, τ5,τ6 and τ7. Each task represents a
unit of taskset in a multi-core environment.

• τ0, τ5 tasks are assigned to the processor affinity set consisting of cores π0 and
π1.

• tasks τ2, τ3, τ4, and τ7 will execute on cores π1 and π3, forming a dedicated
cluster for these tasks.

• Tasks τ1 and τ6 will execute on cores π2 and π3, creating another dedicated
cluster.

This example demonstrates how APA scheduling allows tasks to be explicitly
assigned to processor affinity sets, leading to fine-tuned control over task
assignments and the potential for improved performance in multi-core systems.

While APA scheduling offers performance benefits, it introduces complexity and
management overhead. Careful planning to define processor affinities is required
to ensure that core assignments are optimal for the workload. Additionally, tasks
assigned to the same cluster may need to communicate efficiently with each other.

Understanding APA scheduling’s complexities help to see that, despite it has many
performance advantages, this strategy adds a layer of complexity and requires
careful planning for the best tasks assignment. When global, partitioned, and

Chapter 3. Background on Schedulability Analysis 14

clustered scheduling fail, APA scheduling can make a taskset feasible by carefully
selecting processor affinities. In 2013, Brandenburg’s work showed that APA
scheduling problems can be efficiently reduced to "global-like" sub-problems, which
allows us to reuse the large body of literature on global schedulability analysis. This
makes APA scheduling a powerful and flexible scheduling algorithm that can be
used to schedule real-time tasks on multi-core systems [27] (Detail explanation in
Sub-section 3.2.3).

3.2 Schedulability Analysis

The importance of schedulability analysis

Schedulability analysis is the process of determining whether a set of real-time tasks
can be scheduled to meet their deadlines. This analysis is essential to guarantee
that all tasks, each with its own execution time and deadline, can be accommodated
without violating timing constraints in the worst-case scenario, which cannot be
covered by testing. There are two main categories of schedulability tests upon the
processor:

• schedulability analyses for single-core systems, which include partitioned and
cluster scheduling.

• schedulability analyses for multi-core systems and that covers global, cluster
and APA scheduling.

The scheduling of periodic tasks with hard deadlines on a single-core, focusing
on the rate monotonic scheduling method developed by Liu and Layland in 1973
[37]. Extending the rate monotonic scheduling analysis, in 1990 J. P. Lehoczky
provide worst-case bounds that generalize the original Liu and Layland bounds,
allowing flexibility in task deadlines [36]. The author suggest a practical approach
for distributed tasks into resource sequences and end-to-end deadlines, using
traditional rate monotonic theory which is known as busy window analysis. In this
experiment, busy-window analysis to determine the schedulability of a single-core
system is used, which includes partitioned and cluster scheduling evaluations.

3.2.1 Busy-window Analysis

Busy window analysis is a key component of schedulability analysis, primarily
applied in single-core real-time systems [36], since it helps determine whether tasks
can be scheduled and helps make sure deadlines are fulfilled. It involves the
examination of the core’s execution timeline to identify intervals, known as "busy
windows," during which the core is fully occupied with executing tasks. These busy
windows are critical because they represent periods during which new tasks must
wait to be scheduled.

Understanding the worst-case scenario for task scheduling requires a knowledge of
busy windows. During a busy window, the core is already committed to executing
operations, making it difficult to fit other tasks into the remaining time. If the
execution time and deadline of a task occur inside a busy window, it may not be
schedulable, resulting in missed deadlines and system failure.

Chapter 3. Background on Schedulability Analysis 15

Consider a collection of n periodic tasks τ1, τ2, τ3 . . . , τn, each of which has four
critical characteristics (Ci,Ti,Di,Ii):

• Ci: Execution of task τi

• Ti: Period of τi

• Di: Deadline of τi

• Ii: τi interface with respect to a fixed time origin

Fixed priority scheduling algorithms are frequently used in real-time systems to
enforce task deadlines. The main goal is to find a scheduling algorithm that can
ensure all task deadlines are met. To determine if a scheduling algorithm can meet
all deadlines, it’s important to identify the task scheduling that results in the longest
response time for every assignment of a certain task τi.

To calculate the worst-case response time for a task with priority level i, the proposed
idea involves the concept of a level − i busy period. The time frame in which all
tasks with priority levels less than or equal to i are being executed is known as a
level− i busy period. The longest level− i busy period is equivalent to the worst-case
response time for a task with priority level i [36].

To perform a busy window analysis, the busy windows must be calculated or
estimated by taking into account the task set’s arrival times, execution times, and
deadlines. Various scheduling methods and strategies are used to correctly compute
these busy window. Equation 3.1 is often used to calculate busy window for task in
scheduling algorithms to manage resources or tasks within a system.

BW(n+1)
i = Ci + ∑

j<i

⌈
BWn

i
Tj

⌉
Cj, BW0

i = Ci [36] (3.1)

where:

Ci = Execution time of task τi

Cj = Execution time of task τj

BW(n+1)
i = Busy window of task i in the (n+1)th iteration

Tj = Period of task τj

In practical terms, this equation facilitates the determination of the busy window for
a specific task, such as the 4th task, by considering the busy windows of all preceding
tasks. The initial condition, BW0

i = Ci, establishes that the busy window of a task in
the initial iteration is equivalent to its execution time.

Busy window analysis, a crucial component in schedulability analysis algorithms
within computational systems, involves several key elements. The term BWn+1

i
defines the busy window at time n + 1, provides insight into the predicted resource
utilization within the system. Ci symbolizes the computational time required for
task i, a pivotal factor in assessing the workload of individual tasks. The expression

Chapter 3. Background on Schedulability Analysis 16

∑j<i⌈
BWn

i
Tj
⌉Cj carefully calculates the overall load exerted by tasks arriving before

task i.

By studying task characteristics and scheduling methods, the conditions under
which all task deadlines can be fulfilled may be identified. The study gives useful
insights for schedulability analysis of the tasks in single-core real-time systems. The
transition from single-core to multi-core systems introduces the concept of global
schedulers, which maintain a single scheduling queue for dynamic task execution
across available cores. This centralized decision-making technique at the system
level is useful for efficiently handling dynamic loads and temporary overload
scenarios. Efficient schedulability tests for the partitioned case, which use above
proven single-core approaches, presently outperform those for the global case [14].

Bertogna and Cirinei developed a unique technique in 2007 to analyze the timely
features of real-time systems planned on identical multi-core platforms, coinciding
with an increase in interest in scheduling analysis. Their research tackles the
limits of previous findings and eliminates important shortcomings by improving
methodologies typically used in single-core schedulability analysis. Specifically,
they apply the Response Time Analysis (RTA) to systems with many cores,
proposing schedulability tests that outperform all existing approaches. This
establishing methodology bridges the gap between single-core and multi-core
schedulability assessments, providing improved methodologies for evaluating the
real-time performance of systems running on identical multiprocessor platforms.

3.2.2 Response Time Analysis (RTA) for Global Scheduling

RTA for real-time applications usually rely on fixed-point iteration algorithms to
determine upper limits on task response times [8, 14, 26, 43]. Busy window
Analysis primarily focuses on predicting task allocation based on computational
requirements, RTA extends this framework to ascertain the responsiveness and
predictability of tasks in a global scheduling context. The RTA will be applied to
multi-core systems, allowing for schedulability tests that significantly outperform
all previously approached techniques.

FIGURE 3.5: Scenario described for Equation 3.2 [14].

The maximum response time (ri) of a task (τi) is characterized as the longest duration
taken by any job of task τi to complete its execution [27]. The analysis conducted by
Bertogna and Cirinei in 2007 establishes upper bounds on this response time, relying
on the principles of workload and interference [14]. Task τi workload (Ŵi(L)) is
defined as the maximum duration during which the task can execute within any
interval of length L (As shown in Figure 3.5).

Chapter 3. Background on Schedulability Analysis 17

To compute the workload of task τi in an interval [a, b) of length L, the first job of
τi after the task’s arrival time, is released at the time a + Ci + Ti − Di. The next jobs
are then released periodically every Ti time unit [14]. Therefore, the workload is
determined by the number of tasks Ni(L), that contribute to a complete WCET in
any period of length L, which is given by

Ni(L) =
⌊

L + Di − Ci

Ti

⌋
[14] (3.2)

where:

Ni(L) = Number of job instances of task j
Ci = Computational or processing time required by task j
L = Time frame

Ti = Task’s period

The contribution of the terminated task can then be bounded by
min (Ci, L + Di − Ci − Ni(L)Ti). Equation 3.2 provides an estimation of the
number of job instances of task j within the specified time frame L considering the
timing constraints and periodic behavior of the task.

The workload of a task τi is determined based on Ni(L) as follows:

Ŵi(L) = Ni(L) · Ci + min (Ci, (L + Di − Ci − Ni(L)Ti)) [14] (3.3)

The equation 3.3 for Ŵi(L) provides an estimation of the busy window for task i up
to time L. It incorporates the number of job instances (Ni(L)) that fit within the time
frame L, multiplied by the computational time of task i. Additionally, it considers
the interference caused by higher-priority tasks, including their computational times
and the remaining time in the time frame L after considering the response time and
execution of task i.

In the context of task scheduling, the interference (Ii(t)) imposed by a higher-priority
task (τj) on the lower-priority task (τi) is defined as the overall duration of
sub-intervals during which τi is backlogged but unable to be scheduled on any core
while τj is in execution. This interference is intricately linked to the workload of
the higher-priority task, indicating how τi’s execution affects the timely execution of
τj within intervals of length L. Therefore, the expression of worst-case interference
which is depends on the workload of interfering task given by,

WCRTj = Cj +

⌊
1
m ∑

i<j
min

(
Ŵi(WCRTj), WCRTj − Cj + 1

)⌋
(3.4)

where:

Ŵi(WCRTj) = Busy window or workload (Ŵi) of task j

The relationship between WCRTi and Ŵi(L) can be observed in how the interference

Chapter 3. Background on Schedulability Analysis 18

caused by higher-priority tasks (as seen in Equation 3.4) affects the estimation of the
busy window Ŵi(L) for task i within a given time frame L.

3.2.3 Schedulability Analysis for APA Scheduling

According to the paper [27], the RTA for APA scheduling is a simple extension of the
reduction-based schedulability analysis which is explained here with one example.
When a set of tasks assigned to the certain core affinity is given, and those tasks can
globally schedulable on that affinity or on a subset of that affinity, then it can also be
schedulable using APA scheduling.

As shown in Figure 3.6, consider a scenario with four cores π0, π1, π2, π3 and
five tasks τ0, τ1, . . . , τ4. The APA scheduling technique assigns tasks to affinities,
resulting in improving efficiency. In this scenario, task τ0 has the highest priority,
while task τ4 has the lowest priority. The affinity assignment is such that some tasks
can easily be scheduled on their preferred cores.

FIGURE 3.6: Elaboration of gAPA approach, where can see how task
are assign to the core. It’s global-like sub-problem.

However, the true test of this approach is in a worst-case scenario, where all
potentially interfering tasks are included. Task τ2, in this case, plays a important role
as it may interfere with other tasks. According to author, if task τ2 can be scheduled
under any processor affinities, then it is globally schedulable [27].

The approach to analyzing the schedulability of task τ2 is based on a reduction to
a "global-like sub-problem." The reduction process involves considering clusters of
cores. In the provided example, the cluster in question consists of two cores, π0 and
π3, which are marked in red. The global analysis takes into account the tasks that
interact within this cluster, which are τ0, τ1, and τ2.

The sub-problems arising from this global analysis are used to determine the
schedulability of τ2. If at least one of these sub-problems is schedulable, then
τ2 is also schedulable for the overall system. This approach effectively derives
schedulability guarantees for APA schedulers by breaking down the problem into
manageable sub-problems, thus reducing the complexity of the analysis.

19
Chapter 4

State-of-the-Art on Task Allocation

The problem of allocating tasks on computing resources is much older than using
the multi-core platforms in embedded system. It is the problem of assigning tasks
to a distributed system consists of independent computing resources. Hence, it has
been covered by many research papers in the last decades. However, a multi-core
platform has a special feature that more than one task can run in parallel sharing
more resources, e.g. caches, than in distributed systems.

In this chapter, an overview on the problem of task allocation on a multi-core
platform is presented. Mainly, this chapter compares and describes the Global
first APA (gAPA) method, and the Partitioned first APA (pAPA) algorithm, which
was developed by the DLR-OSS group, as well as information on its potential uses
and limits. Focusing on the goal of improving schedulability through better task
assignment, it suggests that the accuracy of both techniques could be enhanced by
allocating tasks using an Integer Linear Programming (ILP) approach. Additionally,
a summary of the technique is explained in this chapter.

