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Abstract 
Context Remote sensing time series (hereafter 
called time series) and telemetry data are widely used 
to study animal-environment relationships. However, 
both data sources are subject to uncertainties that 
can cause erroneous conclusions. To date, only the 
uncertainty of telemetry data can be estimated, e.g. 
through movement modelling, while information on 
the uncertainty of time series is often lacking. Con-
sequently, it remains challenging to assess if and how 
the results of animal-environment studies are affected 
by cumulative uncertainties of telemetry and time 
series data.
Objectives To address this gap, we proposed an 
approach to approximate time series uncertainties. 
Coupled with movement modelling, this allows to 
determine whether the results of animal-environment 

studies are robust to the cumulative uncertainties of 
time series and telemetry data. We demonstrated the 
procedure with a study that used time series to dis-
tinguish periods of favourable/poor prey accessibility 
for white storks. Our objective was to test whether the 
storks’ preference for fields during periods of favour-
able prey accessibility could be validated despite the 
uncertainties.
Methods We estimated the telemetry data uncertain-
ties based on continuous-time movement modelling, 
and approximated time series uncertainties based on 
data subsampling. We used Monte Carlo simulations 
to propagate the uncertainties and to generate several 
estimates of the stork habitat use and levels of prey 
accessibility. These data were applied in two habitat 
selection analyses to derive probability distributions 
of the analyses results, allowing us to characterise the 
output uncertainties.
Results We found that, after accounting for uncer-
tainty, favourable and poor prey accessibility periods 
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were well discriminated, with storks showing the 
expected degree of preference/avoidance for them. 
However, our uncertainty analysis also showed, that 
compared to croplands, grasslands required more 
temporal NDVI samples to reliably identify these 
periods. Furthermore, the NDVI itself did not appear 
to be a coherent predictor of stork habitat selection 
when uncertainties were accounted for.
Conclusion Our findings highlight the importance 
of validating results by assessing and quantifying the 
effect of input data uncertainties in animal-environ-
ment studies. To our knowledge, the approach pre-
sented is the first to assess the cumulative uncertainty 
of time series and telemetry data, hopefully raising 
awareness of the consequences of input data uncer-
tainties for future studies.

Keywords Landsat time series · Uncertainty · 
Vegetation dynamics · NDVI · White stork · Ciconia 
ciconia · Habitat selection

Introduction

Remote sensing and telemetry data are widely used 
to study environmental impacts on animal life (Kays 
et  al. 2015; Nathan et  al. 2022). Analyses based on 
these sources already helped to uncover a variety of 
animal-environment interactions (e.g. Pekarsky et al. 
2021) and can assist to examine landscape changes 
and their implications for individuals and entire popu-
lations (del Mar Delgado et al. 2018). These, in turn, 
provide a baseline for ecologists and allow landscape 
planners and managers to make informed decisions 
that benefit animal welfare and conservation (Kerr 
and Ostrovsky 2003; Pettorelli et al. 2011).

Vegetation characteristics and their dynamics 
are key features of animal habitats because they are 
linked to the availability of food, nesting sites and 
shelter (He et al. 2015). Remote sensing time series—
hereafter referred to as time series—are the primary 
means of capturing vegetation dynamics in animal-
environment studies. Typically, data with moder-
ate spatial (250–1000 m)/high temporal (~ 1–2 days) 
resolution are used to infer large-scale vegetation 
phenology (Pettorelli et  al. 2014; Neumann et  al. 
2015). For example, the “Green Wave Surfer” studies 
relied on multitemporal MODIS imagery to identify 
areas/periods of high forage quality for herbivores 

(e.g. Aikens et  al. 2017). Enhancements to exist-
ing satellite missions (e.g., Landsat) and new mis-
sions (e.g., Sentinel) are increasingly providing time 
series with high spatial (10–30 m)/medium temporal 
(~ 2–10  days) resolution (Roy and Yan 2018). Con-
sequently, small-scale vegetation dynamics can also 
be identified and addressed in animal ecology. As an 
example, Standfuß et  al. (2022) used Landsat-based 
Normalized Difference Vegetation Index (NDVI) 
time series to distinguish periods of favourable/poor 
prey accessibility for white storks at the field scale. 
They first identified local half-maximum dates from 
fitted intra-annual NDVI profiles per field (Fig. 1A). 
These delineate the midpoints between successive 
NDVI minima/maxima and are indicators for leaf-
unfolding and loss of canopy structure (e.g. due to 
harvesting), respectively (Fisher et  al. 2006; Brad-
ley et al. 2007). Periods of short vegetation are then 
defined as consecutive days with NDVI values below 
those of the nearest half-maximum date(s), while the 
remaining periods should exhibit high vegetation. 
The former are known to be advantageous for storks 
to access to their prey (Johst et al. 2001).

Continued improvements in time series data and 
methods, combined with advances in telemetry track-
ing and movement analyses (Nathan et al. 2022), are 
opening up new opportunities to study the effects of 
human-induced habitat change (Northrup et al. 2021). 
However, like any measurement system, both data 
sources are associated with uncertainties that can 
potentially confound the results of animal-environ-
ment studies. Telemetry devices record the location 
of animals in equal temporal intervals. In practice, 
sampling is often irregular and the recorded locations 
are error-prone (Frair et al. 2010). Irregular sampling 
is mostly caused by failed location attempts, which 
can be triggered by dense vegetation cover and fur-
ther exacerbated in complex terrain (Dussault et  al. 
1999; D’Eon et  al. 2002). Furthermore, for solar-
powered devices, the temporal sampling interval can 
be reduced during prolonged periods of bad weather 
to conserve battery power (e.g. from 5 to 20 min in 
Rotics et al. (2016)). In addition to the irregular sam-
pling, the tracked locations are inaccurate by at least 
a few metres, which is driven by landscape character-
istics and by the Global Navigation Satellite System 
(GNSS) in use (Fleming et  al. 2020). These errors 
are not consistent and can vary by location (Flem-
ing et al. 2015, 2020). Earth observation satellites, by 



Landsc Ecol            (2024) 39:7  

1 3

Page 3 of 21     7 

Vol.: (0123456789)

contrast, capture imagery of the entire planetary sur-
face at regular temporal intervals. However, optical 
satellite data, the main source for vegetation monitor-
ing, only provide valid observations under cloud-free 
conditions (Li et al. 2022). A regular temporal resolu-
tion is therefore rarely achieved, and coarser, irregular 
intervals are the norm (King et al. 2013). Even data 
products with fixed temporal intervals (e.g., MODIS 
8-/16-day products) are affected. These usually 
specify regular observation dates, although the data 
for these are often derived from images taken days 
apart (Guindin-Garcia et al. 2012; Zeng et al. 2021). 
Besides the temporal irregularities, optical satellite 
imagery itself is subject to radiometric uncertainty. It 
can be caused by measurement and instrument noise, 
atmospheric conditions, calibration and data process-
ing (Janesick 2001; Atkinson and Foody 2006; Chan-
der et  al. 2013), and expresses the degree of doubt 
about the measured values at each pixel/spectral band 
(Gorroño et al. 2018).

