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ABSTRACT Accurate estimation of the number and locations of dispersed material sources is critical for
optimal disaster response in Chemical, Biological, Radiological, or Nuclear accidents. This paper introduces
a novel approach to Gas Source Localization that uses sparse Bayesian learning adapted to models based
on Partial Differential Equations for modeling gas dynamics. Using the method of Green’s functions and
the adjoint state method, a gradient-based optimization with respect to source locations is derived, allowing
superresolving (arbitrary) source locations. By combing the latter with sparse Bayesian learning, a sparse
source support can be identified, thus indirectly assessing the number of sources. Simulation results and
comparisons with classical sparse estimators for linear models demonstrate the effectiveness of the proposed
approach. The proposed sparsity-constrained gas source localization method offers thus a flexible solution
for disaster response and robotic exploration in hazardous environments.

INDEX TERMS Adjoint state method, PDE constrained optimization, sparse Bayesian learning, super-
resolution sparsity.

I. INTRODUCTION
In situations involving Chemical, Biological, Radiological,
or Nuclear incidents, accurately modeling and estimating
the spatial and temporal progression of airborne released
substances holds immense significance for optimizing dis-
aster response efforts. The use of mobile robotic platforms,
equipped with suitable sensors and capable of autonomous
operation, emerges as an ideal solution for navigating and
functioning within these hazardous settings. To enhance the
autonomy of such robotic systems, it becomes imperative for
the robots to acquire an understanding of their surroundings,
which in turn enables the derivation of optimal operational
and control strategies.

Accurate concentration mapping of the airbourne sub-
stances can be realized through the process of “learning”
from data, employing data-driven methodologies. Various
approaches have been proposed to address this objective,
including support vector machines for concentration map-
ping [1], kernel methods [2], and deep-learning techniques,

albeit predominantly applied within the visual domain [3],
[4]. One notable limitation of these methodologies lies in
their reliance on training data, particularly evident in the case
of deep-learning methods. Additionally, these methods de-
pend on visual sensors for gas plume registration, rendering
them unsuitable when the gas is imperceptible to the camera.
While chemical plume data can be simulated for training
purposes [5], achieving realistic simulations necessitates the
incorporation of domain knowledge pertaining to gas propa-
gation. It is thus reasonable to ask why not directly utilize this
domain knowledge?

Indeed, robotic platforms can take advantage of existing
knowledge on gas propagation, such as a model for gas disper-
sion, and selectively acquire specific facets of this model from
available data. This strategic approach mitigates the depen-
dency on extensive training data, fostering more robust and
versatile solutions for concentration mapping, in particular in
scenarios involving chemical, rather than visual sensors. Such
an approach in practice will thus serve a dual purpose: it will
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compensate for the lack of data while also adjusting the model
to align better with the gathered measurements. This paradigm
forms the foundation of the approach discussed in this work.

In the broader context, the underlying physics governing
the spatio-temporal dynamics of diffused substances can be
effectively characterized through Partial Differential Equa-
tions (PDEs). For instance, the non-homogeneous advection-
diffusion equation or scalar transport equation [6] serves as
a means to simulate the dissemination of materials through
the air, originating from multiple emission sources or being
absorbed by designated material “sinks.” Given the parame-
ters of these equations, such as boundary and initial conditions
as well as the count and positioning of emission sources, the
spatio-temporal evolution of material concentration can be
numerically computed. This is known as a forward modeling
problem: it involves solving the corresponding PDE subject
to boundary and initial conditions. However, real-world sce-
narios frequently involve instances where some, if not all, of
these parameters are unknown: one might encounter unde-
fined boundary conditions or an unknown count of emission
sources. Their inference from measurements then becomes the
objective of the robotic exploratory system, which constitutes
an inverse problem. Notably, inverse problems are charac-
terized by their ill-posed nature, demanding supplementary
constraints or regularization techniques to ensure the stability
and existence of a solution. In the present study, we direct our
attention towards incorporating such constraints, specifically
sparsity constraints. As we will demonstrate, this will allow us
to reliably estimate both the count and locations of dispersed
material sources, leveraging the information gathered through
measurements.

The problem we consider is referred to as Gas Source
Localization (GSL) [7] in the robotic olfaction community
– determination of the spatial locations and number of gas
sources. Early GSL techniques operated under quite restric-
tive assumptions. Specifically, they assumed a fixed count
(typically one) of sources and integrated source estimation
into the robot’s movement strategy. For instance, approaches
based on chemotaxis [8], [9] aimed to guide a robot or even
a group of robots [10] along the gradient of chemical con-
centration. However, these methodologies confront inherent
limitations posed by the intricacies of the actual chemical
plume. Turbulence causes a high degree of variability of
the concentration gradient, especially in regions distant from
the source. This issue can be mitigated by accounting for
wind patterns and adopting bioinspired algorithms [11], [12],
referred to as anemotaxis. Standard anemotaxis can be ad-
vanced through the application of “higher order” method,
which we term as model-based anemotaxis. In this approach,
not only spatial gradients but also divergence and tempo-
ral variations of concentration values are considered [13].
In the latter work the authors employ collected data to es-
timate divergence and gradients, ensuring adherence to the
advection-diffusion PDE. Subsequently, a navigation strategy
for multiple robots is formulated to track the plume front.

This method permits extension to inverse problems, assuming
unknown wind or diffusion parameters [14], and addressing
the GSL problem [15], [16] in lieu of front tracking. It is
crucial to emphasize that, while [13], [14], [15] capitalize on
domain knowledge to notably enhance standard anemotaxis
performance, the approach does not directly solve (or invert)
the advection-diffusion PDE. Instead, it relies on numerically
estimated concentration gradients and divergence using his-
torical observation data or data readings from multiple robots
– an intricate task due to noise and the challenges associated
with numerical differentiation. Consequently, the smoothness
of gradients remains a significant constraint for these strate-
gies. Furthermore, it should be mentioned that the number of
gas sources remains fixed.