As discussed in chapter 3, the idea of processor affinity enables tasks to be linked
or tied to a particular core, which in some circumstances can enhance performance.
On the other hand, if affinity is configured to be arbitrary, the task can run on any
core that the scheduler selects, without any restrictions from the operating system
or scheduler.

4.1 Tasks Allocation Methods for Multi-core Architectures

For real-time tasks on multi-core systems, deadline-aware scheduling requires
careful consideration of task deadlines to guarantee timely execution. One popular
strategy in this area is Earliest Deadline First (EDF). In EDF scheduling, tasks are
prioritized depending on their deadlines, with the work with the earliest deadline
given the most priority [1]. This strategy seeks to reduce the chance of missing
crucial deadlines by prioritizing the completion of time-sensitive tasks.

Another popular strategy to assign tasks to cores statically is bin-packing algorithms.
In the context of partitioned scheduling, bin packing algorithms are used to
efficiently allocate tasks to cores. In this thesis, partitioned scheduling approach
with various bin packing assignment strategies alongside other algorithms and
introduced algorithm were used to do the schedulability test. In task assignment
strategies, the "bins" refer to the "partitions" that available for the allocation of
tasks whereas the "items" in this context correspond to the "tasks" that need to
be assigned to the available partitions. The next sub-section describes what a bin
packing algorithm is, the various kinds of bin packing algorithms, and how their
code is implemented for usage with partitioned scheduling. The code of bin-packing
algorithms are developed by DLR-OSS group.

4.1.1 Bin-packing Heuristics

Bin packing is a classic combinatorial optimization problem that involves packing a
set of items of varying sizes into a minimum number of containers, typically called

Chapter 4. State-of-the-Art on Task Allocation 20

bins, with each bin having a fixed capacity. The goal is to minimize the number of
bins used while ensuring that no bin exceeds its capacity.

The formal definition of the bin packing problem is as follows [15]:

Given a set of items, each with a size or weight, a fixed bin capacity, and the objective
of minimizing the number of bins required to pack all items.

The packing problem-solving is allocating n objects with varying weights and bins,
each with a capacity of c, to a bin so as to minimize the total number of bins needed.
It is reasonable to suppose that every item weighs less than the capacity of the bin.

An overview of approximate algorithms in brief

To address the bin packing problem, numerous bin packing algorithms and
heuristics have been developed. Every algorithm has a different strategy. Figure
4.1 is a example of some of the popular bin packing algorithms along with a quick
explanation of each: Height of items 5, 2, 11, 15, 7, 6, 17 and the height of bin is 20.

FIGURE 4.1: Example of the bin packing algorithm where items have
different sizes but the bin has fix size.

1. First-Fit (FF):

To solve the bin packing problem, the FF algorithm is a straightforward
method. It functions like this:

(a) Initialize a list of bins and an empty list of items to be packed.

(b) For every item in the inventory:

• Find the first bin in the list that can hold the item without going over
its capacity by iterating over the list.

• Once such a bin has been located, add the item to it and adjust the
bin’s remaining capacity.

• Make a new bin and put the item inside if none of the existing ones
can hold it.

(c) For every item, repeat step b again.

Allocate item j to the first bin where it fits:

Let k = min{i | Capacity of bin i ≥ Size of item j} (4.1)

Chapter 4. State-of-the-Art on Task Allocation 21

Allocate item j to bin k.

FIGURE 4.2: Illustration of the first-fit bin packing algorithm.

By using this algorithm total 4 numbers of bin are needed (shown in the
Figure 4.2). The detailed algorithm to pack the items using first-fit method
is shown in Algorithm 1.

Algorithm 1: First Fit Bin Packing Algorithm

1 // Allocate weights into bins based on the availability of space

2 Function first_fit(weights, bins, fit_function):
3 everything_fit← True // Assume everything fits initially

4 foreach w in weights do
5 fit← False // Initialize fit flag for current weight

6 foreach b in bins do
7 if fit_function(w, b) is True then
8 fit← True
9 b.append(w) // Add weight to the bin

10 break
11 end if
12 end foreach
13 if fit is False then
14 everything_fit← False
15 end if
16 end foreach
17 return everything_fit

18 // Fit function to check if a weight can fit into a bin

19 Function fit_function(weight, bin_):
20 fit← False
21 if bin_.capacity ≥ weight then
22 fit← True
23 end if
24 return fit

The algorithm 1 takes a list of weights, bins, and a fit function as input. It
iterates through each weight. For each weight, it iterates through each bin
and tries to fit the weight into the first bin where it can fit according to the fit
function. If a weight fits into a bin, it is added to that bin, and the loop moves
to the next weight. If a weight cannot fit into any bin, the algorithm sets a flag
indicating that not everything fit. Finally, it returns True if every weight fits
into a bin, otherwise False.

2. Best-Fit (BF):

The objective of the BF bin packing algorithm is to fit a collection of
items(tasks) in different sizes into a minimum number of bins, or containers,

Chapter 4. State-of-the-Art on Task Allocation 22

each having a specific capacity. This technique is one of the most effective bin
packing heuristics since its goal is to reduce the amount of wasted space in the
bins(partitions).

Regarding each item in the sorted list:

• Proceed through the list of bins one by one.

• While making sure the bin doesn’t overflow, attempt to put the item into
the "BF" bin-one that minimizes the amount of space left behind.

• Create a new bin and put the item in it if no existing bin can hold the item
without going over capacity.

Allocate item j to the bin with the smallest capacity that can accommodate it:

Let k = arg min{i | Capacity of bin i ≥ Size of item j} (4.2)

Allocate item j to bin k.

By using this algorithm total 4 numbers of bin are needed (Shown in the
Figure 4.3).

FIGURE 4.3: Illustration of the best-fit bin packing algorithm.

The detailed algorithm to pack the items using best-fit method is shown in
Algorithm 2. The algorithm takes weights, a list of bins, and a fitting function
as input. The given code provides ’best_fit’, but the main bin-packing logic
should be done in the ’remaining_Space_Fit function’. This function evaluates
the fit function iteratively, trying to fit each weight into a bin. It determines the
best-fitting bin for each weight by examining for the amount of space in each
bin and applying a set of criteria. The weight is added into the appropriate bin
if one is found; if not, the algorithm sets ’everything_fit’ to False, indicating
that the packing attempt was failed.

Chapter 4. State-of-the-Art on Task Allocation 23

Algorithm 2: Best Fit Bin Packing Algorithm

1 Function best_fit(weights, bins, fit_function):

2 return _remaining_space_fit(weights, bins, fit_function, λa, b : a < b,
bins[0].capacity)

3 /* space_cond (space condition) is the function to verify how the remaining space in the
bin should be and default_space is starting value for the variable space */

4 Function _remaining_space_fit(weights, bins, fit_function, space_cond,
default_space):

5 everything_fit← True // Assume everything fits initially

6 for each weight w in weights do
7 space← default_space // Initialize space with default value

8 selected_bin← None // Initialize selected bin to None

9 /* Iterate through each bin */

10 for each index i in range(length(bins)) do
11 // Check if weight fits into the bin

12 if fit_function(w, bins[i]) is True then
13 actual_space← bins[i].test_remaining_space(w)
14 if space_cond(actual_space, space) is True then
15 space← actual_space
16 selected_bin← i
17 end if
18 end if
19 end for
20 if selected_bin is not None then
21 bins[selected_bin].append(w) // Pack the weight into the selected bin

22 else
23 /* If no bin was selected, set flag to indicate not everything fit */

24 everything_fit← False
25 end if
26 end for
27 return everything_fit

3. Next-Fit (NF):

It is comparable to the FF algorithm, however it works especially well when
items(tasks) come in a continuous manner or in sequential order. Items are
put in one at a time using NF, which reduces the number of bins (partitions)
needed.

Follow these steps for every item on the list:

• Verify that the item can fit in the given bin (that is, that its size does not
exceed the capacity).

• If it fits, put it in the bin that is currently in use and adjust the capacity
that is available.

• Create a new bin, put the item inside, then set the available capacity to
the bin capacity if it doesn’t fit.

Chapter 4. State-of-the-Art on Task Allocation 24

Allocate item j to the next bin where it fits, starting from the last allocated bin:

Let k = min
{

i
∣∣∣ Capacity of bin i ≥ Size of item j and i > Last

allocated bin

}
(4.3)

Allocate item j to bin k.

FIGURE 4.4: Illustration of the next-fit bin packing algorithm.

By using this algorithm total 5 numbers of bin are needed. That can be seen in
the Figure 4.4. Algorithm 3 shows the full algorithm for packing items using
the next-fit approach. The algorithm takes a list of weights, bins, and a fit
function as input. It iterates through each weight. For each weight, it iterates
through bins starting from the current index. It tries to fit the weight into the
current bin using the fit function. If the weight fits into the current bin, it is
packed into the bin, and the algorithm moves to the next weight. If the weight
doesn’t fit into the current bin, the algorithm moves to the next bin and repeats
the process. After processing all weights, it checks if all weights were packed
into bins. It returns True if every weight fits into a bin, otherwise False.

Algorithm 3: Next Fit Bin Packing Algorithm

1 Function next_fit(weights, bins, fit_function):
2 i← 0 // Initialize the index of the current bin

3 packed← 0 // Initialize counter for packed weights

4 for each weight w in weights do
5 // Iterate through bins starting from the current index

6 while i ⩽ length of bins do
7 if fit_function(w, bins[i]) is True then
8 bins[i].append(w)
9 packed← packed + 1

10 break
11 else
12 i← i + 1 // Move to the next bin if weight doesn’t fit

13 end if
14 end while
15 end for
16 // Check if all weights were packed

17 if length of weights ⩾ packed then
18 everything_fit← False
19 else
20 everything_fit← True
21 end if
22 return everything_fit

4. Worst-Fit (WF):

Chapter 4. State-of-the-Art on Task Allocation 25

WF bin packing is fitting a collection of items of varied sizes into a small
number of containers (bins), each having a defined capacity. The algorithm
finds the bin with the greatest unused space for each item, therefore referred
to as "WF," with the goal of maximizing the amount of leftover space in each
bin.

About each item in the sorted list:

• Proceed through the list of containers one by one.

• As long as the bin’s capacity isn’t exceeded, try to fit the item into the one
with the greatest unused space.

• Create a new bin and put the item in it if no existing bin can hold the item
without exceeding above capacity.

Allocate item j to bin with the largest capacity:

Let k = arg max{i | Capacity of bin i ≥ Size of item j} (4.4)

Allocate item j to bin k.

FIGURE 4.5: Illustration of the worst-fit bin packing algorithm.

By using this algorithm total 7 numbers of bin are needed (As shown in the
Figure 4.5). Algorithm 4 provides a complete algorithm for packing the objects
using the worst-fit approach. This algorithm works exactly same as BF algorithm
works. Only the difference is value of argument default_space passes in function
_remaining_space_fit. For the WF, default_space is set to 0 which means at every
iteration, it will consider the bin is empty.

Chapter 4. State-of-the-Art on Task Allocation 26

Algorithm 4: Worst Fit Bin Packing Algorithm

1 Function worst_fit(weights, bins, fit_function):

2 return _remaining_space_fit(weights, bins, fit_function, λa, b : a > b, 0)

3 Function _remaining_space_fit(weights, bins, fit_function, space_cond,
default_space):

4 everything_fit← True // Assume everything fits initially

5 for each weight w in weights do
6 space← default_space // Initialize space with default value

7 selected_bin← None // Initialize selected bin to None

8 for each index i in range(length(bins)) do
9 if fit_function(w, bins[i]) is True then

10 actual_space← bins[i].test_remaining_space(w)
11 if space_cond(actual_space, space) is True then
12 space← actual_space
13 selected_bin← i
14 end if
15 end if
16 end for
17 if selected_bin is not None then
18 bins[selected_bin].append(w) // Pack the weight into the selected bin

19 else
20 // If no bin was selected, set flag to indicate not everything fit

21 everything_fit← False
22 end if
23 end for
24 return everything_fit

Bin packing is an optimization problem that involves properly fitting items into bins
to reduce wasted space or increase resource efficiency.

There are some strategies such as task merging and task replication have been
suggested to reallocate tasks when performance issues occurred. Task merging
requires additional local memory, while task replication demands more processors
to execute the same task [50]. A multi-core architecture which does not feature
sufficient memory and processors will severely limit the available mapping options
using the existing methodology [50]. Their study presents a framework for assigning
tasks in soft real-time multi-core embedded systems, based on a prototype model.
The framework provides a basis for effectively allocating tasks within the context of
a multi-core architecture [23]. However, with the goal of enhancing schedulability
through improved task assignment, an ILP-based technique is presented for
APA-based hard real-time scheduling. The effectiveness of the strategy is proven
in Chapter 5.