A thorough understanding of habitat selection and 
its impact on animals is crucial for effective conser-
vation practices (Kerr and Ostrovsky 2003). Neglect-
ing uncertainties in the input data can lead to incor-
rect conclusions and misdirected conservation efforts 
(Costa et  al. 2018). To increase the likelihood of 

achieving good conservation results, uncertainties 
need to be quantified, reported (e.g., through toler-
ance intervals or uncertainty maps), and sensitively 
incorporated into conservation planning (Barry and 
Elith 2006; Jansen et  al. 2022). Uncertainties in 
telemetry data can bias ecological inferences through 
overrepresentation of some better sampled habitats 
or spatial mismatch between used and sampled loca-
tions (D’Eon et al. 2002; Frair et al. 2010). Numerous 
methods have therefore been developed to address 
uncertainty in telemetry data. Advanced techniques 
treat animal movement not as a sequence of locations, 
but as a continuous-time stochastic process (CTSP) 
(Calabrese et  al. 2016). They fit a movement model 
to the telemetry data and then perform probabilistic 
path reconstruction. A major advantage of the CTSP 
approach is that it can account for irregular sampling 
and location errors (e.g., through a pre-calibrated 
error model (Fleming et  al. 2020)) in the modelling 
process. When errors are specified, path reconstruc-
tion is performed fully probabilistically by generating 
predictions of the ‘true’ locations and then interpolat-
ing between them, all depending on the movement 
model, data sampling and error (Fleming et al. 2015). 
The latter permits the integration and quantification 
of telemetry uncertainty when deriving metrics of 

Fig. 1  Original discrimination of periods of favourable/poor 
prey accessibility for storks (based on half-maximum dates) on 
an exemplary field (A) and schematic representation of poten-

tial deviations of these periods (B) due to radiometric uncer-
tainty and uncertainty about the fitted NDVI profile due to 
irregular temporal NDVI sampling
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habitat use, such as home ranges or utilization distri-
butions (Calabrese et al. 2016).

Although advances in movement modelling meth-
ods enable accounting for uncertainties in telemetry 
data in animal-environment studies, uncertainties 
in time series data have been disregarded thus far. 
However, these can also bias inferences made about 
habitat selection, which is illustrated below using the 
work of Standfuß et  al. (2022). Their analyses were 
based on intra-annual NDVI profiles fitted to tempo-
ral NDVI samples from Landsat time series. These 
data can be affected differently by time series uncer-
tainties. First, the radiometric uncertainty per-pixel/
spectral band would propagate to a certain scatter of 
the NDVI values of the temporal samples (Fig.  1B) 
(Graf et  al. 2023). Second, uncertainties in the fit 
of intra-annual NDVI profiles are introduced by the 
irregular temporal sampling of NDVI (Schwieder 
et  al. 2016). For example, by omitting just one of 
the initial temporal samples, the fitted NDVI profile 
of a field (Fig. 1B) can deviate significantly from the 
original one (Fig. 1A). Radiometric uncertainty and/
or irregular temporal sampling can therefore affect 
the temporal differentiation of favourable/poor prey 
accessibility for storks (compare Fig. 1A/B) and ulti-
mately the validity of the study’s findings.

To date, one factor potentially limiting the ability 
to account for time series uncertainties is likely to 
be the lack of information about them. First, there 
is no alternative system that provides daily refer-
ence measurements, such as NDVI, for large study 
areas. Second, per-pixel/spectral band radiometric 
uncertainties are often not reported by data provid-
ers, although efforts are underway for Sentinel-2 
(e.g. Gorroño et  al. 2018). Furthermore, the char-
acterisation of radiometric uncertainties is both 

computationally and mathematically challenging, 
e.g. due to the so-called ‘curse of dimensionality’ 
(Kerr et  al. 2015), and likely beyond the scope of 
individual studies. Therefore, it remains difficult, 
if not impossible, to assess whether and how the 
results of animal-environment studies are affected 
by the cumulative uncertainty of time series and 
telemetry data. This is particularly true when using 
time series data for which radiometric uncertainty 
has not yet been reported (e.g. Landsat).

To address this gap, we propose a data-driven 
approach to approximate uncertainties in time series, 
that can be applied in scenarios where official infor-
mation on them is lacking. Coupled with advanced 
movement modelling, this allows to determine 
whether the results of animal-environment studies are 
robust to the cumulative uncertainties of time series 
and telemetry data. Using the study by Standfuß et al. 
(2022) as an example, we apply our approach and 
approximate time series uncertainties based on data 
subsampling. Additionally, we use a CTSP method 
to characterise uncertainties of the telemetry data 
through probabilistic path reconstruction. Based on 
these two uncertainty estimates, we aim to evalu-
ate whether the storks’ preference for fields during 
periods of favourable prey accessibility can be con-
firmed. We use a Monte Carlo method to propagate 
the telemetry and time series uncertainties, and derive 
different estimates of stork habitat use and levels of 
prey accessibility at field-scale. These data are then 
applied in two analyses to derive probability distribu-
tions of the analyses results and quantify the output 
uncertainties. Both analyses examine foraging habi-
tat selection but at different spatial scales. The first 
compares all used fields with all available fields in 
the storks’ breeding areas, while the second compares 
individual used (presence) fields with simultaneously 
unused (absence) ones in their immediate vicinity. 
By following this approach, we aim to answer two 
research questions:

RQ1  Is the time series-based differentiation of prey 
accessibility still valid when accounting for 
cumulative input data uncertainties?

RQ2  Does the number of temporal NDVI samples 
affect the validity of the time series-based dif-
ferentiation of prey accessibility?