Nevertheless, the latter methods clearly highlight the ben-
efits of leveraging the inherent mathematical structure of
the dispersion process for GSL when compared to purely
gradient-based strategies. Notably, more promising avenues
in this context are revealed through the exploration of prob-
abilistic methodologies. Instead of tracing gas concentration
gradients, these methods treat the sources as latent parameters,
which are subsequently estimated from the collected mea-
surements. Particularly appealing are Bayesian approaches for
parameter estimation [17]. These approaches permit account-
ing for uncertainties pertaining to source parameters [18],
[19], [20], accommodating different models [18], [19], [20]
and unknown environments [21], [22]. Furthermore, the
Bayesian framework facilitates the adoption of infotaxis-
based strategies [23] for autonomous robotic navigation,
thereby enhancing GSL and directing robots toward sources
through distinct information-theoretic criteria (see e.g., [23],
[24], [25]). Nonetheless, the majority of such GSL approaches
assumes the number of sources to be both fixed and known a
priori. This situation arises mainly due to the computational
complexity associated with integer optimization and infer-
ence pertaining to source counts. Pioneering work that relaxes
this assumption was introduced in [26], [27]. There, a sparse
Bayesian learning (SBL) approach [28], [29] coupled with a
PDE-based dispersion model was employed, representing a
departure from the fixed-source count assumption.

The key idea behind the SBL-based approach towards GSL
is that a very large number of potential sources is initially
assumed. However, the rates of the material release for these
sources – the source weighs – are constrained to be sparse.
In other words, it is assumed that only a few source weights
are non-zero. This approach was shown to accurately estimate
both the count and the locations of the sources in simula-
tions [26], [27], [30], as well as in real experiments [31], [32]
(see also [33] for a more extensive discussion). It thus allows
“trading” integer optimization concerning source counts for
a non-integer, but sparsity-constrained estimation of source
parameters.

One of the features of such PDE-based approach towards
GSL is a discretization of the equation required for its nu-
merical solution. Standard approaches, like finite elements or
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finite difference methods [34] discretize the equation both in
space and time; as a result, the unknown functions – gas con-
centration and source distribution functions – are represented
with a set of discrete parameters. As a consequence, the source
locations become constrained to the locations of the vertices in
the discretization mesh or centers of the discretization cells.1

While in general this can be compensated again by imposing
sparsity constraints on the resulting source estimate [27], [33],
practically this leads to a high number of unknown parameters
that have to be estimated – one parameter per each possible
source. Also, the discretization has to be dense enough, in
order not to miss any potential locations. Alternatively, expen-
sive re-meshing has to be used. This inadvertently increases
the number of measurements needed to reliably identify the
parameters. In particular, in cases where the source signal
is very sparse, i.e., when only a few sources are present,
such over-parameterization negatively impact algorithm per-
formance, especially in the early stages, when the number of
measurements is low. Furthermore, the discretization limits
the source localization accuracy to the size of the mesh ele-
ments closest to the actual source location.

The methodology introduced within this study alleviates
the aforesaid constraint, allowing for arbitrary spatial posi-
tioning of sources within the exploration area. Specifically,
we abstract from robotic aspects of GSL and focus on the
underlying numerical algorithm. Our method uses a Pois-
son’s equation as a specific (and simplified) model within
the broader context of the advection-diffusion framework that
governs gas propagation. The source term of this model is
expressed as a linear combination of Dirac measures with
unknown support and weights. By casting the resulting model
in a Bayesian framework we then harness SBL to enforce
sparsity constraints over the source weights.

The algorithmic strategy that we propose employs an iter-
ative process that alternates between (i) estimation of source
spatial support with source locations kept fixed, and (ii) up-
dating locations of the sources that have non-zero weights.
The latter involves a nonlinear optimization procedure, solved
using a gradient descent technique [34]. We derive the corre-
sponding gradient using a so-called adjoint state method [6],
[35]. As a consequence, the proposed method allows for ar-
bitrary source placement. In particular for scenarios with a
number of well-distinguishable, separated sources this leads
to an optimization problem of significantly lower dimension-
ality (of the number of “active” sources only). Moreover, such
optimization approach brings additional advantages. Firstly,
the presented scheme can be extended to distributed set-
tings, which is particularly relevant for multiple cooperating
robotic platforms employed for a GSL problem. Secondly, the
adjoint-state method presents itself as a well-suited strategy
for addressing general inverse problems subjected to PDE
constraints. This quality makes it applicable across a broad

1This depends on whether the finite element or finite difference method is
used for discretizing the PDE.

spectrum of PDEs, encompassing more realistic scenarios that
involve time-dependency and advection.

A. NOTATION
Throughout the paper vectors are represented as boldface
lowercase letters, e.g., x, and matrices as boldface uppercase
letters, e.g., X . Their transpose is denoted by (·)T. We write
[X ]l to denote an lth column of a matrix X . The expression
diag(x) stands for a diagonal matrix with the elements of x
on the main diagonal. The expectation operator is denoted
by E{·}, or Eq{·} when the context requires to explicitly state
the probability density function (pdf) q with respect to which
expectation is taken. We denote the pdf of a Gaussian ran-
dom vector with expectation a = E{x} and covariance matrix
B = E{(x− a)(x− a)T} as N(x|a, B). We will use the nota-
tion δx(�) to specify a (multidimensional) Dirac measure over
domain � with a support at x ∈ �; as an example for a 1D real
line we have δa(R) ≡ δ(x − a) where ∀(x, a) ∈ R, which is an
often used alternative notation for Dirac measures on R.