4.2 Task Allocation Approaches for APA

Although there are multiple variants of APA schedulers deployed in current
real-time operating systems. However, no task allocation method applicable to
tasksets for APA has been proposed to the date. The DLR-OSS group address this
issue by applying the ideas which relate APA scheduling to the well-studied other

Chapter 4. State-of-the-Art on Task Allocation 27

tasks allocation methods, and proposing simple and efficient techniques to allocate
tasksets for APA scheduling. They uses shrinking and merging based task allocation
for APA scheduling to analyze tasksets with APA and argue their correctness.

The present section introduces two specific approaches.

• Global First Arbitrary Processor Affinity (gAPA)

• Partitioned First Arbitary Processor Affinity (pAPA)

The gAPA strategy considering all cores as single affinity set before making specific
affinity assignments, offering a global perspective first and then reduced the core
set πi. In contrast, the pAPA approach adopts a partitioned strategy, focusing on
localized affinity assignments within specific partitions first and then merging the
core set. Both approaches aim to mitigate issues in the current scheduler, leading to
a reduction in the deadline miss ratio and an overall improvement in schedulability.

4.2.1 Global First APA (gAPA) Approach

The gAPA approach presents a strategy for enhancing the performance of real-time
systems in a multi-core environment. This approach leverages the concept of APA
to optimize task allocation. In multi-core real-time scheduling, the gAPA approach
is designed to improve the schedulability of sporadic tasks. It builds on the idea of
APA, where tasks are given affinities or preferences for specific cores.

FIGURE 4.6: gAPA, shrinking based task assignment technique.

4.2.1.1 Shrinking Based Analysis

For a given task τi, global scheduling can be considered a special case of APA
scheduling when the processor affinity αi = π, which means the processor affinity
is equal to the entire processor set. Similarly, APA scheduling reduces to global
scheduling for sub-problems with a restricted processor set αi and a reduced taskset.
This affinity-based approach aims to reduce interference and enhance system
performance by strategically allocating tasks to cores that are most compatible with
their affinities. In simple terms, if a task τi can be successfully schedule on a smaller
subset of its affinity, it can also be scheduled successfully on the complete affinity
set. This full scenario is presented in the Figure 4.6 and pseudo-code to develop this
logic is presented in Algorithm 5 and 6.

Chapter 4. State-of-the-Art on Task Allocation 28

Algorithm 5: Global First APA Scheduling Algorithm
Input : taskset, num_cores, priority_algo
Output: Scheduling success indicator

1 // Pass to the internal function _do_globalFirstAPA

2 Function globalFirstAPA(taskset, num_cores, priority_algo):
3 success← _do_globalFirstAPA(taskset, num_cores, priority_algo)
4 return success

5 // Function returns "True" if the taskset can be scheduled, "False" otherwise.

6 Function _do_globalFirstAPA(taskset, num_cores, priority_algo):
7 // Assign priorities to tasks using the provided priority algorithm

8 priority_algo(taskset, num_cores)
9 cores← [core.Core(i) for i in range(num_cores)] // Initialize the CPU cores

10 /* Iterate over tasks to shrink the CPU set based on global schedulability */

11 foreach current_task in sorted(taskset, key=lambda t: t.priority) do
12 current_task.cpu_set← cores // Assign all cores initially to tasks

13 foreach core_ in cores do
14 core_.tasks.append(current_task) // Add the current task to all cores

15 end foreach
16 // Calculate interference

17 interference← _return_tasks_in_cpu_set(current_task.cpu_set) -
{current_task}

18 affinity← ShrinkingBasedAnalysis.do(cores, current_task,
current_task.cpu_set, interference)

19 if not affinity then
20 return False // If task cannot be scheduled, return False

21 end if
22 current_task.cpu_set← affinity // Update the CPU set for the current task

23 end foreach
24 return True

As described in Algorithm 5, the globalFirstAPA function acts as an interface
that calls the _do_globalFirstAPA function, which performs the actual scheduling.
_do_globalFirstAPA initializes the CPU cores, assigns priorities to tasks using a
provided priority algorithm, and then iterates over tasks to shrink the CPU set based
on global schedulability. ShrinkingBasedAnalysis class (described in Algorithm 6)
implements the heuristic presented in paper [27]. It defines methods for performing
shrinking-based analysis, checking schedulability, and removing candidate CPU
cores based on certain criteria. The is_schedulable method checks whether a task
is schedulable in given certain core affinity. The remove_candidate method removes
a candidate (CPU core) from the core affinity based on the shrinking-based analysis.
The ’do’ method iteratively performs shrinking-based analysis until a schedulable
CPU affinity is found or the algorithm terminates.

Chapter 4. State-of-the-Art on Task Allocation 29

Algorithm 6: Shrinking Based Analysis

1 Class ShrinkingBasedAnalysis:

2 /* Performs the shrinking-based analysis to determine the core affinity of a task.
This method returns list of core affinity after the shrinking-based analysis. */

3 Method do(cores, task, affinity, interference)
4 backup_affinity← [] // Create an empty list

5 while True do
6 if task is schedulable then
7 backup_affinity← affinity
8 end if
9 (new_affinity, candidate)← new core affinity and set of removed task

10 if new_affinity == affinity or not new_affinity then
11 return backup_affinity
12 end if
13 interference← interference - candidate
14 end while
15 return None

16 /* Checks if a task is schedulable with the given CPU affinity. This method returns
true if the task is schedulable, false otherwise. */

17 Method is_schedulable(task, affinity, interference)
18 cores_in_cpu_set← len(affinity)
19 if cores_in_cpu_set > 1 then
20 gSchedulability← do "GlobalSchedulabilityTest"
21 schedulable← "compute response time and check if task schedulable"
22 else
23 schedulable← "compute busy window and check if task schedulable"
24 end if
25 return schedulable

26 /* Removes a candidate CPU core from the CPU affinity based on the shrinking-based
analysis. This method returns tuple containing the new core affinity and the set of
removed tasks. */

27 Method remove_candidate(task, affinity)
28 return (new_affinity, t[RC.index(c_prime)])
29 return

In conclusion, the gAPA approach try to assign task by shrinking the processor
affinity set. This methodology provides an arrangement for analyzing the global
schedulability of tasks, which ultimately leads to better system performance and
predictability.

However, there is an opportunity for improvement in defining the best core affinity
and priority assignments. Hence, an alternative approach, offers a new strategy for
task allocation that differs from gAPA approach. This approach, referred to as the
pAPA, follows a bottom-up approach.

4.2.2 Partitioned First APA (pAPA) Approach

The tasks assignment procedure is fundamentally reversed than the gAPA or using
bottom-up methodology in the pAPA approach as shown in Figure 4.7. It begins by
allocating tasks to specific core first, similar to partitioned scheduling. This initial

Chapter 4. State-of-the-Art on Task Allocation 30

allocation step prioritizes creating smaller, more manageable groups of tasks, each
associated with a single core. The pAPA method then uses a merging process,
combining two of these smaller groups and reassessing the tasks assigned to the
remaining set. This process of iteratively merging and reassigning groups continues
until no further group settling is feasible.

FIGURE 4.7: pAPA, merging based task assignment technique.

The aforementioned assessment methodology gives information about the
approach’s effectiveness as well as an established standard by which to compare
it to other approaches.

Algorithm 7: Algorithm for Computing Combinations
Input: Parameters n, k
Output: Result of the combination

1 // Compute the number of combinations

2 Function compute_num_comb(n, k):
3 n_ f ac← factorial(n);
4 k_ f ac← factorial(k);
5 nmink_ f ac← factorial(n− k);
6 return n_ f ac/(k_ f ac× nmink_ f ac)

Algorithm 7 is used to compute number of combinations merging cores using
factorials where n is number of cores and k is combination size. this algorithm
compute the factorial of (n-k) and return the number of combinations which is useful
in main algorithm later in Algorithm 8. Algorithm 8 performs partitioning using
the First APA algorithm, which assigns tasks to CPU cores using FF task allocation
method. It assigns priorities to tasks, initializes unallocated tasks, and creates core
affinity. The function iteratively partitions cores into containers with increasing core
combinations until all tasks are allocated or no more cores are available for merging.
Algorithm 9 merges CPU cores into containers based on the specified combination
size using the "itertools.combinations" function.

Chapter 4. State-of-the-Art on Task Allocation 31

Algorithm 8: Partitioned First APA Algorithm

1 /* Perform partitioning using the First fit scheduling algorithm. This function return
true if all tasks are allocated, otherwise return false */

2 Function partitioningFirstAPA(taskset, num_cores, priority_algo, first_fit):
3 // Assign priorities to tasks using the specified priority assignment algorithm

4 priority_algo(taskset, num_cores) // Set an empty list to task’s cpu_set

5 foreach task in taskset do
6 task.cpu_set← []
7 end foreach
8 comb_size← 1
9 last_id← num_cores - 1

10 /* Repeat partitioning until all tasks are allocated or no more cores to merge */

11 while unallocated_tasks and comb_size ≤ num_cores do
12 containers, invol_cores←merge_cores(cores, comb_size, last_id)
13 last_id← last_id + (compute_num_comb(num_cores, comb_size)-1)
14 comb_size← comb_size + 1
15 end while
16 // Return True if all tasks are allocated, otherwise return False

17 if unallocated_tasks then
18 return False
19 else
20 return True
21 end if
22 return

Algorithm 9: Algorithm for Merging Cores
Input: List of cores cores, comb_size, last_id
Output: List of containers, Dictionary of involved cores

1 // Merge cores into containers

2 containers← [] ; // Initialize an empty list to store containers

3 // Initialize an empty dictionary to store involved cores for each container

4 invol_cores← {};
5 Function merge_cores:
6 // Iterate over combinations of cores

7 foreach comb in combinations(cores, comb_size) do
8 last_id← last_id + 1 ; // Increment the ID for each new container

9 new_container ← create_new_container;
10 // Iterate over cores in the combination

11 for i← 0 to comb_size− 1 do
12 // Add the task to the container and update the capacity of the container

13 add_tasks_and_capacity(new_container, comb[i]);
14 // Add the core to the list of involved cores

15 invol_cores[new_container.id].append(comb[i]);
16 end for
17 containers.append(new_container);
18 end foreach
19 return containers, invol_cores

Chapter 4. State-of-the-Art on Task Allocation 32

In order to validate the results, pAPA was carefully tested using the first-fit
bin-packing heuristic. Even if the results support the effectiveness of pAPA, it is
important to acknowledge that the algorithm’s full performance evaluation is still
lacking. In particular, it is necessary to check the effect of different bin-packing
techniques, e.g."best-fit","next-fit" and "first fit" on system performance.

Therefore, the analysis of pAPA approach with different bin packing algorithms and
different priority assignments is carried out in this thesis which is explained in detail
in Chapter 4, specifically in Sections 6.2 and 6.3.

33
Chapter 5

Optimized Affinity Sets for APA

This chapter investigates the field of ILP - based algorithms in an effort to expand
the boundaries of optimization. The objective is to develop an ILP-based algorithm
capable of optimizing affinity sets. This exploration not only contributes to the
ongoing advancements in task assignment techniques but also signifies a broader
commitment to enhancing the efficiency and precision of real-time systems.

5.1 Integer Linear Programming (ILP)

Integer Linear Programming (ILP) is a mathematical method that aims to optimize
a linear objective function while considering linear constraints. It allows for discrete
decision variables in addition to continuous ones. This means that ILP enables the
solution to problems where decisions must be made from a limited set of choices
rather than as a continuous range. ILP involves finding the optimal solution by
selecting integer values for decision variables within specified constraints, adding
an additional layer of complexity and precision to problem-solving compared to
standard linear programming. The linear objective and constraints must consist of
linear expressions.

The foundation of problem design leverages the principles of ILP to achieve
optimization. In this scenario, the aim is to maximize the objective function
by strategically assigning the highest priority tasks or a task which has higher
utilization, initially to first row of core affinities. The key component is to create
constraints that precisely manage the work allocation process.

In this pursuit, two primary constraints come to the forefront: the first constraint
ensures that each task is allocated to precisely at least one affinity. This condition
guarantees a well-defined assignment scheme, avoiding ambiguities or overlaps in
task distribution across core affinities.

The second constraint is the more critical aspect of meeting task deadlines. The
design here focuses on conforming to task deadlines strictly by implementing
restrictions that limit the response time of each task within the set deadline. This
constraint is pivotal in ensuring that the system’s real-time requirements are met,
avoiding any potential delays that could compromise task completion within the
prescribed time frame.