Fig. 2  Overview of the study sites and the remote sensing 
time series data (A) and telemetry data (B) used. Additionally, 
the proxies used to capture the time series-based prey acces-
sibility for storks (half-maximum dates and half-maximum-
amplitude (HM-amplitude)) (D/E) and to characterise stork 
habitat use (foraging time) C are shown. Regarding D/E, peri-
ods of favourable prey accessibility occur when fields have 
low vegetation and low NDVI. However, what is considered 
a low NDVI value is subjective and depends on the vegeta-
tion type (compare D/E) (Pettorelli et  al. 2011). Plot C addi-
tionally shows a Kernel Density Estimate (KDE), which was 
used to characterise the distribution of measured foraging time 
per field/stork/foraging bout, considering uncertainties in the 
telemetry data

◂



 Landsc Ecol            (2024) 39:7 

1 3

    7  Page 6 of 21

Vol:. (1234567890)

Material and methods

Study sites

The spatial focus of the study by Standfuß et  al. 
(2022) was on the breeding areas of 18 adult storks 
(3.3 km around each nest) during the 2014 breeding 
season. These were located in north-eastern Germany 
(Fig.  2A) and consisted mainly of croplands and 
intensively cultivated grasslands (Zurell et al. 2018).

Input data

The data used for the time series-based differentiation 
of prey accessibility for storks (Standfuß et al. 2022) 
are described below:

The spatial reference areas of the study were crop-
land and grassland fields within the storks’ breeding 
areas (total of 2855 cropland fields/2908 grassland 
fields). Thus, a dataset capturing the geometries of 
these entities was generated using the Digital Land-
cover Model of Germany (BKG 2018) and a Landsat-
based landcover classification (Mack et al. 2016).

Field-level habitat use by the storks was assessed 
based on E-obs telemetry data (e-obs GmbH, 
Munich, Germany) with assigned behavioural infor-
mation recorded during the 2014 breeding season 
(April-August). The data were initially divided into 
foraging bouts, that captured consecutive locations 
where the birds displayed typical foraging behaviour, 
i.e. ‘walking’ and brief ‘resting’ periods. Using CTSP 
movement modelling (Calabrese et al. 2016), multiple 
quasi-continuous movement paths (15  s resolution) 
were then simulated for each bout until convergence 
(Fig.  2B). Finally, these simulation sets were linked 
to the field geometry dataset to quantify the birds’ 
habitat use, measured as the median foraging time per 
field/foraging bout (Fig. 2C).

A time series of Landsat-7/-8 (Level-1) data from 
2014 (58 Landsat-8 and 46 Landsat-7 scenes, spread 
over five tiles (Fig.  2A)) was used to capture peri-
ods of favourable/poor prey accessibility for storks 
per field. These data were initially atmospherically 
corrected to derive surface reflectance. Invalid pix-
els such as clouds, shadows or those affected by the 
SLC-off failure (Landsat-7) were excluded. Addition-
ally, the Landsat-7 data were adjusted (harmonized) 
to the reflectance wavelength of the Landsat-8 data. 
After pre-processing, the NDVI was calculated for 

each image in the time series and linked to the field 
geometry dataset to derive the field-wise temporal 
NDVI samples (median per time step) (Fig.  2D/E). 
Only fields with ≥ six temporal NDVI samples were 
considered further, as Franke et al. (2012) found that 
fewer records did not adequately represent vegeta-
tion phenology. Using thin-plate spline curve fitting 
(Nychka et  al. 2017), field-wise NDVI profiles with 
a 1-day resolution were then derived from the tem-
poral NDVI samples. These formed the basis for the 
identification of the half-maximum dates (midpoints 
between successive NDVI minima/maxima) and for 
distinguishing periods of favourable (NDVI < NDVI 
closest half-maximum date) from those of poor 
(NDVI > NDVI closest half-maximum date) prey 
accessibility for storks. In addition, Standfuß et  al. 
(2022) introduced and calculated the half-maximum 
amplitude (HM-amplitude) (Fig. 2D/E) to be used as 
a continuous predictor for stork prey accessibility in 
habitat selection modelling. It measures the differ-
ence between the NDVI of a given day  (NDVIDay) 
and the NDVI of the closest half-maximum date(s) 
 (NDVIHM_closest), which can be simply written as:

 It therefore takes positive values during favourable 
prey accessibility periods and negative values during 
periods with poor prey accessibility.

Additional details on the input data processing are 
provided in the “Supporting Information” by Stand-
fuß et al. (2022).

Analyses of foraging habitat selection and key 
findings

Standfuß et al. (2022) investigated stork foraging hab-
itat selection in two analyses carried out at two dif-
ferent spatial scales (analysis A—breeding area scale 
and analysis B—field scale). Their overall aim was 
to identify whether the time series-based differentia-
tion of prey accessibility actually captures favourable/
poor foraging conditions for storks. Furthermore, 
it was tested whether NDVI was less effective than 
HM-amplitude in predicting habitat selection (within 
analysis B). For storks, low NDVI values are also 
assumed to capture favourable foraging conditions 
(Zurell et al. 2018) (Fig. 2D/E).

HM − amplitude = NDVIHMclosest
− NDVIDay
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Analysis A compared the habitat characteristics of 
all used fields with those of all available fields in the 
breeding areas on a daily basis. Habitat characteris-
tics were specified as either favourable or poor con-
ditions for storks to access prey. Use and availability 
were contrasted using the Manly selectivity index 
(Manly 2002) which enabled to identify days with 
significant (Chi-squared test: p-value < 0.05) selection 
(use > availability) or avoidance (use < availability) of 
the two habitat characteristics. The proportion of days 
(throughout the breeding season) with significant 
avoidance/selection of favourable/poor habitat char-
acteristic were determined separately for croplands 
and grasslands. The results by Standfuß et al. (2022) 
indicated that storks tended to prefer favourable 
habitat characteristics when foraging, as these were 
selected to a greater extent than poor ones (croplands/
grasslands). Furthermore, in croplands, poor habitat 
characteristics were avoided more than favourable 
habitat characteristics during the breeding season.

Analysis B was oriented towards the location 
of individual fields in use and compared them with 
simultaneously unused fields in their immediate 
vicinity. For this purpose, a presence-absence dataset 
was derived, which distinguished visited fields (for-
aging time > 1 min) and unvisited fields (random set 
of 3 fields with foraging time < 1  min within 1  km 
distance of a visited field (adopted from Zurell et al. 
(2018)). Each of the presence-absence fields was 
characterised by four predictor variables: nest dis-
tance (conditioned on the visiting stork), landcover, 
NDVI, and HM-amplitude. The relationship between 
foraging habitat selection (presence-absence) and the 
predictor variables was modelled with two General-
ized Linear Mixed Models. In these models, both nest 
distance and landcover, and either HM-amplitude 
(Model 1) or NDVI (Model 2) were included as pre-
dictors. Stork identity was taken as random effect on 
slope and intercept of the predictors. The two-model 
setup was necessary because HM-amplitude and 
NDVI were correlated. Standfuß et  al. (2022) found 
a significant positive effect (p-value < 0.001) of the 
HM-amplitude on habitat selection, providing fur-
ther support that storks prefer to forage during peri-
ods with favourable prey accessibility. Furthermore, 
they identified HM-amplitude (Model 1) to be a more 
effective predictor than NDVI (Model 2), as its esti-
mated predictive power (effect size) was compara-
tively stronger.