II. SIGNAL MODEL
Let us consider a GSL problem over some d-dimensional
polygonal exploration area � ⊂ R

d . We assume that the
spatial gas concentration over � can be described by a time-
invariant diffusion PDE (also known as Poisson’s equation):

−κ� f (x) =
K∑

i=1

wiδθi (�), x ∈ �, (1)

s.t. f (x) = 0, x ∈ ∂�, (2)

where κ is a diffusion coefficient, f (x) is a spatial gas concen-
tration intensity, and � is a Laplace operator. The right-hand
side (RHS) of (1) defines a superposition of K static gas
sources, each with an amplitude (or release rate) wi, located
at θi ∈ �. (1) is augmented with boundary condition (2) that
defines concentration values at the boundary ∂� of the do-
main �. We consider an open boundary ∂�, which allows
concentration to flow off (Dirichlet boundary condition). The
model (1)-(2) represents a steady-state gas distribution in the
absence of wind. As such, it is a special case of a more
general advection-diffusion equation. Although simple, it is
sufficient for outlining the proposed method by abstracting
from realistic gas propagation effects.

A. SURROGATE PROCESS MODEL
The model (1) states that the concentration distribution f (x) is
governed by a few distinct gas sources. In practice the number
of sources K , as well as the source parameters wi and θi, i =
1, . . . , K , are rarely known and have to be estimated from the
measurements. A joint estimator of these parameters would
lead to a numerically challenging combinatorial problem. To
circumvent this, we approximate (1) with a surrogate model

−κ� f (x) =
L∑

l=1

wlδθl (�), x ∈ � (3)
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where L > K and some of the weights wl , l ∈ L �
{1, . . . , L}, are zero. In other words, the source weights are
assumed to be sparse. Note that although at first glance the
difference between the model (1) and the surrogate (3) is
minimal, it is has a major consequence for the estimation
approach discussed later: in the former K is unknown, while
L is known and fixed in the latter. Such an approach is also
sometimes referred to as max-search approach [36].

Assume for a moment that both wl and θl , l ∈ L are known.
Then, the concentration f (x) can be obtained by solving the
forward problem. The approach we use in this work considers
a solution for f (x) using the method of Green’s functions [37],
[38]. The latter is appealing since the RHS of (3) is a lin-
ear combination of Dirac measures. Specifically, the method
states that the solution f (x) of (3) can be founds as

f (x) =
∫

�

G(x, θ)
L∑

l=1

wlδθl (�)dθ =
L∑

l=1

wl G(x, θl ) (4)

where G(x, θ) is a Green’s function defined as a solution to

−κ�G(x, θ) = δθ (�), x, θ ∈ �

s.t. G(x, θ) = 0, x ∈ ∂�. (5)

In other words, G(x, θ) is a “response” of the equation to
a single source at the location θ. We will assume that the
solution to (5) exists and can be determined (see e.g., [38]). In
general, Green’s functions, as required for our purposes, can
be approximated with e.g., a neural network [39]. We, how-
ever, leave the problem of finding or approximating Green’s
functions outside the scope of this work.

Now, consider a discretization of (3). To this end we par-
tition � into N smaller subdomains or cells, which form a
(not necessarily regular) grid. For each cell with center coordi-
nates xi, i ∈ N � {0, . . . , N − 1}, we then assume a constant
concentration value f (xi ) = const. This discretization can be
interpreted as finite difference approximation of f (x). The
corresponding concentrations are aggregated into a vector
f � [ f (x0), . . . , f (xN−1)]T. Also, define a discretization of
Green’s function as follows:

G(�) �

⎡⎢⎢⎣
G(x0, θ1) · · · , G(x0, θL )

...
. . .

...

G(xN−1, θ1) · · · , G(xN−1, θL )

⎤⎥⎥⎦
where � � [θ1, . . . , θL]. This allows us to rewrite (4) in a
matrix vector form as

f = G(�)w (6)

with w � [w1, . . . ,wL]T.
Let us point out that the method we will propose can eas-

ily account for other discretization approaches, such as finite
elements, to represent f (x). Also, despite the fact that we
discretize �, the location of the sources in the model (6) are
not restricted to this grid and can take arbitrary values.

Assume now that M noisy samples of the concentra-
tion f (x) have been obtained at locations xm, m ∈M �

{1, . . . , M}. Without loss of generality we will assume that
N � M and that {xm, m ∈M} is a subset of discretizaton
cells. Note that we can always select such a discretization of
� that will include locations where measurements are taken.
Now collect the measurements in a vector z ∈ R

M as

z = M f + ξ (7)

where M ∈ R
M×N is a selection matrix that selects elements

of f that correspond to the cells where measurement are taken,
and ξ is a random, zero-mean Gaussian perturbation with
precision matrix λξ I and some λξ > 0. Without loss of gen-
erality we will assume that all measurements z are collected
simultaneously at different locations of the domain �.

Our goal now is to use z to estimate a sparse vector w,
locations �, and recover f from (6). To this end we pursue a
Bayesian approach towards parameter estimation as detailed
in the following.

B. BAYESIAN FORMULATION OF THE INFERENCE MODEL
To cast the estimation problem into a probabilistic framework,
consider the following posterior pdf of the variables of inter-
est:

p( f ,w,�|z) ∝ p(z| f )p( f |w,�)p(w)p(�), (8)

where we explicitly assume that source locations � and the
corresponding weights w are independent. Let us discuss the
factors in (8) in more detail.