The ILP is carefully built to handle the unique complexity of the tasks allocation
problem by organizing the problem with these limitations and an objective function
intended at increasing task allocation efficiency while sticking to fundamental
affinities and achieving deadlines. This use of ILP is a sophisticated strategy that
adds layers of accuracy and complexity to the problem-solving process, increasing
the possibility for optimum task allocation inside a multi-core real-time scheduling
context.

Chapter 5. Optimized Affinity Sets for APA 34

5.2 An Efficient ILP Solution

As shown in Figure 5.1, consider a scenario where set of tasks τ = τ1, τ2, τ3 . . . τ7
needs to assigned to the core affinities then, using ILP based approach for optimized
task allocation could be valuable to solve the problem. It emerges as a significant tool
in task scheduling, providing a systematic way to accurately specify and optimize
task allocations to processor cores. This is especially important in multi-core systems
to ensure effective resource use.

FIGURE 5.1: Tasks τ from 0 to 7 needs to assigned to the core affinities
using ILP based approach by defining objective function, constrains

and variables.

ILP Formulation for Task Assignment:

In the realm of multi-core systems, ILP can be applied to task assignment problems
where each task must be allocated to a specific processor core. The decision variables
in this scenario are binary, representing whether a task is assigned to a particular
core or not. The objective function typically aims to minimize or maximize a certain
criterion, such as total execution time or total number of schedulable tasks.

The formulation of the objective function is important for optimizing task allocation
for multi-core real-time scheduling using ILP. The objective function can be divided
into two assumptions: one that works to maximize the function by assigning highest
utilization task first, or another that aims to maximize the objective function by
assigning the highest priority tasks first to the core affinities.

The general form of ILP for task assignment is represented as follows:

Maximize ∑
α∈A

∑
i∈T

uixα
i (5.1)

OR

Chapter 5. Optimized Affinity Sets for APA 35

Maximize ∑
α∈A

∑
i∈T

prioixα
i (5.2)

The objective function aims to maximize the sum of the utilization values (ui) of
tasks (As per Equation 5.1) or by assigning highest priority tasks first across different
affinity sets (α) (As per Equation 5.2). Each xα

i is a binary decision variable, indicating
whether task i is assigned to the affinity set α or not. prioi is the assigned priority of
each task and ui is the utilization of each task.

Through these different viewpoints, this approach aims to maximize a possible
advantage in maximizing the number of schedulable test cases. The formulation
includes constraints that specifically enforce to an affinity set, in which the total
response time (weight) of tasks assigned up to a given task i within this set of tasks
does not exceed the deadline (capacity) Di. This constrain is derived based on the
RTA schedulability test (See Equation 3.4 in Section 3.2.2).

Capacity Constraint:

Ci · xα
i +

⌊
1
m ∑

j<i
[xα

j · ŵ(θ, β)]

⌋
≤ Di, ∀i < N (5.3)

where:

Di = Capacity or deadline of taski
Ci = Execution time of task i

ŵ(θ, β) = Response time between tasks i and j

θ =
⌊(

Ŵj(WCRTi)
)⌋

β = WCRTi − Ci + 1

Equation 5.3 is the response time of task j according to RTA. This constraint ensures
that the response time of tasks assigned to affinity set α up to task i does not exceed
the deadline (capacity) Di. Ci represents the execution time of task i, and ŵ(θ, β) is a
function that considers the interaction weight or response time between tasks i and
j.

Binary Decision Constraint:

xα1
i + xα2

i + xα3
i + . . . + xαn

i ≤ 1 (5.4)

This constraint ensures that each task i is assigned to at most one affinity set. The
sum of binary decision variables (xα

i) across different affinity sets for task i is limited
to 1.

Binary Decision Variable:
xα

i ∈ {0, 1}, ∀i < N (5.5)

This variables specifies that each binary decision variable xα
i can only take values 0

Chapter 5. Optimized Affinity Sets for APA 36

or 1, representing the absence or presence of task i in affinity set α. If the value is 0,
it indicates that the task is not assigned to any core affinities; if it is 1, then the task
is assigned to a core affinity.

5.2.1 Tailored Task Scheduling Solutions: Versatility of ILP in Adapting
to Varied Constraints

The use of ILP method gives an appealing approach to dealing with various
constraints in task scheduling issues. Its adaptability derives from its capacity
to quickly adopt extra limitations as required by individual circumstances. For
example, adding a new constraint requiring that tasks i and j not work together
inside the same processor affinity can be effortlessly included into the ILP
formulation. ILP is a good solution for dealing with complicated task scheduling
scenarios because of its ability to easily adjust and include such delicate limitations.

Safety and Security Constraint:

xα
i + xα

j ≤ 1, ∀i, j < N (5.6)

This constraint enforces safety and security considerations by ensuring that tasks
i and j are not assigned to the same affinity set. This prevents certain tasks from
coexisting in the same set for safety or security reasons.

The fundamental flexibility of ILP enables for the introduction of many limitations
that may come out in actual circumstances, such as task dependencies, resource
limits, or task affinity constraints. This is especially useful when task scheduling
requires complex interactions between tasks, processors, and associated constraints.
By adding constraints to the ILP formulation, it is possible to clearly specify and
enforce rules that govern the allocation and execution of tasks among processor
cores, assuring that they satisfy stated criteria.

Furthermore, the flexibility and accuracy of ILP formulations contribute to their
ease of use in dealing with changing constraints or changes to the issue statement.
The ILP concept provides a systematic and organized way to accommodating
changes when needs develop or new restrictions are imposed. Its essential flexibility
supports a strong solution approach, allowing for the smooth incorporation of
developing restrictions without the need for significant reworking or redesign of
the underlying scheduling model.

Thus, the use of ILP approach is beneficial in solving complicated task scheduling
difficulties, as it provides a dynamic and efficient methodology capable of
accommodating developing restrictions and assuring the optimization of scheduling
results in a variety of computing situations.

5.3 ILP Objective: Utilization vs Priority as Weight

The implementation of ILP in this experiment aims to optimize the allocation of
tasks by prioritizing tasks based on their utilization levels or by maximizing highest
priority tasks first to the core affinities. The ILP formulation focused on maximizing
the utilization of computational resources by assigning tasks with the highest
resource requirements first. Python was employed to implement this approach,

Chapter 5. Optimized Affinity Sets for APA 37

encoding the ILP model to prioritize tasks according to their utilization metrics or
by priority.

5.3.1 System Model

In this section, task dependencies are added to the system model introduced in
Chapter 2. Analyzing multi-core systems with a finite number of n different
tasks that are scheduled using the fixed priority preemptive scheduling which is
commonly used in real-time systems. With fixed priority preemptive scheduling, the
scheduler ensures that at any given time, the processor executes the highest priority
task of all those tasks that are currently ready to execute. A task set is a collection of
separate tasks with varying utilization and worst-case execution times. A task in a
system must belong to exactly one chain.

Core Affinity Assignment Strategy

Three distinct assignment strategies are observed:

1. Solving the problem as one ILP for all possible core affinities by a defining
objective for the entire problem (Figure 5.2 (1)).

2. Solving the problem iteratively as one ILP per affinity set, where each affinity
has its own objective (Figure 5.2 (2)).

3. Solving the problem iteratively as one ILP per row, considering each row as a
separate ILP problem and defining objective functions and constraints for each
row independently(Figure 5.2 (3)).

FIGURE 5.2: Core affinity assignment strategy.

However, examining options 1 and 2 becomes more complicated since the problem
size in these two approaches is huge. As a result, choosing the third alternative is
preferable when considering complexity and quality of the results. This strategy
divides the problem into manageable sub-problems, progressively improving the
ILP model. Core affinities are organized into rows, with each row reflecting a
different stage in the ILP formulation. The row-by-row approach has two variations:

1. Top-down approach

2. Bottom-up approach

The top-down approach as shown in Figure 5.3, in which tasks are initially assigned
to the group of all available cores in the first row, and the unassigned task list is

Chapter 5. Optimized Affinity Sets for APA 38

passed to the next row with a modified core affinity group. Consider this row to
be an individual ILP problem. Define the objective function, specify the constraints,
and then solve the issue with an ILP solver. After solving the ILP for the first row,
a list of unassigned tasks will be generated, which are the tasks from the lists that
were not allocated to any core affinities in the first allocation.

FIGURE 5.3: Divide and conquer in the top down order.

And the bottom-up approach as shown in Figure 5.4, in which tasks are assigned
to single-core affinities first, and cores are added iteratively in consecutive rows.
The selected technique of using a bottom-up approach for core affinity assignment
requires a systematic methodology in the context of task scheduling and affinity
allocation. After careful consideration and analysis of results, it is found that the
bottom-up approach proves more beneficial in balancing complexity and result
quality. As a result, bottom-up strategy is selected for the ILP approach.

FIGURE 5.4: Divide and conquer in the bottom up order.

Chapter 5. Optimized Affinity Sets for APA 39

Tasks are allocated to core affinities based on Figure 5.4. This involves traversing
through the affinity lists in a reversed order, assigning tasks to cores iteratively
from the highest to the lowest hierarchical levels. Each iteration allocates tasks to
cores affinity within the reversed affinity list structure, ensuring optimal task-to-core
mappings based on predefined criteria such as utilization, priority, or other specific
constraints.

By employing the bottom-up approach, the experiment aims to systematically assign
tasks to core affinities facilitating an optimized task allocation strategy tailored to the
specific requirements and constraints of the scheduling problem.

5.4 Evaluation of ILP Strategies: Utilization-Centric vs.
Priority-Driven Task Allocation

This section describes the approach used to perform a thorough comparison of two
unique ILP methodologies. The experiment specifically examines the efficacy of two
different objective functions, one stressing utilization-centric task allocation and the
other assigning tasks based on highest priority.

The experimental procedure includes the use of an ILP technique, as shown in the
preceding schematic model (As shown in Figure 5.4). The experiment sets out to
evaluate the performance of the ILP model in a variety of computing situations that
have different core counts, utilization ranges, and task sets.

The following parameters were taken into account when designing the experiments:

• Core Configuration: The experiment was carried out using several core
configurations, specifically core counts of 4, 5, 6, and 8.

• Utilization Range: The utilization ranges were chosen from number of cores/2
to number of cores with steps of 0.5.

u ∈
[π

2
, π

]
(5.7)

and mathematically, it can be represented as follows:

u(π) = {π

2
,

π

2
+ 0.5,

π

2
+ 1, . . . , π}

For an example, let’s consider when π = 4. In this case, the utilization range
u(4) is given by:

u(4) = {2, 2.5, 3, 3.5, 4}

• Number of Task: The tasks were randomly generated starting from the range
of number of cores*2. Let the list of taskset denoted by L and the number of
cores be denoted by ’core’. In a mathematical expression, the list elements can
be defined recursively as: L[n] = L[n-1] + core for n > 0

Chapter 5. Optimized Affinity Sets for APA 40

For example, when core = 4:

L[0] = 4× 2 = 8
L[1] = L[0] + 4 = 8 + 4 = 12
L[2] = L[1] + 4 = 12 + 4 = 16

Therefore, when number of core = 4, number of taskset is [8, 12, 16]

• Total Number of Test Cases: For each experimental run, a total of 1000 test
cases were generated.

The ILP-based experiments were carried out in a setting with the aforementioned
core configurations, number of tasks sets and utilization ranges. The ILP model
was tested using two different objective functions to see how they affected the
assignment of tasks within the current computing environment.

Task Characteristics: Each individual test case within the experiment represents a
unique set of task parameters. These parameters include task periods, randomly
chosen from a predefined range determined by a period scaling factor (1, 2, 3, 4, 5, 6,
7, 8) multiplied by predefined period ranges (280.0, 340.0, 450.0, 500.0).

Ti = random.choice(periodsScalingFactor)*random.choice(periodsRange)

Additionally, the deadlines for each task (Di) were set equal to the minimum
inter-arrival time, contributing to diverse and dynamic task compositions across the
experiment.

FIGURE 5.5: Flowchart showing the setup for an ILP experiment.

As shown in Figure 5.5, the experiment begins by initializing the number of tests
and cores. Using given number of cores, generate utilization and number of tasks

Chapter 5. Optimized Affinity Sets for APA 41

values which are explained in Equation 5.7 on page 39. This value is passed as
an input to "run_experiment" method. And this method runs experiments with
different system configurations. The "system_generator" function is called, and as
an output, it produces random sets of tasks. After getting tasks, all tasks are sorted
according to priorities. ILP is used to prioritize tasks based on either priority or
utilization objectives. After this, call “experiment_with_ilp” method. According
to this method, it will first initialize affinities with help of given number of cores. A
Knapsack class is created, which defines the objective function and constraints based
on whether the experiment is priority-driven or utilization-driven. After defining
objective function, constrains and variables, call “ilp_solver” from the ‘Knapsack’
class. After solving for first iteration, it will checked that are all tasks mapped to
core affinities of first row? If all tasks are mapped, then it will print “Success! All
tasks can fit into affinities” into the console. If not, then it will check for other rows.
The objective function, constraints, and variables will only be defined for the tasks
that were left unassigned in the previous iteration, and the following row will treat
it as a separate ILP problem. And again check the condition. If all rows visited and
there are still some unassigned tasks available, it will print “Fail! All tasks can’t fit
into affinities”. This process continues until all tasks are mapped or it is determined
that all tasks cannot fit into the affinities. The results are recorded in a CSV file and
a text file. Next call “post_processing” method. This method updates result curves
based on experiment outcomes and “plot_results” method generates and saves plots
based on experiment results. The experiment ends, reporting success if all tasks fit
into the affinities, or fail if they don’t.