In the next sections we outline the characterisation 
and propagation of the cumulative uncertainties of the 
telemetry and time series data used by Standfuß et al. 
(2022), to quantify their impact on the results of the 
two habitat selection analyses. We adhere to the pro-
cedure presented in the “Guide to the Expression of 
Uncertainty in Measurement” (GUM) (JCGM 2008a) 
as well as one of its supplements (JCGM 2008b).

Characterisation of input data uncertainties

For the telemetry data, we focussed on uncertain-
ties introduced through irregular sampling (bad 
weather/failed location attempts) and location inac-
curacies (landscape and GNSS dependent). The e-obs 
data used were already pre-calibrated for positional 
error. Thus, every simulation with a CTSP move-
ment model resulted in a prediction of one potential 
movement path taken by a stork during foraging, 
while accounting for irregular sampling and posi-
tional errors (Fleming et  al. 2015). In each simula-
tion set derived per foraging bout, all the paths taken 
together then indicate the probability that a stork for-
aged in a given area for a given time (Fleming et al. 
2015). In Standfuß et al. (2022), foraging habitat use 
and all associated variables (presence-absence) were 
assessed on the basis of foraging time per field. By 
combining the sets of simulated movement paths with 
the field geometry dataset, we could generate prob-
ability distributions of the foraging times per field/
stork during a foraging bout (Fig. 2C). These gave an 
estimate of the resulting uncertainty in the calculated 
foraging times.

With respect to the time series, we considered two 
sources of uncertainty; (1) the degree of doubt about 
the NDVI values at each temporal sample and (2) the 
irregular temporal sampling of NDVI.

(1) We considered the degree of doubt about the 
NDVI values of the temporal samples to be the result 
of radiometric uncertainty in the Landsat data. This 
radiometric uncertainty should propagate and lead 
to a certain spread in NDVI values when calculating 
the index (Graf et al. 2023). However, information on 
radiometric uncertainty of surface reflectance is not 
reported for Landsat data, and calculation using sen-
sor calibration information is both challenging and an 
active field of research (e.g. Gorroño et al. 2023). It is 
therefore beyond the scope of this and other applied 
studies to date. To still approximate the spread of 
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NDVI per sample day, we therefore proposed a data-
driven approach based on subsampling the tempo-
ral NDVI samples per field. First, we drew several 
unordered sets (without replacement) of six temporal 
samples (the minimum required to approximate intra-
annual vegetation phenology (Franke et  al. 2012)) 
from the available temporal NDVI samples (Fig. 3A). 
The number of these subsample sets depended on the 
total number of available temporal NDVI samples per 
field. We set the minimum number of required sub-
sample sets per field to > 75. The latter was a com-
promise between a reasonably sufficient approxima-
tion of the spread of NDVI values and minimal data 
loss (compared to Standfuß et al. (2022) in terms of 
the number of considered fields: Supplement A). We 
therefore relied on fields with ≥ 9 temporal NDVI 
samples, which allowed the generation of at least 
84 subsample sets per field. Based on the temporal 
NDVI samples of the subsample sets, we generated 
several intra-annual NDVI profiles (1-day resolu-
tion) (Fig. 3B) per field using thin-plate spline curve 
fitting provided in the R package ‘fields’ (Nychka 
et  al. 2017). The set of all NDVI profiles of a field 
allowed us to approximate probability distributions 
of possible NDVI values per day (Fig. 3C). The latter 
provided an estimate of the degree of doubt about the 
NDVI values on each temporal sampling day.

(2) Uncertainties due to irregular temporal NDVI 
sampling were not approximated by probability distri-
butions. We addressed these indirectly during uncer-
tainty propagation (next section).

To mathematically describe the estimated degree 
of doubt about the NDVI values per temporal sam-
pling day and about the foraging times per field/for-
aging bout, we derived probability density functions 
(PDFs) from the probability distributions using kernel 
density estimation (KDE) (Figs. 2 and 3C). KDE is a 
non-parametric method that does not require knowl-
edge of the shape of the underlying distribution, and 

has proven advantageous in data-driven applications 
(Lataniotis 2019). Only the bandwidth h from which 
the PDFs are derived needs to be specified. Here, we 

Fig. 3  Schematic overview of the approach used to approxi-
mate radiometric uncertainties of the temporal NDVI samples 
per field. A shows a selection of subsample sets derived based 
on the original temporal NDVI samples of a field. B displays 
the NDVI profiles that were fitted per subsample set as well as 
the original fitted NDVI profile. C shows the probability dis-
tribution of the NDVI values of a sampling day (DOY 220) 
and the kernel density estimate (KDE), which mathematically 
characterises the NDVI scatter and thus, the radiometric uncer-
tainty

▸
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used the R package ‘Kedd’ (Guidoum 2015) to deter-
mine appropriate h values through maximum-like-
lihood cross-validation, and then derived the PDFs 
through KDE using the R package ‘KernSmooth’ 
(Wand 2020).

Propagation of input data uncertainties

Below, we describe the propagation of the uncertain-
ties in the telemetry and time series data to quantify 
their impact on the results of analyses A and B. We 
refer to the temporal NDVI samples per field and 
the field-wise foraging times per foraging bout, i.e. 
the input data of Standfuß et al. (2022), as Xfields and 
Xforaging_bouts, respectively. Similarly, we refer to the 
original results of analyses A and B as YA and YB.

Since the PDFs characterising the uncertainties 
of Xfields and Xforaging_Bouts could not be characterised 
by Gaussian or T-distributions, the probability distri-
butions of YA and YB could not a priori be described 
through these distributions either. We therefore used 
Monte Carlo Simulation (MCS) to propagate the 
input data uncertainties (JCGM 2008b). The MCS 
repeatedly draws random samples – until convergence 
– from the input data PDFs and uses them to com-
pute different estimates of the analysis outputs. By 
accumulating the latter, it is then possible to obtain 
an estimate of the PDF of an output quantity and thus 
characterise its uncertainty.