Based on (7) we immediately see that p(z| f ) =
N(z|M f , λ−1

ξ
I). The pdf p( f |w,�) represents the

relationship between sources and concentration f based
on (6). This deterministic relationship can be represented
with a Dirac distribution p( f |w,�) = δG(�)w(RN ). The
other two terms p(�) and p(w) are the prior distributions of
the source parameters. Concerning the former we will assume
a uniform prior over �, i.e., p(�) ∝ const. In case of p(w)
we instead employ a modeling approach used in SBL.

The basic idea of SBL is to assign an appropriate prior to
the L-dimensional vector w such that the resulting MAP esti-
mate ŵ is sparse, i.e. many of its entries are zero. Typically,
SBL specifies a hierarchical factorable prior p(w|α)p(α) =∏L

l=1 p(wl |αl )p(αl ), where p(wl |αl ) = N(wl |0, α−1
l ), l ∈ L

[28], [40], [41]. For each l ∈ L the hyperparameter αl ≥
0, also called sparsity parameter, regulates the “width” of
p(wl |αl ); the product p(wl |αl )p(αl ) defines a Gaussian scale
mixture.2 Note that the sparsity parameters α encode the
support of the weights w: large entries in α will drive the
corresponding posterior weight estimate towards zero, thus
ensuring a sparse posterior mode.

Bayesian inference on a linear model with such a hierarchi-
cal prior is commonly realized via two types of techniques:

2In [42] the authors extend the framework by generalizing p(wl |αl ) to be
the pdf of a power exponential distribution, which makes the hierarchical
prior a power exponential scale mixture distribution.
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MAP estimation of w (Type I estimation3) and MAP estima-
tion of α (Type II estimation). Type II estimation commonly
demonstrates improved performance in contrast to Type I es-
timation. A contributing factor to this superiority lies in the
nature of the objective function associated with Type II esti-
mation: it usually possesses a notably reduced number of local
minima compared to its corresponding Type I counterpart,
which in turn promotes better sparsity estimation [42], [46],
[47].

Popular selections of the hyperpriors p(αl ), l ∈ L, are
Gamma [28], [48], [49], non-informative, i.e., p(αl ) ∝
α−1

l , [28], [50], and uniform, i.e. p(α) ∝ 1 [47], [51], [52].
Inference methods using the latter are called evidence maxi-
mization procedures [28], [29], [53]. Their virtue compared
to other methods relying on other hyperprior selections is
twofold [42]: they typically demonstrate superior (or similar)
performance and very efficient implementations exist that can
be analyzed [47], [51], [52], [54]. In the following we will
exploit the third choice for the hyperprior.

With the sparsity parameters α, the resulting parameter
posterior pdf becomes

p( f ,w,α,�|z) ∝ p(z| f )p( f |w,�)p(w,α)p(�). (9)

Note that in (9) f is treated as a random variable, yet due to the
form of p( f |w,�) it is actually deterministically dependent
on w and �. This fact will be used in the proposed algorithm
to maximize (9), which we discuss in the following.

III. SUPER-RESOLUTION SBL FOR GAS SOURCE
LOCALIZATION PROBLEM
In order to find parameters of interest f , w, α and � we pro-
pose an approximative optimization scheme that maximizes
(9) by alternating between (i) estimation of the support vector
α and sparse vector w under assumption that � is fixed, and
(ii) estimation of � and w with the source support α fixed.
Note that at each of these steps the concentration f can be
recovered from (6) using current estimates of � and w.

A. SOURCE SUPPORT ESTIMATION
Let us begin with estimation of α. To this end we assume that
� is fixed at an estimate �̂ and marginalize (9) over f which
leads to

p(w,α, �̂|z) =
∫

p( f ,w,α, �̂|z)d f

∝ p(z|w, �̂)p(w|α), (10)

where

p(z|w, �̂) ∝ exp

(
−λξ

2
‖z−MG(�̂)w‖2

)
.

3Note that many traditional “non-Bayesian” methods for learning sparse
representations such as basis pursuit de-noising or re-weighted 
p-norm re-
gressions [43], [44], [45] can be interpreted as Type I estimation within the
above Bayesian framework (see [42] for more details on this link).

The consequences of this step are the following. First, with �̂

fixed, we effectively linearize the estimation problem, as now
parameters w enter the likelihood function linearly. Second,
and most importantly, the form of the posterior (10) coincides
with that used in a classical SBL. As such, we can reuse
existing algorithms to maximize it.

Specifically, we will use a Fast Marginal Likelihood Max-
imization (FMLM) method to maximize p(w,α, �̂|z) [52].
The approach is two-fold: first we consider the factorization
p(w,α, �̂|z) = p(w|α, �̂, z)p(α, �̂|z). The second factor is
a key to the Type II SBL support estimation: it considers
the joint p(α, �̂|z) ∝ p(z|α, �̂) and computes a Maximum
Likelihood estimate α̂ as a maximizer of Type II likelihood
function [28]

p(z|α, �̂) =
∫

p(z|w, �̂)p(w|α)dw (11)

∝ |�α(�̂)|− 1
2 e−

1
2 zT�α(�̂)−1z, (12)

where �α(�̂) � λ−1
ξ

I +MG(�̂)A−1G(�̂)TMT, and A �
diag(α). Define now negative log-likelihood function


(α) � − log p(z|α, �̂)

= 1

2
log |�α(�̂)| + 1

2
zT�α(�̂)−1z. (13)

Obviously, the minimizer of (13) also maximizes (12). The
FMLM algorithm minimizes 
(α) in a coordinate-wise de-
scent manner, one component at a time, as follows. First, the
vector α is partitioned into two sets: in a single component αl

and the other entries αl . It was shown [52] that 
(α) can be
then partitioned as


(α, αl ) = const(αl )

+ 1

2

[
log(αl )− log

(
αl + ς−1

l

)+ μ2
l ς
−2
l

αl + ς−1
l

]
(14)

where const(αl ) are the terms independent of αl ,

ςl � (gT
l �
−1
l gl )

−1, μl � ςl g
T
l �
−1
l z, (15)

with gl � [MG(�̂)]l and

�l � λ−1
ξ I +

∑
m∈L;m 
=l

α−1
m gmgT

m.