5.4.1 Results and Interpretation of Outcomes

The obtained results, depicted in the Figure 5.6 , present a comparative analysis
between the two ILP objective functions across 1000 test cases. The x-axis indicates
individual utilization value of task, while the y-axis reflects schedulable test cases.
These results help to clarify the performance significance and variations found
between utilization-focused and priority-driven ILP techniques within the given
computational environment.

2 2.5 3 3.5 4
0

500

1,000

1,500

2,000

2,500

3,000

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s

Schedulability for π=4, tests=1000

ILP-prio
ILP-util

(A) The comparison of utils vs priority for 4 cores

2.5 3 3.5 4 4.5 5
0

500

1,000

1,500

2,000

2,500

3,000

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s

Schedulability for π=5, tests=1000

ILP-prio
ILP-util

(B) The comparison of utils vs priority for 5 cores

Chapter 5. Optimized Affinity Sets for APA 42

3 3.5 4 4.5 5 5.5 6
0

500

1,000

1,500

2,000

2,500

3,000

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s
Schedulability for π=6, tests=1000

ILP-prio
ILP-util

(C) The comparison of utils vs priority for 6 cores

4 4.5 5 5.5 6 6.5 7 7.5 8
0

500

1,000

1,500

2,000

2,500

3,000

Utilization
Sc

he
du

la
bl

e
te

st
ca

se
s

Schedulability for π=8, tests=1000

ILP-prio
ILP-util

(D) The comparison of utils vs priority for 8 cores

FIGURE 5.6: Experimental graphs to compare utils vs priority with
various cores.

The results derived from this experiment provide valuable insights into the
effectiveness and suitability of ILP objective functions concerning task assignments
in varied computational scenarios. The results show that assigning tasks based on
their priority allows for a much enhanced scheduling of a higher number of test cases
inside the computing environment analyzed. When the priority-driven objective
function in the ILP model is used, a better success rate in task allocation can be
achieve than the utilization-driven objective function.

This conclusion emphasizes the importance of task prioritizing techniques in
maximizing task scheduling, particularly when the primary goal is to effectively
handle a higher number of test test cases. As a result, a priority-based objective
function has been taken into account for the further ILP experiments, improving the
overall approach for task scheduling efficiency.

43
Chapter 6

Experiments

This chapter highlights various kinds of algorithms ideal for real-time experiments,
building upon the insights presented in preceding chapters. It elaborates on the
real-time exploration process using diverse approaches. Furthermore, it combines
the latest developments in assigning analysis, presenting significant in general
implications obtained from each experiment, followed by the results.

This section explains more details on how the algorithms described in this work.
Python 3.8 and its libraries, as well as other packages, were used for development,
testing, and experimentation. To start with, Matplotlib is used for interactive
visualizations, Math library is used for mathematical function calculation, and
NumPy is used to produce random Minimum Inter Arrival Time (MIAT) and
uniform distribution, which is necessary to achieve utilization.

The following sub-sections explain the implementation of each module separately
and end with a section that combines all the modules.

To comprehensively assess the proposed analysis, a series of synthetic test
scenarios were developed in order to evaluate diverse system configurations.
These experiments studies include evaluations of pAPA, gAPA, partitioned, global
scheduling policies, alongside an examination of their performance under varied
conditions such as system load or utilization, scalability, and task assignments. The
study focuses on several key aspects:

• A comparison of the pAPA and gAPA algorithms using different bin packing
approaches to determine superior performance.

• Examination of how task overload influences the assurances provided by the
scheduling policies.

• Analysis of the computational run-time across different algorithms, including
their comparative efficiency.

• Assessment of the impact of priority assignment on the resultant assurances.

• Evaluation of the superiority of unique ILP-based methodology over
conventional approaches.

6.1 Synthetic Test Case Generation

The synthetic test cases developed consist of tasks worst-case execution times,
periods or minimum inter arrival time, CPU sets, and relative deadlines. The
complete pseudo-code to generate synthetic test cases is shown in Algorithm 12 on
page 46. These tasks, chosen for their periodic behavior in this experiments, were
generated following a structured methodology:

• Determining the number of tasks and the intended system utilization shared
among them.

Chapter 6. Experiments 44

• Allocating the system’s utilization to each task using the UUnifast method [16]
to ensure fair distribution.

• Assigning periods to each task randomly from a predefined set of harmonic
values. Subsequently, computing the worst-case execution time for each task
(Ci) as follows:

Ci = ui · Ti (6.1)

where Ti representing the period of task τi. To ensure a diverse spectrum of
system models, we varied the following parameters:

• The tasksets were randomly generated starting from the range of number of
cores*2. It is generated same as a way explained in Section 5.4. The Algorithm
10 is used to create new task object.

Algorithm 10: Task Class

1 Class Task:
2 // Constructor method to initialize a Task object

3 Method __init__(taskId)
4 // Set task attributes

5 self.id← taskId
6 self.priority← None
7 self.miat← None // Set minimum inter arrival time

8 self.wcet← None // Set worst case execution time

9 self.deadline← None
10 self.util← None
11 self.cpu_set← []
12 return

• Total utilization (U) starting from number of cores/2 to number of cores. It is
also generated same as explained in Section 5.4 in Equation 5.7.

• Allocating relative deadlines (Di) to tasks based on Di = Ti. This defined that
a task possessed an implicit deadline (Di = Ti).

In order to simplify the analysis of parameter impact, we selected to have a range of
values rather than discrete intervals. These settings apply to all experiments unless
otherwise mentioned.

Chapter 6. Experiments 45

Algorithm 11: UUniFast
Input : num_cores, utilization, NbTasks
Output: vectU

1 // Generates a list of task utilizations using the UUniFast algorithm introduced in [16].

2 Function UUniFast(n, U, M):
3 if U > M or U ≤ 0.0 then
4 // Check if U is within valid range

5 PrintError("U is the upper bound utilization and it should be
0 < U < M, U =", U, "M =", M)

6 ExitProgram
7 end if
8 if n ≤ 0 then
9 // Check if n is valid

10 PrintError("N is the number of tasks and it should be N > 0, N =", n)
11 ExitProgram
12 end if
13 if Type(n) == float then
14 // Check if n is an integer

15 PrintError("N is the number of tasks and it should be an integer")
16 ExitProgram
17 end if
18 vectU← [] // Initialize list for task utilizations

19 sumU← U // Initialize sum of utilizations

20 for i in range(0, n - 1) do
21 // Generate utilization for each task except the last one

22 nextSumU← sumU ∗ (RandomUniform(0, 1) ∗∗ (1 / (n - i)))
23 if sumU - nextSumU < 1.0 then
24 vectU.append(sumU - nextSumU)
25 sumU← nextSumU
26 else
27 break
28 end if
29 end for
30 if sumU ≥ 1.0 then
31 // If the last task would have utilization greater than or equal to 1, return an

empty list

32 return []
33 else
34 vectU.append(sumU) // Add utilization of the last task

35 return vectU
36 end if
37 return

The Algorithm 11 implements the UUniFast algorithm, as introduced by Bini and
Buttazzo in 2005 [16]. UUniFast is a method for generating utilization values for a set
of tasks using a uniform distribution. This algorithm ensures that the total utilization
of tasks equals the specified upper bound U while distributing the utilizations
uniformly. It iteratively generates utilization values for each task, ensuring that
the sum of utilizations equals upper bound utilization. Utilization for each task

Chapter 6. Experiments 46

is generated using a random value between 0 and 1, scaled appropriately to ensure
the sum remains within the upper bound U. The generated utilizations are added
to a list vectU, and if the utilization of the last task would exceed 1, an empty list
is returned. Various error checks are performed to ensure that the input parameters
(U, M, n) are within valid ranges and of the correct types where M is maximum
utilization per task, n is number of tasks and U is upper bound utilization. This
particular implementation is provided by the DLR_OSS group.

Algorithm 12: Generate Synthetic Testcases
Input : num_cores, utilization, NbTasks
Output: tasks

1 Function generate_system(num_cores, utilization, NbTasks):
2 tasks← dict() // Initialize dictionary to store tasks

3 while not t_utilization do
4 // Generate task utilizations using UUniFast algorithm

5 t_utilization← UUniFast(NbTasks, utilization, num_cores)
6 end while
7 for idx in range(0, NbTasks) do
8 tasks[idx]←model.Task(idx) // Create a task object

9 util← t_utilization[-1] // Create a task object

10 // Assign period using period scaling factor as explained above

11 miat← (periodsScalingFactor ∗ periodsRange) deadline←miat // Assign
deadline

12 wcet← (util ∗miat, 2) // Assign wcet

13 // Adjust deadline if wcet exceeds it

14 if wcet ≥ deadline then
15 deadline←miat
16 wcet← wcet - 0.01
17 end if
18 // Handle case where wcet is zero

19 if wcet == 0 then
20 wcet← 0.001
21 end if
22 end for
23 return tasks

Algorithm 12 is used to generates a system with tasks for scheduling. It takes
three parameters: num_cores (number of CPU cores), utilization, and NbTasks (total
number of tasks) and returns the dictionary containing the generated tasks.

6.2 Priority Assignment Algorithms: Their Influence on
Various Approaches

When talking about various priority assignment, it means analyzing the
effectiveness of heuristic priority assignment policies like deadline monotonic and
DkC, an extension of TkC priority assignment policy that has been used to any
schedulability test [21]. Two distinct priority assignment policies can be utilized
based on that statement.

Chapter 6. Experiments 47

• Deadline monotonic priority assignment (DM)

• DkC Priority assignment

Following the assignment of priorities to tasks, the experiment performs tasks
assignments based on the applied algorithms. These tests aim to assess whether
the assigned priorities enable feasible task scheduling within the system constraints.

6.2.1 Deadline Monotonic Policy

Deadline Monotonic Scheduling (DMS) is a scheduling method that is used in
real-time systems to ensure that tasks are completed by the deadline. It is a sort
of fixed-priority preemptive scheduling in which higher-priority tasks always take
preference over lower-priority task. DMS was developed on the concept that tasks
with shorter deadlines should be prioritized higher [7]. This guarantees that the
most significant tasks are always completed first, limiting the possibility of missed
deadlines.

Consider the Table 6.1 to better understand how DMS works:

ID Period (ms) Deadline (ms) Execution time (ms)
Task 1 20 7 3
Task 2 5 4 2
Task 3 10 9 2

TABLE 6.1: Task allocation to understand DMS works.

Task 2 in this case has the lowest deadline (4 ms) and hence has the greatest priority.
Task 1 has a slightly longer deadline (7 ms) and should be prioritized second. Finally,
Task 3 has the longest deadline (9 ms) and should be prioritized the least.

T3 ⩽ T1 ⩽ T2

Chapter 6. Experiments 48

FIGURE 6.1: DM scheduling method, where shows 3 different task
represent as T, and their execution time and deadline.

Figure 6.1 depicts how all three tasks could be carried out using DM priority policy.
Because task 1 has the highest priority, it is always completed first. Task 2 is then
carried out, followed by task 3. This ensures that all three tasks meet their deadlines.

DMS is a very efficient scheduling method used in real-time systems. It is simple
to set up and can be used to plan a variety of tasks with varying deadlines and
execution times.

Here in this section a detailed explanation of the provided python algorithm
designed to assign priorities to tasks based on deadlines.

The algorithm assign_priority_DM commences by initializing an empty dictionary
named priority meant to store task priorities. It sequentially traverses through the
tasks list and allocates priorities to each task based on their respective deadlines.
In this process, the dictionary priority is populated, mapping task objects as keys
to their corresponding deadline values. Subsequently, to facilitate efficient task
organization based on deadlines, the algorithm directs the creation of a sorted list
called sorted_priorities.

This list is formed by sorting the priority dictionary items in descending order,
thereby arranging tasks from those with the highest deadlines to those with the
lowest. Then, the algorithm initiates the priority assignment process by setting the
variable priority_val to represent the total number of tasks, signifying the highest
priority value. For each task within the sorted list of priorities, the algorithm assigns
the current priority_val to the priority attribute of the task. To systematically
reduce subsequent task priorities, the priority_val is decremented after each
assignment, ensuring a progressive decrease in priority values for the following
tasks.