In order to draw samples from an input data PDF, 
we used inverse transform sampling (Fig. 4: Step B). 
Given an input variable defined over a domain Ω, we 
estimated its Cumulative Density Functions (CDFs) 
− f ∶ Ω → [0;1] - by integration of their PDFs. In 
each MCS trial Mi, we then obtained input data sam-
ples—Xfields Mi and Xforaging_bouts Mi—by drawing ran-
dom numbers—�i—from a uniform distribution in 
[0;1] and computing fe−1(�i) . A single �i  was drawn 
for each independent input entity, i.e., one for every 
field i of Xfields and one for every foraging bout i of 
Xforaging_bouts. This �i was used to compute samples e, 
either of the NDVI values of the temporal samples of 
a field i or of the foraging times per field during a for-
aging bout i.

Within each MCS trial Mi, we then used the drawn 
NDVI values of the temporal samples of each field 
i—Xfields Mi—to first fit an intra-annual NDVI profile 
(1-day resolution) and then identify the half-maxi-
mum dates per field. These in turn provided the basis 

for distinguishing the periods of favourable/poor 
prey accessibility and for deriving the HM-amplitude 
(Fig. 4: Step C). Additionally, we generated presence-
absence locations (fields) based on the sampled for-
aging times per field/foraging bout i—Xforaging_bouts 
Mi. Finally, the above datasets were used as input for 
analyses A and B to calculate one realisation of YA Mi 
and YB Mi (Fig. 4: Step D). Taken together, the results 
of all MCS trials (N) characterise the probability dis-
tributions of YA and YB, i.e. P(YA) and P(YB) (Fig. 4: 
Step E).

We conducted two sets of MCS analyses to answer 
the research questions posed in this study. These dif-
fered in terms of how the uncertainties due to irreg-
ular NDVI sampling (Fig.  4: Step A) (e.g. missing 
NDVI samples due to high cloud cover on certain 
dates) were addressed.

To assess the general validity of the original out-
comes YA and YB and thus, of the time series-based 
differentiation of prey accessibility (RQ1), we per-
formed a single separate MCS analysis (MCS_a). In 
each MCS trial Mi, we first randomly selected a num-
ber n of (at least six) temporal samples e of each field 
i (Xfields) within the range of observation dates (Fig. 4: 
Step A_1/A_2). Subsequently, we drew the NDVI 
values for all e in n (Fig. 4: Step B).

To evaluate the influence of the number of tempo-
ral NDVI samples on the analysis outcomes YA and 
YB (RQ2), we performed five separate MCS analyses 
(MCS_b-MCS_f). In each MCS analysis, we speci-
fied the number n of temporal NDVI samples e to be 
considered – six up to ten – for all Xfields beforehand 
and only selected their dates randomly during each 
MCS trial Mi (Fig. 4: Step A_1/A_2). To ensure com-
parability of the results of the five MCS analyses and 
enable a certain variation of the randomly selected 
dates, we only considered fields with ≥ 13 tempo-
ral NDVI samples to investigate RQ2. This decision 
allowed us to reproduce the original results despite 
further data loss (compared to the number of fields 
considered to assess RQ1: Supplement A), but lim-
ited the testable number n of temporal samples to a 
maximum of ten.

In order to minimise the number of MCS trials N 
and thus the computational time for each MCS analy-
sis, we defined a convergence criterion. We calculated 
the standard deviation (SD) of the simulated results 
YA and YB after every 100th MCS trial and computed 
the difference between successive SDs (SD_diff). 
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Convergence of an MCS analysis was achieved when 
the SD_diff was ≤ 0.001 three times in a row. The lat-
ter ensured that the SD_diff was not the result of ran-
domly drawing similar samples within a batch of 100 
simulations. Following this procedure, we conducted 
1,300 MCS trials in the single separate MCS analysis 
(MCS_a) to address RQ1, and 1,100 (seven temporal 
samples) to 1,600 (ten temporal samples) trials in the 
five MCS analyses (MCS_b-MCS_f) to address RQ2.

Quantification of output uncertainties

Finally, we calculated three summary statistics 
(JCGM 2008a) based on P(YA) and P(YB) to quan-
tify the output uncertainties (Fig.  4: Step E). The 
mean provides an estimate of the output quantities 
and the standard deviation (SD) is a proxy for their 
standard uncertainty. In addition, the spread of the 
output quantities can be characterised through toler-
ance intervals. These statistical intervals cover a pre-
defined proportion of the population—here of P(YA) 
and P(YB)—with a certain level of confidence (cover-
age probability) (Meeker et al. 1991).

We derived mean, SD and 99%/95% tolerance 
intervals (covering 99% of the population with 95% 
confidence) based on P(YA) and P(YB) of each MCS 
analysis (RQ1: MCS_a and RQ2: MCS_b-MCS_f). 
As the probability distributions of the outputs were 
neither characterizable through Gaussian nor T-distri-
butions, we computed the tolerance intervals with a 
non-parametric approach using the R package ‘toler-
ance’ (Young 2010).

RQ1  Is the time series-based differentiation of prey 
accessibility still valid when accounting for 
cumulative input data uncertainties?

To answer RQ1, we investigated whether the 
results obtained after accounting for the uncertain-
ties of the input data still coincided with the original 
results YA and YB. Hence, we tested whether the for-
mer still indicate that storks preferentially selected 
habitats with favourable prey accessibility and/or 
avoided habitats with poor prey accessibility when 
foraging. Moreover, we evaluated the predictive 
power (effect size, direction and significance) of the 
NDVI and the HM-amplitude with respect to the 
uncertainties.

RQ2  Does the number of temporal NDVI samples 
influence the time series-based differentiation 
of prey accessibility?

RQ2 was examined in two ways. Similar to RQ1, 
we first tested if the results from the different MCS 
analyses (MCS_b-MCS_f) were still in line with the 
original results. Second, we evaluated whether the 
spread of P(YA) and P(YB) decreased/changed with 
more temporal samples.

In this study, we relied on subsets of the original 
data to investigate the effects of cumulative input 
data uncertainties. Specifically, we used a dataset 
with fields with ≥ 9 and ≥ 13 temporal NDVI samples 
to investigate RQ1 and RQ2, respectively. To assure 
consistency in the aforementioned comparisons, we 
recalculated the original results YA and YB based on 
these subsets using the original input data values.

Results

RQ1: Is the time series-based differentiation of 
prey accessibility still valid when accounting for 
cumulative input data uncertainties?