The minimum of 
(α, αl ) with respect to αl can now be found
in the closed form at

α̂l =
{

(|μl |2 − ςl )−1 |μl |2
ςl

> 1
∞ otherwise,

(16)

The FMLM algorithm evaluates the expressions in (16) with
l ranging in L, in a round-robin fashion, until some stopping
criterion is met.
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Given α̂ that minimizes 
(α), the FMLM procedure then
infers a sparse weight vector w from the conditional marginal
posterior pdf p(w|̂α, �̂, z) ∝ p(z|w, �̂)p(w|̂α). This pdf is
Gaussian with mean ŵ and covariance matrix �̂w given by

�̂w =
(
λξ G(�̂)TMTMG(�̂)+ Â

)−1
,

ŵ = λξ �̂wG(�̂)TMTz, (17)

where Â � diag(̂α). Note that sources, i.e., the columns of
G(�̂), associated with infinite sparsity parameters αl , l ∈ L,
can be safely removed from the model. Indeed, for a sparsity
parameter αl = ∞, the corresponding lth column and row of
�̂w, as well as the lth entry of ŵ will be zero. It thus makes
sense to reduce the dimensionality of (13) (and of (17)) by
removing the corresponding contributions. As a consequence,
the matrix Â will include only finite entries, corresponding to
sources with non-zero weights. The number of finite sparsity
parameters thus indirectly provides an estimate of the number
of “active” sources L̂.

B. LOCATION PARAMETER ESTIMATION
Once the support parameters α̂ are found, we fix them and
maximize the posterior p( f ,w, α̂,�|z) with respect to � and
w. Note that while dependency on w is linear4, the depen-
dency of the posterior on location parameters is nonlinear,
which requires the use of numerical optimization techniques.
One approach to address this is to discretize �, as in e.g., [33],
[55], where the right-hand side of (3) is discretized over �.
This naturally simplifies the whole problem, yet at the expense
of a larger parameter space, which can be significantly higher
than N depending on a desired accuracy. We, therefore, refrain
from a discretization of � and estimate these parameters using
gradient-descent based techniques [34].

To this end we define the following cost function:

J ( f ,�) � − log p(z| f ) = λξ

2
‖z−M f‖2 (18)

s.t. g( f ,�) � f − G(�)w = 0, � ∈ �. (19)

Given some estimate of �̂
[i]

at the iteration i, we aim to
minimize J ( f ,�) by following its gradient:

�̂
[i+1] = �̂

[i] − ρ∇�J ( f , �̂
[i]

) (20)

where ∇�J ( f , �̂
[i]

) is a gradient of (18) with respect to �

evaluated at �̂
[i]

and ρ is an appropriately chosen step size.
We will discuss the choice of the latter further in the text.
For now let us focus on the gradient term ∇�J ( f , �̂

[i]
). To

compute it we do not integrate f out as we did previously,
but instead use it as an intermediate variable to simplify
the gradient computation with respect to �. To be more

4Given α̂ and �̂, the weights w can always be computed from (17).

specific, we use an adjoint state method [6], [35] to compute

∇�J ( f , �̂
[i]

).
Let η be the adjoint variable defined as a solution to(

∂g( f ,�)

∂ f

)T

η = −
(

∂J ( f ,�)

∂ f

)T

. (21)

It is rather straightforward to show that

η = −λξ MT(M f − z). (22)

Then, we can evaluate the gradient ∇�J ( f ,�) as

∇�J ( f ,�) = ηT ∂g( f ,�)

∂�
(23)

with

∂g( f ,�)

∂�
=

[
∂g( f ,�)

∂θ1
, . . . ,

∂g( f ,�)

∂θL

]T

. (24)

Taking the structure of G(�) into account, it is easy to see
that

∂g( f ,�)

∂θl
= −

[
ŵ

[i]
l

∂G(x0, θl )

∂θl
, . . . , ŵ

[i]
l

∂G(xN−1, θl )

∂θl

]T

for l ∈ L. Note that the latter requires an estimate of the
source weight ŵ

[i]
l , which is computed from (17) using lo-

cation estimate �̂
[i]

at which the gradient is computed, and
a fixed support estimate α̂. The update (20) is then evaluated
until some suitable convergence criterion is satisfied.

To ensure fast convergence of the gradient update (20) it
is necessary to appropriately select the step size parameter ρ.
Using a fixed small step size can result in a slow convergence;
on the other hand, the gradient descent can be combined with
a back-tracking schemes to line search for an optimal ρ based
on e.g., Armijo–Goldstein rule. This, however, can also be
time-consuming. In our implementation we used a limited
memory Broyden–Fletcher–Goldfarb–Shanno algorithm for
bound constrained optimization (L-BFGS-B) [56], which can
be used to accelerate convergence by numerically approximat-
ing the Hessian matrix from a gradient, while also ensuring
that location estimates remain in �.

C. ALGORITHM IMPLEMENTATION DETAILS
We are now ready to summarize the key steps of the proposed
algorithm, to which we will refer as Super-resolution Gas
Source Localization (SR-GSL). We begin with the initializa-
tion, followed by the implementation pseudo-code.