This detailed explanation provides insights into the algorithm’s workflow,
illustrating its role in determining task priorities and enhancing scheduling

Chapter 6. Experiments 49

strategies for multitasking environments in Algorithm 13.

Algorithm 13: Deadline Monotonic Priority Assignment
Input: A list of tasks [ti], where i = 1, 2, · · · , n, and each task has a deadline

attribute.
Output: Assigned priorities for each task.

1 Function assign_priority_DM(tasks, num_cores):
2 Create an empty dictionary priorities // Initialize dictionary to store priorities

3 // Calculate priority for each task based on its deadline

4 for each task t in tasks do
5 priorities[t]← t.deadline
6 end for
7 Sort priorities in descending order by values
8 priority← length of tasks
9 // Assign priorities such that tasks with longer deadlines have lower priorities

10 for each task, deadline in sorted priorities do
11 task.priority← priority
12 priority← priority− 1
13 end for
14 return

This algorithm demonstrates a fundamental approach to task prioritization based
on deadlines, a critical aspect in optimizing task execution and resource allocation
within multi-core systems.

6.2.2 DkC Assignment Policy

Andersson and Jonsson conducted a study in 2000 that investigated a priority
assignment known as TkC, which was particularly intended for implicit deadline
task sets [6]. TkC prioritizes tasks based on the calculated value of (Ti − kCi), where
′k′ is a real number determined by the number of cores. The value of ′k′ is calculated
using a particular formula that takes into account the core setup. TkC essentially
provides a new technique to give priorities to tasks within implicit deadline task
groups by using a computed parameter to decide their order in the scheduling
process.

To begin, the algorithm initializes a constant m with the value of num_cores,
thereby representing the number of processor cores available for task execution.
A subsequent step involves the calculation of another constant, k, derived from a
mathematical formula integrating m, specifically formulated as k,

k =
m− 1 +

√
5m2 − 6m + 1
2m

[21] (6.2)

This calculated value of k plays a pivotal role in the subsequent priority computation
for the tasks. Robert Davis and Alan Burns extend this technique to support tasksets
with constrained deadlines by establishing the DkC priority assignment strategy.
This strategy determines the order of activities based on the computed value of (Di−
kCi), where ′k′ is obtained using Equation 6.2 [21].

Chapter 6. Experiments 50

The function assign_priority_DkC serves the purpose of allocating priorities to
tasks within a scheduling context, aiming to optimize task execution based on their
respective deadlines and Worst-Case Execution Times (WCET) while considering
the available processor cores. It takes two input parameters: tasks, denoting a list of
tasks awaiting priority assignment, and num_cores, indicating the count of available
processor cores.

assign_priority_DkC effectively employs mathematical computations and sorting
techniques to assign priorities to tasks, a crucial aspect in scheduling for optimizing
task execution in systems with multiple processor cores, which fully descriptive
pseudo-code is described in Algorithm 14.

Algorithm 14: DkC Priority Assignment
Input: A list of tasks [ti], i = 1, 2, · · · , n, where each task has deadline and wcet

attributes.
Output: Assigned priorities for each task.

1 Function assign_priority_DkC(tasks, num_cores):
2 m← num_cores

3 k← m−1+
√

5m2−6m+1
2m // Calculate the DkC factor

4 Create an empty dictionary priorities // Initialize dictionary to store priorities

5 for each task t in tasks do
6 priorities[t]← t.deadline− k ∗ t.wcet
7 end for
8 // Assign priorities such that tasks with longer DkC have lower priority

9 Sort priorities in descending order by values
10 priority← length (tasks)
11 for each task in sorted priorities do
12 task.priority← priority
13 priority← priority− 1
14 end for
15 return

The algorithm proceeds to calculate priorities for each task by iterating through the
provided tasks list. For every task encountered, the algorithm computes its priority,
involving a formula that considers the task’s deadline (t.deadline) and its worst-case
execution time (t.wcet). These calculated priorities are then stored in an empty
dictionary, priorities, for further processing.

Following the priority calculation, the algorithm sorts the priorities dictionary items
in descending order based on the calculated priority values, resulting in a collection
called sort_priorities containing the tasks sorted by their respective calculated
priorities.

Lastly, the algorithm assigns the calculated priorities to the tasks, starting from the
highest priority and decrementing successively for subsequent tasks. This priority
assignment process iterates through the sorted tasks, setting the task[0].priorities
attribute for each task with the respective priority value and subsequently reducing
the priority value for the subsequent tasks.

Chapter 6. Experiments 51

6.2.3 Results and Interpretation of The Outcome

The graphical representation of the results shows unique patterns in task scheduling
performance across different priority assignment techniques and bin-packing
algorithms. Notably, DkC priority assignment outperforms the DM priority
assignment for ILP, gAPA, pAPA_NF, pAPA_WF approach. The superiority of
DkC over DM is highlighted in the gAPA and ILP approach, where gAPA_DkC and
ILP_DkC performing nearly double to the gAPA_DM and ILP_DM respectively.
Similarly, the pAPA approach that uses next-fit and worst-fit bin packing assignment
strategies with DkC priority exceeds to the DM priority. While the pAPA approach
with the best-fit and first-fit algorithms, together with DM priority assignment, has
a minor advantage over its DkC priority, the difference is not significant.

2 2.5 3 3.5 4
0

50

100

150

200

250

300

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s

Schedulability for π=4, tests=100

pAPA_BF_DkC
pAPA_FF_DkC
pAPA_NF_DkC
pAPA_WF_DkC
pAPA_BF_DM
pAPA_FF_DM
pAPA_NF_DM
pAPA_WF_DM
ILP_prio_DkC
ILP_prio_DM

gAPA_curve_DKC
gAPA_curve_DM

(A) The comparison of priority assignment algorithms for all scheduling algorithm with 4 cores 100
tests

Chapter 6. Experiments 52

2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s
Schedulability for π=5, tests=100

pAPA_BF_DkC
pAPA_FF_DkC
pAPA_NF_DkC
pAPA_WF_DkC
pAPA_BF_DM
pAPA_FF_DM
pAPA_NF_DM
pAPA_WF_DM
ILP_prio_DkC
ILP_prio_DM

gAPA_curve_DKC
gAPA_curve_DM

(B) The comparison of priority assignment algorithms for all scheduling algorithm with 5 cores 100
tests

FIGURE 6.2: Experimental graphs to compare priority assignment
algorithms for all scheduling algorithm with different number of

cores and 100 tests.

As a result shown in Figure 6.2, it is concluded that the choice of priority assignment
has a significant impact on the schedulability of test cases, indicating that the DkC
priority assignment method should be used in subsequent experiments to increase
the number of schedulable test cases.

6.3 Evaluating Different Bin Packing Algorithms within
pAPA and Partitioned Scheduling

This section provide experimental setup overview using different bin packing
algorithms, which detailed explanation provided in Chapter 3. The conducted
python code is designed to execute an extensive experiment evaluating diverse
task scheduling algorithms within a given system configuration. The aim of this
experimentation is to comprehensively assess and compare the performance of
pAPA and Partitioned scheduling approaches under varying task loads and bin
packing algorithms.

The primary objective of this experiment is to analyze the effectiveness and
efficiency of different task scheduling algorithms in handling tasks with various
utilizations and quantities. The algorithms under investigation include both pAPA
and partitioned schedulability tests employing diverse strategies such as FF, NF, BF,
and WF.

Chapter 6. Experiments 53

The experiment initiates by generating multiple tasksets characterized by different
levels of utilization and varying numbers of tasks. This diversity in taskset creation
is vital for assessing algorithmic behavior across a spectrum of system scenarios.

The results of the schedulability tests are properly recorded in the experiment,
documenting the success or failure of each algorithm in meeting the scheduling
requirements. It builds up the results to provide a comprehensive overview of the
performance of the different algorithms under varied system conditions.

Lastly, the experiment concludes by saving the recorded results and generating
visual representations in the form of plots. These visualizations serve as valuable
tools for further analysis, enabling the comparison of algorithmic performance
across diverse system configurations and highlighting the relative strengths and
weaknesses of each scheduling approach.

6.3.1 Results and Interpretation of the Outcome

A comparison of the bin packing algorithms best-fit, first-fit, next-fit, and worst-fit
for both partitioned and pAPA methods was conducted in an experiment with
five cores. In this comparison analysis, exploring the complexities of these two
approaches involves examining their various benefits, drawbacks, and effects on
system performance.

2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s

Schedulability for π=5, tests=100

pAPA-BF-DkC
Partitioned-BF-DM

(A) The comparison of best fit algorithm for 5
cores

2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s

Schedulability for π=5, tests=100

pAPA-NF-DkC
Partitioned-NF-DM

(B) The comparison of next fit algorithm for 5
cores

Chapter 6. Experiments 54

2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s
Schedulability for π=5, tests=100

pAPA-FF-DkC
Partitioned-FF-DM

(C) The comparison of first fit algorithm for 5
cores

2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s

Schedulability for π=5, tests=100

pAPA-WF-DkC
Partitioned-WF-DM

(D) The comparison of worst fit algorithm for
5 cores

FIGURE 6.3: Experimental graphs to comparison between best-fit,
first-fit, next-fit and worst-fit bin packing algorithms with 5 cores for

pAPA and partitioned.

The partitioned algorithm outperformed the pAPA algorithm when using the best-fit
and first-fit task assignment methods as shown in Figures 6.3. However, there
was a significant reversal in the next-fit and worst-fit algorithms, with the pAPA
outperforming the partitioned approach. The observed occurrence can be related
to the distinct features of each bin packing technique. Best-fit and first-fit manage
to solve problem with partitioned without merging cores. In contrast, the pAPA
algorithm perform better in the next-fit and worst-fit algorithms due to its ability
to manage schedule tasks through strategic core merging. Also, the observed weak
performance of the pAPA algorithm as compared to the typical partitioned approach
can be due to some other important factors. Primarily, the beginning of the first
iteration in pAPA approach applying the response time analysis as a schedulability
test and that methodology stands out as a major contributor to the noted pessimism
in pAPA algorithm.

Examining the first row of pAPA, which closely resembles the partitioned technique,
provides an informative viewpoint. However, the variation in results is due to
the use of different schedulability analysis methods. pAPA uses RTA whereas
partitioned approach uses busy window analysis for schedulability test. And the
differences in the schedulability test could be directly related to the performance of
system, which significantly add to the notably less successful outcomes of the pAPA
approach than the partitioned.

In summary, while the theoretical expectations suggest similarity between pAPA
and the partitioned approach, the practical results shows more complex reality
created by the particular schedulability analysis tests used. Addressing these
complexities may allow for a more accurate examination and explanation of the
observed performance differences.

Chapter 6. Experiments 55

6.4 A Comparative Analysis of the Effectiveness of Different
Approaches

Building upon the insights gained from previous experiments, it is clear that using
the DkC priority assignment strategy consistently results in a greater number of
schedulable tasksets for pAPA, gAPA, ILP, and global scheduling, even with high
utilization levels. Notably, partitioned scheduling is an exception, with the DM
priority assignment showing greater performance. Drawing on these findings, this
experiment conducts a comparative study of the most beneficial methods observed
in the previous experiments. This extensive analysis aims to determine the most
effective approach for pAPA, gAPA, ILP, Partitioned, and global scheduling, taking
into account their performance across different core counts (4, 5, and 6 cores). The
consistency of tasksets and test case generation, as described in Section 6.1.

6.4.1 Results and Interpretation of the Outcome

2 2.5 3 3.5 4
0

50

100

150

200

250

300

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s

Schedulability for π=4, tests=100

pAPA_BF_DkC
pAPA_FF_DkC
pAPA_NF_DkC
pAPA_WF_DkC

gAPA_DkC
ILP_prio_DkC

Global_DkC
Partitioned_BF_DM
Partitioned_FF_DM
Partitioned_NF_DM
Partitioned_WF_DM

(A) Analysis of the ideal methods with the ILP algorithm for 4 cores and 100 tests

Chapter 6. Experiments 56

2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s
Schedulability for π=5, tests=100

pAPA_BF_DkC
pAPA_FF_DkC
pAPA_NF_DkC
pAPA_WF_DkC

gAPA_DkC
ILP_prio_DkC

Global_DkC
Partitioned_BF_DM
Partitioned_FF_DM
Partitioned_NF_DM
Partitioned_WF_DM

(B) Analysis of the ideal methods with the ILP algorithm for 5 cores and 100 tests

3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

Utilization

Sc
he

du
la

bl
e

te
st

ca
se

s

Schedulability for π=6, tests=100

pAPA_BF_DkC
pAPA_FF_DkC
pAPA_NF_DkC
pAPA_WF_DkC

gAPA_DkC
ILP_prio_DkC

Global_DkC
Partitioned_BF_DM
Partitioned_FF_DM
Partitioned_NF_DM
Partitioned_WF_DM

(C) Analysis of the ideal methods with the ILP algorithm for 6 cores and 100 tests.