Analysis A Fig.  5 shows the probability distribu-
tions of the estimated proportions with which the 
storks selected/avoided foraging habitats (fields) 
with favourable/poor prey accessibility (hereafter 
termed favourable/poor habitats) in the breeding 
areas. After accounting for the uncertainties, the 
PDFs indicated that the birds selected favourable 

Fig. 4  Overview of the workflow (from top to bottom) for 
propagating input data uncertainties (telemetry and time 
series) (steps A–D) using Monte Carlo Simulation (MCS) to 
quantify the output uncertainties (results of analyses A and 
B) (step E). Step A applies only to the time series data and 
approximates uncertainties due to irregular temporal NDVI 
sampling by first defining the number (A_1) of temporal sam-
ples to be considered per field and then randomly selecting 
dates (day of the year) for these within the range of observa-
tion dates (A_2). Within step B inverse transform sampling 
is used to draw samples of the foraging times per field/forag-
ing bout (telemetry) and of the NDVI values (time series) of 
the temporal samples defined in step A. Step C then uses the 
samples to derive one realization (X Mi) of each input dataset 
(telemetry/time series). All N input data sets from one MCS 
analysis (X M1-N) are then used in analyses A and B (step D) to 
derive probability distributions of the analysis results (step E). 
The latter provide the basis for the calculation of measures that 
quantify the output uncertainty (step E)

◂
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Fig. 5  Proportion(s) of 
days (during the breeding 
season 2014) (x-axis) on 
which the studied storks 
selected/avoided foraging 
habitats with good/poor 
prey accessibility in crop-
lands (A) and grasslands 
(B). Each plot shows both, 
the original proportions 
(vertical lines) from Stand-
fuß et al. (2022) as well as 
the proportions calculated 
considering the cumulative 
input data (telemetry and 
time series) uncertainties 
(quantified by tolerance 
intervals and probability 
density distributions)
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habitats over poor habitats in both, croplands and 
grasslands (Fig. 5A/B). At the same time, we found 
that poor habitats were avoided more often than 
favourable habitats in croplands but not in grass-
lands. The above-mentioned proportions could be 
distinguished from each other, as indicated by their 
mostly non-overlapping tolerance intervals. Moreo-
ver, the distributions of most of the estimated pro-
portions of selection/avoidance of favourable/poor 
foraging habitats were consistent with those found 
in the original results by Standfuß et al. (2022) and 
fell within their 99% tolerance interval, except for 
‘avoidance of poor habitats’ in grasslands (Supple-
ment B).

Analysis B The probability distributions of the 
estimated effect size of the four predictors—nest 
distance, landcover, HM-amplitude and NDVI—
used to model the field-wise foraging habitat selec-
tion by storks are shown in Fig. 6. Nest distance and 
landcover appeared to be only marginally affected 
by the input data uncertainties, as indicated by their 
narrow tolerance intervals in both, Model 1 and 
Model 2 (Fig.  6A/B). In comparison, the width of 
the tolerance interval and the standard uncertainty 
(SD) (Supplement: C) were larger for HM-ampli-
tude (Model 1) and NDVI (Model 2). Overall, we 
observed a strong positive effect of HM-amplitude 
on stork habitat selection (Fig.  6A), indicated by 
the estimated effect size of 3.26 and the tolerance 
interval (2.61–3.92) not overlapping with zero (no 
effect). Moreover, this estimated effect size was 
only slightly smaller than its original counterpart 
(3.46) found by Standfuß et  al. (2022). NDVI, on 
the contrary, had a negative effect on foraging habi-
tat selection in both, the estimated and the original 
effect size (Fig.  6B). Nevertheless, our estimated 
effect size (−  0.67) was markedly larger (closer to 
zero) than the original effect size (− 1.54). This dif-
ference was so pronounced that the original effect 
size fell outside the estimated tolerance interval 
(−  1.34–0.04). In addition, we observed that the 
upper end of the tolerance interval of NDVI was 
approaching zero, indicating that the predictor did 
not have a significant effect on stork habitat selec-
tion in all MCS trials. Accordingly, we found nest 
distance, landcover and HM-amplitude to be signifi-
cant (p-value < 0.001) in all 1,300 (100.00%) MCS 
trials while NDVI was only significant in 222 (17.0 
8%) of them.

RQ2) Does the number of temporal NDVI samples 
influence the time series-based differentiation of prey 
accessibility?

Analysis A Fig. 7 shows the estimated proportions by 
which storks selected/avoided favourable/poor forag-
ing habitats (fields) (x-axis) in the breeding areas as 
a function of the number of temporal NDVI samples 
considered per MCS analysis (y-axis). In croplands, 
the estimated proportions and tolerance intervals 
provided evidence that storks selected favourable 
habitats more often than poor ones, and vice versa, 
avoided poor habitats to a greater extent than favour-
able ones (Fig. 7A). This pattern was consistent with 
the original results of Standfuß et  al. (2022), which 
fell within the tolerance intervals, and appeared to be 
independent of the number of temporal NDVI sam-
ples considered. Furthermore, the scatter associated 
with uncertainties of the estimates was similar among 
the results of the MCS analyses and decreased only 
slightly with more temporal samples. In grassland, 
however, a clear preference for favourable over poor 
habitats only emerged with ten temporal NDVI sam-
ples (Fig.  7B). When fewer temporal samples were 
considered, the estimates showed only a slight pref-
erence for favourable foraging habitats and were not 
consistent with the original results. The latter fell 
even outside the tolerance intervals in some cases. 
Moreover, when only six to nine temporal samples 
were used, the uncertainty was greater compared to 
ten temporal samples. This was reflected by wider 
and highly overlapping tolerance intervals and larger 
SDs (Supplement D).