1) ALGORITHM INITIALIZATION
For initialization we first partition the location space � uni-
formly into a certain number L̃ of grid points ϑl , l = 1, . . . , L̃;
typically, selecting L̃ ≈ N suffices in practice. This partition-
ing will allow evaluating Green’s functions at these locations
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Algorithm 1: Initialization of the Support α.
1: Input: R, z, M
2: Initialize: yl ← 1

L̃
trace(λξ RTMTMR), l = 1, . . . , L̃

3: Solve for ŵ:

ŵ = arg minw

λξ

2
‖z−MRw‖2 +

L′∑
i=1

√
yi|wi| (26)

4: Compute initial support α:

α̂l =
√

yl

|ŵl |
, l = 1, . . . , L′

5: Compute weight covariance �̂w as

�̂w =
(
λξ RTMTMR+ Â

)−1

as

R �

⎡⎢⎢⎣
G(x0,ϑ1) · · · , G(x0,ϑL̃ )

...
. . .

...

G(xN−1,ϑ1) · · · , G(xN−1,ϑL̃ )

⎤⎥⎥⎦ .

This results in initial source locations – the initial search
space. The next step is initialization of the support for this
locations set. The approach we found to work most efficiently
in the considered setting is based on the reformulated Au-
tomatic Relevance Determination (R-ARD) algorithm [47] –
a version of SBL that maximizes the marginal likelihood in
(12) (or equivalently minimizes 
(α) in (13)) via a solution
to a sequence of reweighted Least Absolute Shrinkage and
Selection Operator (LASSO) [57] problems.

Specifically, in [47] the log-likelihood 
(α) is optimized
with respect to the variance parameters γ = α−1, where the
inversion is applied element-wise. The resulting cost function
is then upper bounded as


(γ ) ≤ yTγ − g∗(y)+ zT�−1
γ z � 
(γ, y), (25)

where y � [y1, . . . , yL]T is a dual variable and g∗(y) is the
concave conjugate of log |�γ | defined by the duality relation-
ship g∗(y) = minγ yT γ − log |�γ | [58]. Here �γ � λ−1

ξ
I +

MR�RTMT, and � � diag(γ ). The upper bounding function

(γ, y) is then minimized first with respect to the dual vari-
able y with fixed γ , and then with respect to γ with newly
updated dual parameters y fixed. The latter can be cast as a
LASSO problem and solved very efficiently. For more details
on R-ARD we refer the reader to [47].

While the R-ARD algorithm implements the updates of γ

and y multiple times, for the initialization we do this only
once to compute an initial estimate of the support α ≡ γ−1.
We found that this results in a numerically stable initializa-
tion of the algorithm across different parameters setting. The
corresponding steps are now summarized for our particular
problem in Algorithm 1.

FIG. 1. Evaluated Green’s functions for different values of the location
parameter θ and a = 1.

The computation of the weights in (26) requires solving a
convex, 
l -norm constrained optimization problem; it is likely
that this step has a stabilizing effect on the initial computation
of the source support. In our implementation we used CVXPY
library to solve (26)5

2) ALGORITHM STRUCTURE
Let us now outline the global structure of the SR-GSL algo-
rithm. The main steps are summarized in Algorithm 2.

Essentially, the algorithm includes two iterative updates: in
lines 3 - 7 a gradient-based location parameter estimation is
realized. Lines 8 - 12 implement the FMLM algorithm for sup-
port estimation. These two “internal” iterations are repeated
until some convergence criterion is met. In our implementa-
tion we consider these update loops as converged when the
relative change of location parameters � and sparsity parame-
ters α is below 1%. The alternations between support estimate
and location updates – the outer iteration loop – are repeated
either for a fixed number of runs, or when the parameter
changes between outer iterations are also below 1%.

IV. SIMULATION RESULTS
To simplify the analysis of the method and demonstrate its
performance we will consider a Poisson’s equation in 1D,
setting � = [0, a]. Without loss of generality we will also
set the diffusion coefficient to κ = 1 and a = 1. In this case
the Green’s function of the corresponding equation can be
computed in closed form as

G(x, θ ) =
{ x

a (a− θ ), 0 ≤ x ≤ θ,

− θ
a (x − a), θ < x ≤ a.

(27)

In Fig. 1 we show the evaluated Green’s functions for location
parameters θ set to 0.3, 0.5 and 0.8. It can be seen that the
Green’s function matrix G(�) in this case, which is can also
be referred to as a dictionary matrix, will be highly coherent,
especially for closely spaced sources.

Let us now generate synthetic data for experiments. To
generate the right-hand side of (1) we set K = 3 and com-
pute θ1 = 0.2+ 0.05aε1, and θi = θi−1 + 0.1+ 0.2aεi, i =
2, . . . , K , where εi, i = 1, . . . , K are uniformly and indepen-
dently drawn from a unit interval. Such selection ensures that
generated impulses are well separated and also remain within

5The code can be found at https://www.cvxpy.org/.
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Algorithm 2: SR-GSL Algorithm Structure.
1: Initialization: use Algorithm 1
2: while not converged do
3: Update 1: Estimation of �̂ with α fixed
4: while � has not converged do
5: Update ŵ from (17) with α fixed
6: Update � using (20) : Gradient update
7: end while
8: Update 2: Estimation of α̂ with � fixed
9: while α has not converged do

10: Update α using (16) : FMLM algorithm
11: Remove sources with αl = ∞, l ∈ L

12: end while
13: end while

interval [0, a]. The amplitudes of the sources are set to wi = 1,
∀i = 1, . . . , K .

To generate the measurements we draw M random lo-
cations from the interval [0, a]. These locations are then
augmented with N −M additional regular sampling points
in the interval [0, a], which form the discretization grid for
concentration f . Such selection ensures that rows in the
selection matrix M in (7) have 1’s at column indices corre-
sponding to the measurement locations. Then, using generated
parameters θi, wi, i = 1, . . . , K , we compute the ground
truth concentration f from (6) and generate measurements z
using (7).