FIGURE 6.4: Comparison of all best algorithms with ILP algorithm
for different cores and 100 tests.

Chapter 6. Experiments 57

As shown in the Figure 6.4, the ILP_DkC has an exceptional capacity to schedule a
greater amount of tasks, even in cases when its utilization value is rather high. This
observation highlights how well ILP assigns tasks to cores, demonstrating its ability
to maximize task scheduling and get better performance even at higher utilization
values. Within the context of partitioned scheduling, which has typically been seen
as a standard solution, we intentionally included this technique to highlight possible
pessimism within specified constraints and schedulability analysis. According to the
theory, APA should be superior, but in fact, partitioning is better. This mismatch
highlights an area of pessimism in the analytical approach. Furthermore, APA
shows the ability to efficiently integrate global, partitioned, and cluster approaches,
highlighting its flexibility to a variety of scheduling contexts.

In summary, the overall goal of this research is to improve the quality of
schedulability analysis which is done by developing of novel tasks assignment
strategy for the APA. The graphical representations highlight the prevalence of
pessimism in the schedulability study, emphasizing the need for modification. Since
the results obtained from the experiments highlight the weaknesses in current
schedulability assessment, the need for more research is obvious in the attempt of
enhanced approaches and strategies that contribute to the ongoing development of
schedulability assessment, particularly within the APA framework.

6.5 A Comparative Analysis of the Execution Time of
Various Approaches

Expanding on what has been learned from previous strategies, it turns out clear
that using ILP for task allocation greatly improves schedulability. However,
the practical consequences of online reconfiguration require a more detailed
examination of scalability. In the context of online reconfiguration systems,
immediate decision-making for schedulability is essential.

The next experiment explores into a comparative evaluation of execution times
across different approaches, which is critical for determining their applicability in
scenarios demanding rapid online decision-making. This study includes an in-depth
analysis of execution time patterns utilizing box plot representations while keeping
consistent with the configurations used in the previous experiment.

Chapter 6. Experiments 58

6.5.1 Results and Interpretation of the Outcome

pAPA
_B

F

pAPA
_F

F

pAPA
_N

F

pAPA
_W

F
gAPA IL

P

10−2

10−1

100

101

102

103

104

105

Ex
ec

ut
io

n
Ti

m
e

(l
og

sc
al

e)

Boxplot of Execution Time

FIGURE 6.5: Execution time for all algorithms considering 4 cores.

The illustrated box plots in Figure 6.5 show important observations about the
execution times of various methodologies. Specifically, pAPA_BF, pAPA_FF and
pAPA_WF have comparable medians, with both indicating longer median duration
in comparison to gAPA and ILP. ILP stands out for its clear stability and efficiency,
which are demonstrated by the fact that its median execution time is far shorter
than that of the other methods. In this context, ILP appears as the dominant
algorithm, highlighting its ability to provide fast and consistent performance. The
reason it is fast is it uses optimized C code (CPLEX solver) as an its core whereas
other approaches are implemented in python without optimization. Therefore,
establishing it as a preferable option among the variety of analyzed methodologies.

59
Chapter 7

Conclusion and Future Work

7.1 Conclusion

Finally, this thesis delves into the complex world of real-time task scheduling,
specifically the assignment of tasks inside tasksets using ILP for Arbitary
Processor Affinity (APA). The analysis begins with an examination of processor
affinities, which reveals their critical role in providing isolation and average-case
improvements as used by application developers.

The impact of priority assignment algorithms on system performance is
demonstrated. The choice of priority assignment has a significant impact on the
schedulability of test cases, indicating that the DkC priority assignment method
should be used to increase the number of schedulable test cases. The study expands
its scope to consider the effects of various bin-packing techniques on partitioned
and pAPA scheduling approaches. The variation in both the results indicate that the
difference in schedulability analysis can directly impacted to performance of system.
And, it has been seen that pAPA_NF_DkC can schedule more number of test cases
even with higher utilization.

The primary contribution of this thesis, however, is the task allocation for APA
scheduling using ILP to enhance multi-core real-time scheduling. The suggested
bottom-up-based analysis demonstrates a powerful approach for scheduling a larger
number of tasksets. In this regard, the ILP based task assignment reduces the
computation time significantly and, based on evaluation results, its accuracy is also
great and at the same time achieves low runtime complexity, i.e., it easily scales for
problem sizes of up to eight processors.

Additionally, a comparative analysis of the most effective methods observed in
preceding experiments has been undertaken. This extensive analysis aims to
determine the most effective approach for pAPA, gAPA, ILP, partitioned, and global
scheduling, considering their performance across different core counts. Among
all effective approaches, it is clear that ILP_DkC has a more capacity to schedule
a greater number of tasks, and also explores into a comparative evaluation of
execution times, to examine the scalability of different approaches. The experiment
findings demonstrate that the median execution time of ILP is much shorter than
that of the other approaches, demonstrating its scalability and efficiency. As a
consequence, ILP stand out as a leading algorithm to deliver quick and reliable
results.

In conclusion, this thesis undoubtedly proves APA scheduling usefulness. The
unique task assignment technique based on ILP not only improves the field of
real-time scheduling, but it also demonstrates the effectiveness of creative ways in
tackling complicated issues. The study establishes the way for future advances in the
field of multi-core real-time scheduling, offering an excellent foundation for further
investigation and application in practical situations.

Chapter 7. Conclusion and Future Work 60

7.2 Future Work

In regards to future research initiatives in this domain, several interesting
alternatives might be explored further. For example, optimizing priority assignment
methods is a possible option for improving the assignment of priorities for tasks
across various scheduling methods. In the context of ILP, exploring various objective
functions seems to be an appealing idea. By changing the optimization criteria,
researchers can investigate the possibility for increased performance and efficiency
in task assignment methods. More study is being done on the development of
improved schedulability analysis for APA scheduling.

61

Bibliography

[1] Luca Abeni and Tommaso Cucinotta. “EDF Scheduling of Real-Time Tasks
on Multiple Cores: Adaptive Partitioning vs. Global Scheduling”. In: SIGAPP
Appl. Comput. Rev. 20.2 (July 2020), pp. 5–18. ISSN: 1559-6915. DOI: 10.1145/
3412816.3412817. URL: https://doi.org/10.1145/3412816.3412817.

[2] About CPU affinity. Visited on 04.01. 2024. URL: https : / / enterprise -
support.nvidia.com/s/article/what-is-cpu-affinity-x#:~:text=CPU%
20affinity%20enables%20binding%20a,each%20one%20on%20different%
20core..

[3] Alexander Krutwig AK and Sebastian Huber SH. RTEMS SMP Status Report.
2015. URL: http : / / microelectronics . esa . int / gr740 / RTEMS - SMP -
StatusReportEmbBrains-2015-10.pdf.

[4] J. H. Anderson and A. Srinivasan. “Pfair scheduling: beyond periodic
task systems”. In: Proceedings Seventh International Conference on Real-Time
Computing Systems and Applications. 2000, pp. 297–306.

[5] J.H. Anderson, V. Bud, and U.C. Devi. “An EDF-based scheduling algorithm
for multiprocessor soft real-time systems”. In: 17th Euromicro Conference on
Real-Time Systems (ECRTS’05). 2005, pp. 199–208. DOI: 10.1109/ECRTS.2005.6.

[6] Björn Andersson and Jan Jonsson. “Fixed-priority preemptive multiprocessor
scheduling: to partition or not to partition”. In: Proceedings Seventh International
Conference on Real-Time Computing Systems and Applications (2000), pp. 337–346.
URL: https://api.semanticscholar.org/CorpusID:1397137.

[7] N.C. Audsley et al. “Hard Real-Time Scheduling: The Deadline-Monotonic
Approach”. In: IFAC Proceedings Volumes 24.2 (1991). IFAC/IFIP Workshop on
Real Time Programming, Atlanta, GA, USA, 15-17 May 1991, pp. 127–132.
ISSN: 1474-6670. DOI: https : / / doi . org / 10 . 1016 / S1474 - 6670(17)
51283-5. URL: https://www.sciencedirect.com/science/article/pii/
S1474667017512835.

[8] Neil C. Audsley et al. “Applying new scheduling theory to static priority
pre-emptive scheduling”. In: Softw. Eng. J. 8 (1993), pp. 284–292. URL: https:
//api.semanticscholar.org/CorpusID:310239.

[9] Theodore P. Baker. “A Comparison of Global and Partitioned EDF
Schedulability Tests for Multiprocessors TR-051101”. In: 2005. URL: https :
//api.semanticscholar.org/CorpusID:2610522.

[10] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor
Scheduling for Real-Time Systems. Springer Publishing Company, Incorporated,
2015. ISBN: 3319086952.

[11] Sanjoy K. Baruah et al. “Proportionate progress: A notion of fairness in
resource allocation”. In: Algorithmica 15 (2005), pp. 600–625.

[12] Waldemar Bauer and et al. “DLR Reusability Flight Experiment ReFEx”. In:
Acta Astronautica (Nov. 2019). URL: https://elib.dlr.de/132256/.

[13] G. Bernat, A. Burns, and A. Liamosi. “Weakly hard real-time systems”. In:
IEEE Transactions on Computers 50.4 (2001), pp. 308–321. DOI: 10.1109/12.
919277.

https://doi.org/10.1145/3412816.3412817
https://doi.org/10.1145/3412816.3412817
https://doi.org/10.1145/3412816.3412817
https://enterprise-support.nvidia.com/s/article/what-is-cpu-affinity-x#:~:text=CPU%20affinity%20enables%20binding%20a,each%20one%20on%20different%20core.
https://enterprise-support.nvidia.com/s/article/what-is-cpu-affinity-x#:~:text=CPU%20affinity%20enables%20binding%20a,each%20one%20on%20different%20core.
https://enterprise-support.nvidia.com/s/article/what-is-cpu-affinity-x#:~:text=CPU%20affinity%20enables%20binding%20a,each%20one%20on%20different%20core.
https://enterprise-support.nvidia.com/s/article/what-is-cpu-affinity-x#:~:text=CPU%20affinity%20enables%20binding%20a,each%20one%20on%20different%20core.
http://microelectronics.esa.int/gr740/RTEMS-SMP-StatusReportEmbBrains-2015-10.pdf
http://microelectronics.esa.int/gr740/RTEMS-SMP-StatusReportEmbBrains-2015-10.pdf
https://doi.org/10.1109/ECRTS.2005.6
https://api.semanticscholar.org/CorpusID:1397137
https://doi.org/https://doi.org/10.1016/S1474-6670(17)51283-5
https://doi.org/https://doi.org/10.1016/S1474-6670(17)51283-5
https://www.sciencedirect.com/science/article/pii/S1474667017512835
https://www.sciencedirect.com/science/article/pii/S1474667017512835
https://api.semanticscholar.org/CorpusID:310239
https://api.semanticscholar.org/CorpusID:310239
https://api.semanticscholar.org/CorpusID:2610522
https://api.semanticscholar.org/CorpusID:2610522
https://elib.dlr.de/132256/
https://doi.org/10.1109/12.919277
https://doi.org/10.1109/12.919277

Bibliography 62

[14] Marko Bertogna and Michele Cirinei. “Response-Time Analysis for Globally
Scheduled Symmetric Multiprocessor Platforms”. In: 28th IEEE International
Real-Time Systems Symposium (RTSS 2007). 2007, pp. 149–160. DOI: 10.1109/
RTSS.2007.31.

[15] Bin Packing problem. Visited on 23.01. 2024. URL: https://iq.opengenus.org/
bin-packing-problem/.

[16] Enrico Bini. “Measuring the Performance of Schedulability Tests”. In:
Real-Time Systems 30 (May 2005), pp. 129–154. DOI: 10.1007/s11241- 005-
0507-9.

[17] Giorgio C. Buttazzo. “Rate Monotonic vs. EDF: Judgment Day”. In: Embedded
Software. Ed. by Rajeev Alur and Insup Lee. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 67–83. ISBN: 978-3-540-45212-6.

[18] John M. Calandrino, James H. Anderson, and Dan P. Baumberger. “A Hybrid
Real-Time Scheduling Approach for Large-Scale Multicore Platforms”. In: 19th
Euromicro Conference on Real-Time Systems (ECRTS’07). 2007, pp. 247–258. DOI:
10.1109/ECRTS.2007.81.