Analysis B Fig. 8 shows the estimated effect sizes 
of the predictors used to model the field-wise forag-
ing habitat selection (x-axis) as a function of the 
number of temporal NDVI samples considered per 
MCS analysis (y-axis). In both, Model 1 and Model 
2, nest distance and landcover were not affected by 
the number of temporal NDVI samples considered 
(Fig.  8A/B). We observed a strong positive effect 
of the HM-amplitude on foraging habitat selection, 
consistent with the original effect size in Standfuß 
et  al. (2022), regardless of the number of tempo-
ral NDVI samples (Fig.  8A). This effect became 
most pronounced when nine to ten temporal NDVI 
samples were considered. The NDVI showed only 
a trend towards a small negative effect on foraging 
habitat selection in all MCS analyses. Furthermore, 
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Fig. 6  Effect size and 
direction (x-axis) of the four 
predictors—HM-amplitude 
(A), NDVI (B), nest dis-
tance (A/B) and landcover 
(grassland) (A/B)—used to 
model stork foraging habitat 
selection of white storks 
during the 2014 breeding 
season. Each plot shows 
both, the original effect size 
and direction (vertical line) 
from Standfuß et al. (2022)
as well as the effect size and 
direction (mean) that were 
determined under consid-
eration of the input data 
(telemetry and time series) 
uncertainties (including 
tolerance intervals and 
probability density distribu-
tions)
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the effect size estimated through the different MCS 
analyses was significantly larger (smaller effect) than 
the original effect size from Standfuß et  al. (2022), 
which fell always outside the estimated tolerance 

intervals (Fig. 8B). However, the effect size became 
more pronounced (smaller) when nine to ten tempo-
ral NDVI samples were used. With fewer temporal 
samples, the upper ends of the tolerance intervals of 

Fig. 7  Estimated 
proportion(s) (mean 
and tolerance intervals 
(99%/95%)) of days (dur-
ing the 2014 breeding 
season) (x-axis) on which 
the studied storks selected/
avoided foraging habitats 
with good/poor prey acces-
sibility in croplands (A) and 
grasslands (B) as a function 
of the number of temporal 
NDVI samples considered 
per MCS analysis (y-axis: 6 
to 10 samples). In addition, 
the original proportions 
(vertical lines) of Standfuß 
et al. (2022) are plotted
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NDVI approached zero (no effect). Overall, nest dis-
tance, landcover and HM-amplitude were significant 
predictors in more than 99% of the MCS trials of 

all MCS analyses. In contrast, NDVI was not a sig-
nificant predictor in most of the individual MCS tri-
als of the different MCS analyses. However, as more 

Fig. 8  Estimated effect size 
and effect direction (x-axis) 
(mean and tolerance inter-
vals (99%/95%)) of the pre-
dictors used to model stork 
foraging habitat selection 
as a function of the number 
of temporal NDVI samples 
considered per MCS analy-
sis (y-axis: 6 to 10 temporal 
NDVI samples). The four 
predictors considered are 
HM-amplitude (A), NDVI 
(B), nest distance (A/B) 
and landcover (grassland) 
(A/B). In addition, the 
original effect size and 
effect direction of the 
predictors (vertical lines) 
as found by Standfuß et al. 
(2022) are shown
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temporal NDVI samples were considered, the propor-
tion of trials in which NDVI was a significant predic-
tor increased from 11.47% (six samples) to 40.55% 
(ten samples) (Supplement: E).

Discussion

We have proposed a data-driven approach that 
allows the approximation of time series uncertain-
ties in scenarios where official information on these 
uncertainties is lacking. Considering the time series-
based differentiation of prey accessibility for storks 
by Standfuß et al. (2022) as an example, we applied 
our approach to characterise uncertainties of Land-
sat-based NDVI time series. Additionally, we used 
CTSP movement modelling to estimate uncertainties 
of telemetry data. This allowed us, for the first time, 
to assess whether the results of an animal-environ-
ment study are robust to cumulative uncertainties of 
the two input data sources. Our results showed that 
after accounting for input data uncertainties, periods 
of favourable/poor prey accessibility were well dis-
criminated, with storks showing the expected degree 
of preference/avoidance for them. However, in grass-
lands rather than croplands, we found that more tem-
poral NDVI samples were needed to reliably identify 
these periods. Furthermore, NDVI derived from fitted 
NDVI profiles did not appear to be a coherent pre-
dictor of stork habitat selection when uncertainties 
were considered. The latter two points highlight the 
importance of assessing the impact of uncertainties 
in input data, which is essential for validating results 
and identifying shortcomings. Below, we discuss our 
findings and the proposed approach for characterising 
time series uncertainties.

RQ1  Is the time series-based differentiation of prey 
accessibility still valid when accounting for 
cumulative input data uncertainties?

We demonstrated a high degree of agreement 
between our estimated results—of analyses A and 
B—from an MCS analysis and the original results by 
Standfuß et  al. (2022). However, we also identified 
inconsistencies, mainly related to the NDVI (analysis 
B). Against our expectations, we found that our esti-
mated effect size of NDVI had less predictive power 
than the original effect size. In fact, the latter fell 

outside the estimated tolerance interval. This behav-
iour was likely due to the subsampling approach we 
used to approximate the uncertainty due to irregular 
temporal NDVI sampling. Specifically, we took sub-
sample sets of the temporal NDVI samples within 
the range of the original observation dates. Most of 
these sets consequently captured the impact of fewer 
temporal samples compared to the original number 
of samples for a given field. The effect of a higher 
number of temporal samples could not be considered. 
Although not optimal, our results indicated that NDVI 
is more sensitive to a decrease in sample size than the 
HM-amplitude. Both predictors were derived from 
the fitted NDVI profiles. However, the former took 
the fitted NDVI value of a given day, whereas the lat-
ter considered the shape of the whole NDVI profile 
instead. Our results suggest that despite variations in 
the daily NDVI values, the shape of the intra-annual 
NDVI profile often remained stable even when fewer 
temporal NDVI samples were used for fitting. The 
inferred periods of favourable/poor prey accessibil-
ity were therefore likely consistent with the originally 
identified periods. This would explain the better and 
more robust performance of HM-amplitude in habitat 
selection modelling, and the discrepancy in predictive 
power and significance of NDVI between the original 
(Standfuß et  al. 2022) and our uncertainty-adjusted 
estimate.

Besides, we found that nest distance and landcover 
are hardly affected by the uncertainties addressed. As 
these predictors were not derived from the NDVI time 
series, they were only sensitive to the telemetry data 
uncertainty. E-obs telemetry data have a mean spatial 
uncertainty of ~ 10  m (Rotics et  al. 2016), which is 
further amplified by the uncertainty associated with 
irregular temporal sampling (i.e. 5 min at best). How-
ever, these uncertainties do not seem to have led to 
a high degree of spatial mismatch. Consequently, we 
found little scatter in the estimates of nest distance 
and landcover.

RQ2  Does the number of temporal NDVI samples 
influence time series-based differentiation of 
prey accessibility?