To benchmark the SR-GSL algorithm, we will compare
its performance to sparse estimators applied to a linearized
version of the GSL problem. To this end we will partition
the location space � uniformly in a sufficiently large num-
ber L̃ � N of grid points ϑl , l = 1, . . . , L̃ and reformulate
(3) as

−κ� f (x) =
L̃∑

i=1

wiδϑi (�), x ∈ � (28)

s.t. f (x) = 0, x ∈ ∂�, (29)

This partitioning will allow evaluating Green’s functions at
these locations as

R �

⎡⎢⎢⎣
G(x0, ϑ1) · · · , G(x0, ϑL̃ )

...
. . .

...

G(xN−1, ϑ1) · · · , G(xN−1, ϑL̃ )

⎤⎥⎥⎦
and express concentration f = Rw, which now becomes lin-
ear in weights w. Thus, the GSL problem can be reduced to
finding a sparse estimate of the weights w. In simulations we
will set L̃ = 4 N , which should provide sufficiently accurate
discretization of �, albeit at the expense of significantly in-
creased problem size.

To find a sparse estimate we will use two algorithms that
we will compare to SR-GSL. First, we will use a standard
LASSO estimator [57] that finds w by solving the following
optimization problem:

min
w

Jlasso(w) � 1

2
λξ‖z−MRw‖2 + αlasso‖w‖1 (30)

A single regularization parameter αlasso here regulates the
amount of sparsity in the resulting estimate of w. Its selection
naturally impacts the number of estimated sources and thus
requires some tuning.

To circumvent selection of the regularization parameter,
a re-weighted version of the LASSO problem can be used,
which we will use as a second benchmark algorithm. The
re-weighting is realized by modifying (30) as

min
w

Jrlasso(w) � 1

2
λξ‖z−MRw‖2 +

L̃∑
i=1

αrlasso,i|wi| (31)

with multiple regularization parameters αrlasso,i, i = 1, . . . L̃.
In contrast to (30), the problem (31) has to be solved it-
eratively several times: first with fixed parameters αrlasso,
i = 1, . . . L̃, and then updating the latter following a certain
rule, see e.g., [43], [44] and [42, Section II]. We will use as
a re-weighting strategy the R-ARD algorithm [47] that we
proposed for the initialization of SR-GSL. As we mentioned,
the R-ARD finds a sparse estimate of w via a sequence of re-
weighted LASSO problems, with the weights αrlasso,i selected
as αrlasso,i = √ηi, i = 1, . . . L̃, where

η = diag
(

RTMT�−1
γ MR

)
, (32)

�γ � λ−1
ξ

I +MR�RTMT, � = diag(γ ), and γi = η
− 1

2
i |wi|,

i = 1, . . . , L̃ (see also [47] for more details).
In the comparisons we will refer to the last two algorithms

as LASSO and re-weighted LASSO (rLASSO), respectively.
Note that neither LASSO nor re-weighted Least Absolute
Shrinkage and Selection Operator (rLASSO) has explicit
threshold mechanism, as realized in SR-GSL by (16). As such,
the resulting estimates of ŵ can include small, but numerically
non-zero entries. To account for this we apply an additional
threshold τ to the magnitude squared of the weights in order
to remove such small components, i.e., when |ŵi|2 < τ we
set ŵi = 0 for i = 1, . . . L̃. Furthermore, for the LASSO algo-
rithm we select the value of the regularization parameter αlasso
using cross-validation for different values of signal-to-noise
ratio (SNR).6

Let us also mention that the computational complexity of
both rLASSO and LASSO algorithms strongly depends on

6We have observed that the optimal value of αlasso is almost independent
of M.
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FIG. 2. Estimated concentration f (x) and location parameters for SNR = 10
dB and different number of measurements M.

the selection of the parameter τ . Note that both variants
include a solution to an 
1 regularized problem (31) and
(30) respectively, which is polynomial in L̂ (typically O(L̂2)
per iteration [59]) where L̂ is the number of active sources
with non-zero weights. In case of rLASSO the problem (31)
has to be solved multiple times following the R-ARD al-
gorithm [47]. Thus, for low threshold τ , L̂ will tend to be
high, increasing the computational complexity of the methods.
Increasing the threshold τ , on the other hand, will lead to a
possible omission of the sources. Thus, in general, τ remain
a free parameter of LASSO and rLASSO, requiring a proper
tuning.

We begin simulation studies by analyzing SR-GSL perfor-
mance for some selected parameter configurations. We set
N = 400 and run the algorithm with SNR set at 10 dB and
30 dB for M = 20 samples and M = 200 samples. The re-
sults are summarized in Figs. 2 and 3. It can be seen that in
low SNR (Fig. 2) the proposed SR-GSL algorithm performs
reasonably well, even when the number of measurements is
low. Due to low SNR, the sources are found at slightly shifted

FIG. 3. Estimated concentration f (x) and location parameters for SNR = 30
dB and different number of measurements M.

locations, yet the estimated concentration values match
closely true concentrations. When M is low, SR-GSL tends
to be conservative, generally underestimating the number of
sources. With increased SNR (Fig. 3) both the number and
locations of the sources are accurately estimated even when
the number of measurements is small.

However, we observed that the number of estimated com-
ponents does vary over the range of SNR values and available
measurements samples M. To study this variability we now
run SR-GSL, rLASSO and LASSO algorithms for SNR set
at 5 dB, 10 dB, 20 dB and 30 dB, and M varying be-
tween M = 5 and M = 380. In case of rLASSO and LASSO
methods we also set the threshold for source detection at
τ = 10−4 and τ = 10−9: higher threshold would thus result
in sparser estimates. The corresponding results averaged over
500 Monte Carlo runs are shown in Fig. 4.