[19] John Carpenter et al. “A Categorization of Real-time Multiprocessor
Scheduling Problems and Algorithms”. In: (June 2003).

[20] Robert Davis. “A Survey of Hard Real-Time Scheduling for Multiprocessor
Systems”. In: ACM Comput. Surv. 43 (Oct. 2011). DOI: 10 . 1145 / 1978802 .
1978814.

[21] Robert I. Davis and Alan Burns. “Improved Priority Assignment for Global
Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-Time Systems”.
In: IEEE International Conference on Real-Time Systems (RTS). Real-Time Systems
Research Group, Department of Computer Science, University of York. York,
UK.

[22] Michael L. Dertouzos. “Control Robotics: The Procedural Control of Physical
Processes”. In: IFIP Congress. 1974. URL: https://api.semanticscholar.org/
CorpusID:38135638.

[23] Juraj Feljan, Jan Carlson, and Tiberiu Seceleanu. “Towards a Model-Based
Approach for Allocating Tasks to Multicore Processors”. In: 2012 38th
Euromicro Conference on Software Engineering and Advanced Applications. 2012,
pp. 117–124. DOI: 10.1109/SEAA.2012.56.

[24] N. Fisher, S. Baruah, and T. P. Baker. “The partitioned scheduling of sporadic
tasks according to static-priorities”. In: 18th Euromicro Conference on Real-Time
Systems (ECRTS’06). July 2006, 10 pp.–127. DOI: 10.1109/ECRTS.2006.30.

[25] A. Foong, J. Fung, and D. Newell. “An in-depth analysis of the impact of
processor affinity on network performance”. In: Proceedings. 2004 12th IEEE
International Conference on Networks (ICON 2004) (IEEE Cat. No.04EX955).
Vol. 1. 2004, 244–250 vol.1. DOI: 10.1109/ICON.2004.1409136.

[26] M. Gonzales Harbour and J.C. Palencia. “Response time analysis for tasks
scheduled under EDF within fixed priorities”. In: RTSS 2003. 24th IEEE
Real-Time Systems Symposium, 2003. 2003, pp. 200–209. DOI: 10.1109/REAL.
2003.1253267.

https://doi.org/10.1109/RTSS.2007.31
https://doi.org/10.1109/RTSS.2007.31
https://iq.opengenus.org/bin-packing-problem/
https://iq.opengenus.org/bin-packing-problem/
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/ECRTS.2007.81
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/1978802.1978814
https://api.semanticscholar.org/CorpusID:38135638
https://api.semanticscholar.org/CorpusID:38135638
https://doi.org/10.1109/SEAA.2012.56
https://doi.org/10.1109/ECRTS.2006.30
https://doi.org/10.1109/ICON.2004.1409136
https://doi.org/10.1109/REAL.2003.1253267
https://doi.org/10.1109/REAL.2003.1253267

Bibliography 63

[27] Arpan Gujarati, Felipe Cerqueira, and Björn B. Brandenburg. “Outstanding
Paper Award: Schedulability Analysis of the Linux Push and Pull Scheduler
with Arbitrary Processor Affinities”. In: 2013 25th Euromicro Conference on
Real-Time Systems. 2013, pp. 69–79. DOI: 10.1109/ECRTS.2013.18.

[28] Zain A. H. Hammadeh. “Deadline Miss Models for Temporarily Overloaded
Systems”. PhD thesis. Sept. 2019. DOI: 10.24355/dbbs.084-201909020857-0.
URL: https://leopard.tu-braunschweig.de/receive/dbbs_mods_00066886.

[29] Zain A. H. Hammadeh and Rolf Ernst. “Weakly-Hard Real-Time Guarantees
for Weighted Round-Robin Scheduling of Real-Time Messages”. In: 2018 IEEE
23rd International Conference on Emerging Technologies and Factory Automation
(ETFA). Vol. 1. Sept. 2018, pp. 384–391. DOI: 10.1109/ETFA.2018.8502621.

[30] Zain A. H. Hammadeh, Sophie Quinton, and Rolf Ernst. “Weakly-Hard
Real-Time Guarantees for Earliest Deadline First Scheduling of Independent
Tasks”. In: ACM Trans. Embed. Comput. Syst. 18.6 (Dec. 2019). ISSN: 1539-9087.
DOI: 10.1145/3356865. URL: https://doi.org/10.1145/3356865.

[31] Jian-Jun Han et al. “Blocking-Aware Partitioned Real-Time Scheduling for
Uniform Heterogeneous Multicore Platforms”. In: ACM Trans. Embed. Comput.
Syst. 19.1 (Feb. 2020). ISSN: 1539-9087. DOI: 10.1145/3366683. URL: https:
//doi.org/10.1145/3366683.

[32] Importance of Worst-Case Execution Time. Visited on 04.01. 2024. URL: https:
//www.rapitasystems.com/worst-case-execution-time.

[33] Hye-Churn Jang and Hyun-Wook Jin. “MiAMI: Multi-core Aware Processor
Affinity for TCP/IP over Multiple Network Interfaces”. In: 2009 17th IEEE
Symposium on High Performance Interconnects. 2009, pp. 73–82. DOI: 10.1109/
HOTI.2009.19.

[34] J. Kang and D. G. Waddington. “Load Balancing Aware Real-Time Task
Partitioning in Multicore Systems”. In: 2012 IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications. Aug. 2012,
pp. 404–407. DOI: 10.1109/RTCSA.2012.71.

[35] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. “Partitioned Fixed-Priority
Preemptive Scheduling for Multi-core Processors”. In: 2009 21st Euromicro
Conference on Real-Time Systems. July 2009, pp. 239–248. DOI: 10.1109/ECRTS.
2009.33.

[36] J.P. Lehoczky. “Fixed priority scheduling of periodic task sets with arbitrary
deadlines”. In: [1990] Proceedings 11th Real-Time Systems Symposium. 1990,
pp. 201–209. DOI: 10.1109/REAL.1990.128748.

[37] C. L. Liu and James W. Layland. “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”. In: J. ACM 20.1
(Jan. 1973), pp. 46–61. ISSN: 0004-5411. DOI: 10.1145/321738.321743. URL:
https://doi.org/10.1145/321738.321743.

[38] E.P. Markatos and T.J. LeBlanc. “Using processor affinity in loop scheduling
on shared-memory multiprocessors”. In: Supercomputing ’92:Proceedings of the
1992 ACM/IEEE Conference on Supercomputing. 1992, pp. 104–113. DOI: 10 .
1109/SUPERC.1992.236705.

[39] E.P. Markatos and T.J. LeBlanc. “Using processor affinity in loop scheduling
on shared-memory multiprocessors”. In: IEEE Transactions on Parallel and
Distributed Systems 5.4 (1994), pp. 379–400. DOI: 10.1109/71.273046.

https://doi.org/10.1109/ECRTS.2013.18
https://doi.org/10.24355/dbbs.084-201909020857-0
https://leopard.tu-braunschweig.de/receive/dbbs_mods_00066886
https://doi.org/10.1109/ETFA.2018.8502621
https://doi.org/10.1145/3356865
https://doi.org/10.1145/3356865
https://doi.org/10.1145/3366683
https://doi.org/10.1145/3366683
https://doi.org/10.1145/3366683
https://www.rapitasystems.com/worst-case-execution-time
https://www.rapitasystems.com/worst-case-execution-time
https://doi.org/10.1109/HOTI.2009.19
https://doi.org/10.1109/HOTI.2009.19
https://doi.org/10.1109/RTCSA.2012.71
https://doi.org/10.1109/ECRTS.2009.33
https://doi.org/10.1109/ECRTS.2009.33
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/SUPERC.1992.236705
https://doi.org/10.1109/SUPERC.1992.236705
https://doi.org/10.1109/71.273046

Bibliography 64

[40] G. Nelissen et al. “U-EDF: An Unfair But Optimal Multiprocessor Scheduling
Algorithm for Sporadic Tasks”. In: 2012 24th Euromicro Conference on Real-Time
Systems. 2012, pp. 13–23.

[41] Farhang Nemati. “Partitioned Scheduling of Real-Time Tasks on Multi-core
Platforms”. PhD thesis. Mälardalen University, 2010.

[42] Dionisio de Niz and Raj Rajkumar. “Partitioning bin-packing algorithms for
distributed real-time systems”. In: IJES 2 (Jan. 2006), pp. 196–208. DOI: 10.
1504/IJES.2006.014855.

[43] J. C. Palencia and M. González Harbour. “Response Time Analysis of EDF
Distributed Real-Time Systems”. In: J. Embedded Comput. 1.2 (Apr. 2005),
pp. 225–237. ISSN: 1740-4460.

[44] Dheeraj Reddy et al. “Bridging functional heterogeneity in multicore
architectures”. In: Operating Systems Review 45 (Feb. 2011), pp. 21–33. DOI:
10.1145/1945023.1945028.

[45] RTEMS. RTEMS Real Time Operating System (RTOS). URL: https://www.rtems.
org/.

[46] James D. Salehi, James F. Kurose, and Donald F. Towsley. “Further results in
affinity-based scheduling of parallel networking”. In: 1995. URL: https://
api.semanticscholar.org/CorpusID:15459500.

[47] René Schwarz and et al. “Overview of Flight Guidance, Navigation, and
Control for the DLR Reusability Flight Experiment (ReFEx)”. In: 8th European
Conference for Aeronautics and Space Sciences (EUCASS). July 2019. URL: https:
//elib.dlr.de/129086/.

[48] Insik Shin, Arvind Easwaran, and Insup Lee. “Hierarchical Scheduling
Framework for Virtual Clustering of Multiprocessors”. In: 2008 Euromicro
Conference on Real-Time Systems. 2008, pp. 181–190. DOI: 10.1109/ECRTS.2008.
28.

[49] Wenbo Xu et al. “Improved Deadline Miss Models for Real-Time Systems
Using Typical Worst-Case Analysis”. In: 2015 27th Euromicro Conference on
Real-Time Systems. July 2015, pp. 247–256. DOI: 10.1109/ECRTS.2015.29.

[50] Ying Yi et al. “An ILP formulation for task mapping and scheduling
on multi-core architectures”. In: 2009 Design, Automation & Test in Europe
Conference & Exhibition. 2009, pp. 33–38. DOI: 10.1109/DATE.2009.5090629.

https://doi.org/10.1504/IJES.2006.014855
https://doi.org/10.1504/IJES.2006.014855
https://doi.org/10.1145/1945023.1945028
https://www.rtems.org/
https://www.rtems.org/
https://api.semanticscholar.org/CorpusID:15459500
https://api.semanticscholar.org/CorpusID:15459500
https://elib.dlr.de/129086/
https://elib.dlr.de/129086/
https://doi.org/10.1109/ECRTS.2008.28
https://doi.org/10.1109/ECRTS.2008.28
https://doi.org/10.1109/ECRTS.2015.29
https://doi.org/10.1109/DATE.2009.5090629

	Declaration of Authorship
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Use Case Scenario
	Chapter Overview

	System Model & Problem Statement
	System Model
	Problem Statement
	Related Work

	Background on Schedulability Analysis
	Scheduling Approaches for Multi-core Systems
	Global Scheduling Approach
	Partitioned Scheduling Approach
	Cluster Scheduling Approach
	Arbitrary Processor Affinities (APA) Scheduling

	Schedulability Analysis
	Busy-window Analysis
	Response Time Analysis (RTA) for Global Scheduling
	Schedulability Analysis for APA Scheduling

	State-of-the-Art on Task Allocation
	Tasks Allocation Methods for Multi-core Architectures
	Bin-packing Heuristics

	Task Allocation Approaches for APA
	Global First APA (gAPA) Approach
	Shrinking Based Analysis

	Partitioned First APA (pAPA) Approach

	Optimized Affinity Sets for APA
	Integer Linear Programming (ILP)
	An Efficient ILP Solution
	Tailored Task Scheduling Solutions: Versatility of ILP in Adapting to Varied Constraints

	ILP Objective: Utilization vs Priority as Weight
	System Model

	Evaluation of ILP Strategies: Utilization-Centric vs. Priority-Driven Task Allocation
	Results and Interpretation of Outcomes

	Experiments
	Synthetic Test Case Generation
	Priority Assignment Algorithms: Their Influence on Various Approaches
	Deadline Monotonic Policy
	DkC Assignment Policy
	Results and Interpretation of The Outcome

	Evaluating Different Bin Packing Algorithms within pAPA and Partitioned Scheduling
	Results and Interpretation of the Outcome

	A Comparative Analysis of the Effectiveness of Different Approaches
	Results and Interpretation of the Outcome

	A Comparative Analysis of the Execution Time of Various Approaches
	Results and Interpretation of the Outcome

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