Our results showed that the number of temporal 
NDVI samples used to fit the NDVI profiles affected 
the validity of the time series-based differentiation of 
prey accessibility differently. In analysis A, we found 
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that the results for grasslands were strongly depend-
ent on the number of temporal NDVI samples. A 
possible explanation is the higher complexity of the 
intra-annual NDVI profiles of grasslands compared to 
croplands. Croplands in Europe are mainly harvested 
once a year (Estel et al. 2016), resulting in an intra-
annual NDVI profile that increases to a (single) peak 
during the growing season and then declines due to 
senescence/harvesting practices (Veloso et al. 2017). 
Intensively cultivated grasslands, are mown twice or 
more and can have a more dynamic profile with mul-
tiple peaks (Itzerott and Kaden 2006; Franke et  al. 
2012). Conversely, this means that if fewer—six to 
eight—temporal NDVI samples are considered to 
fit the NDVI profiles, the mowing events may not 
always have been adequately captured (Griffiths et al. 
2020). This may have affected the temporal distri-
bution of identified periods of favourable/poor prey 
accessibility in grasslands and was a likely reason for 
the observed discrepancy with the original results of 
Standfuß et al. (2022). Our results for analysis B sug-
gest that nest distance, landcover and HM-amplitude 
were relevant predictors of stork foraging habitat 
selection. HM-amplitude was even significant regard-
less of the number of temporal NDVI samples con-
sidered. The contribution of NDVI was less clear, 
but appeared to become more stable as more tempo-
ral data samples were used. A possible reason could 
be that the difference between the fitted NDVI pro-
files per field derived during the different trials per 
MCS analysis became smaller when more temporal 
samples were used. This in turn would have led to a 
smaller scatter of NDVI values per day and thus, a 
higher robustness in the predictive power of NDVI. 
In particular, the more complex the grassland profiles 
were, the more likely it was that they could be cap-
tured more reliably with a larger number of tempo-
ral NDVI samples. This would also explain why we 
observed improvements from nine temporal NDVI 
samples onwards; an increase in the predictive power/
significance of NDVI and HM-amplitude (analysis B) 
and a more pronounced preference for grassland habi-
tats with favourable prey accessibility (analysis A).

While we have shown a way to assess the effects 
of cumulative input data uncertainties in animal-
environment research, some methodological chal-
lenges remain. First, the suggested subsampling 
approach may not be the most appropriate method 
for handling time series uncertainties. However, it 

may be the only option when official information 
about these uncertainties is lacking. In such cases, 
our approach enables to obtain a preliminary indica-
tion of the stability of the environmental predictors/
proxies and of whether they are experiencing strong 
fluctuations that may reduce their significance in 
explaining habitat selection. However, radiomet-
ric uncertainty is the result of, amongst others, 
instrument noise and calibration uncertainties, that 
can be scene and time dependent (Janesick 2001; 
Chander et  al. 2013). These factors have not been 
considered in the proposed subsampling method. 
For Sentinel-2 data, more sensor-specific calcula-
tion of radiometric uncertainty for Level-1 (top-of-
atmosphere) data is already feasible (Gorroño et al. 
2018) and is currently being extended to include 
some effects of atmospheric correction (Level-2 
– surface reflectance) (Gorroño et al. 2023). Future 
research should therefore explore the use of these 
more causal estimates of radiometric uncertainty. 
For datasets where such information is not readily 
available, it is recommended to consider extending 
our proposed subsampling technique. One option 
could involve KDE weighting of the PDFs with 
known data quality layers to characterise the input 
data uncertainty in a more sensor-oriented manner. 
In addition, the increasing availability of time series 
with high spatial (10–30 m) and temporal resolution 
(~ 2 days) provides new opportunities to assess the 
effects of irregular temporal NDVI sampling. Using 
these data, future studies could not just explore the 
impact of the number of samples but also of their 
temporal distribution.

Second, the MCS analysis is a computationally 
intensive method. In our study we examined a rela-
tively small study area, the breeding territories of 
18 storks. In total, we performed six MCS analy-
ses, each of which required more than 1,000 runs 
and several days of computation to converge. This 
will be challenging in studies covering larger areas, 
such as several countries or even continents. Future 
research should therefore look at ways of optimising 
the calculation, in addition to pure programming 
refinements. One approach could be to test alterna-
tive sampling schemes, such as Latin Hypercube or 
Quasi-Monte Carlo, which have been shown to con-
verge faster than classical Monte Carlo approaches 
(Soboĺ 1990; Singhee and Rutenbar 2010).
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Conclusion

Human-induced environmental change is threatening 
many species with extinction (Ceballos et  al. 2015). 
After a long series of political efforts to protect the 
world’s biodiversity, the Kunming-Montreal Global 
Biodiversity Framework was released in December 
2022, outlining, amongst others, targets that require 
immediate attention (CBD 2022). One focus is on the 
design of comprehensive conservation efforts, which 
depend on a sound understanding of how animals 
interact with their environment. Of particular interest 
are vegetation characteristics (Timmermans and Dan-
iel Kissling 2023), which are often linked to the avail-
ability of food, shelter and nesting sites in animal hab-
itats (He et al. 2015). Sensors such as Sentinel-2 and/
or Landsat, offer an unprecedented potential to infer 
vegetation characteristics in great detail (e.g., through 
NDVI or half-maximum related proxies). Combin-
ing this information with animal movements from 
telemetry data then allows comprehensive studies of 
habitat selection, which provides the basis for pre-
dicting species distributions (Northrup et  al. 2021). 
However, uncertainties in both data sources can lead 
to erroneous conclusions about the importance of 
environmental predictors and thus to uninformative 
predictions (Stoklosa et al. 2014). The impact of input 
data uncertainties on habitat selection and species 
distribution modelling should therefore be quantified 
to develop informed conservation measures (Jansen 
et al. 2022). However, to date, studies based on time 
series and telemetry data have only assessed the effect 
of uncertainties in telemetry data, not least because 
time series uncertainties are often not reported or dif-
ficult to obtain. As a fallback solution, we have pro-
posed a data-driven approach to approximate time 
series uncertainties. In addition, we performed a first 
quantitative assessment of the impact of cumulative 
uncertainties of time series and telemetry data based 
on the study by Standfuß et  al. (2022). We showed 
that their discrimination between periods of favour-
able/poor prey accessibility for storks was relatively 
robust. However, we also found that NDVI was sig-
nificantly affected by uncertainties in the input data. 
This is not necessarily a generalisable finding and 
should be investigated on a case-by-case basis, as this 
behaviour may be different in other locations or with 
other data. Nevertheless, it demonstrates the impor-
tance of considering input data uncertainties to avoid 

false conclusions and misguided conservation efforts. 
Although further research is needed, we hope that 
our study provides a starting point for assessing the 
cumulative uncertainty of time series and telemetry 
data in animal-environment studies.
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