As we can notice, all algorithms on averaged tend to
overestimate the number of sources. For SR-GSL it grows
slightly with increasing M to an averaged estimate of 4 com-
ponents; SR-GSL results in the sparsest estimate of the gas
sources. It is closely followed by rLASSO with τ = 10−4,
especially in low SNR regime, yet its sparsity reduces as
SNR grows.
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FIG. 4. Estimated averaged number of components ̂L. The dotted line represent the true number of components K = 3.

Both LASSO versions as well as rLASSO with τ = 10−9

significantly overestimate the number of components. This
implies that especially in high SNR regime additional (and
quite numerous) artifact sources are recovered. Although with
increasing M the number of artifacts drops, it does not ap-
proach the true number of components K = 3. Of course, the
sparsity of rLASSO and LASSO methods can be controlled
with appropriate choice of regularization parameters. Yet this
requires choosing an optimal threshold for each selected pa-
rameter configuration. In contrast for SR-GSL this is done
automatically via update (16), with variables μl and ςl in
(15) accounting for SNR, N as well as available number of
measurements M.

We also see that both SR-GSL and rLASSO algo-
rithms depend rather weakly on the number of measurement
samples M. In the low SNR regime, 100–150 measurements
are sufficient to determine the source support. In the high SNR
regime only 20–50 measurements are sufficient. In case of
LASSO this is not the case: the number of estimated sources
depends strongly on M, especially with the low threshold of
10−9, resulting in many artifacts. Moreover, with increasing
SNR the performance of LASSO decreases, as more artifacts
are discovered. This clearly demonstrates the overfitting effect
of the LASSO algorithm.

We now compare the methods using the mean squared

error (MSE) 1
N ‖ f̂ − f true‖2 between the estimated concen-

tration f̂ and the true concentration value f true. The latter

is computed based on synthesized (true) location parameters

θi, i = 1, . . . , K . Additionally, we will compare the estimates

of the sources using the Earth Mover’s Distance (EMD) [60]
metric. The latter is a discrete equivalent of the Wasserstein
metric used as a distance between probability distributions
and is particularly suited to measure distance between sparse
signals. The EMD can thus provide an indication of how well
the source locations – the signal support – as well as the source
weights are estimated. MSE performance, on the other hand,
reveals how accurately the concentration values are estimated.
The results of the comparison averaged over 500 Monte-Carlo
realizations are shown in Figs. 5 and 6 for MSE and EMD
metrics, respectively. As we can see, the MSE of SR-GSL,
rLASSO, as well as of the LASSO algorithm with 10−9 source
detection threshold perform almost indistinguishably – the
corresponding curves practically overlay each other. The MSE
drops with a growing number of measurement samples M, as
one would expect. This also implies that an increased number
of detected gas sources observed in Fig. 4 for these algorithms
does not affect the reconstruction of the concentration. In
other words, the introduced artifacts tend to have relatively in-
significant impact on the quality of concentration estimation.

The LASSO algorithm with τ = 10−4 is an exception here.
While it results in a lower number of estimated sources as we
see in Fig. 4 due to a higher threshold, this causes an increase
of the MSE and worse reconstruction performance. This can
be attributed to the fact that sparsity of the LASSO cost
function in (30) is regulated with a single parameter αlasso.
Thus, its poor choice has a stronger effect on all sources at
the same time. In particular, this leads to appearance of source
clusters. The additional thresholding destroys these clusters
and thus diminishes the resulting reconstruction performance
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FIG. 5. The MSE value of the estimated concentration f (x) for different SNR values.

FIG. 6. Error between the true and estimated source distribution as measured by the EMD criterion.
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FIG. 7. Estimated averaged number of components ̂L as a function of the discretization accuracy N for fixed number of measurements M = 50. The
dotted line represent the true number of components K = 3.

of LASSO-based estimators. In contrast, the SR-GSL and
rLASSO have multiple sparsity or regularization parameters,
which allows more flexibility in the “control” of individ-
ual sources. In case of rLASSO the additional thresholding
does not have such an impact on MSE of the concentration
estimation.

Let us now consider the EMD performance of the methods.
As we can see from Fig. 6, for 5 dB and 10 dB SNR all
methods perform almost indistinguishably. In case of SR-GSL
and rLASSO with τ = 10−4 this implies that the estimated
sources correspond well to the true locations and few artifacts
are inserted. In case of other algorithms this means that despite
artifact sources are detected, they tend to have low amplitude
that does not impact the EMD performance. However, for
the SNR above 20 dB we see that the EMD performance of
LASSO algorithms worsens. This again can be attributed to
the fact that the LASSO algorithm with a single regularization
parameter tends to produce clusters rather that single source
estimates. Thus, several sources are detected to approximate
a single true gas source. Applying the threshold on the es-
timated source weights does lead to fewer detections and
sparser results, yet also distorts amplitudes of the remaining
sources, leading to an increase of EMD error. SR-GSL and
rLASSO with a high threshold here again perform best, having
the lowest EMD error.

Let us now study the sensitivity of the algorithm on the
discretization accuracy N . To this end we fix the number of
collected measurement at M = 50 and evaluate the estimated
number of sources, as well as the MSE criterion for N ranging

between N = 80 and N = 400. The corresponding results av-
eraged over 500 Monte Carlo runs are shown in Figs. 7 and 8.

First, let us study the number of estimated components
in Fig. 7. As we see, the SR-GSL as well as rLASSO with
the threshold τ = 10−4 do not depend on N . Thus, provided
enough measurement samples are collected, the discretization
accuracy does not play a significant role for these methods.
Let us re-iterate that in case of rLASSO, which is a linearized
version of SR-GSL, this is achieved at the expense of high
initial number of sources L̃. It thus requires tuning the thresh-
old τ to properly assess the number of source. With τ = 10−9

rLASSO clearly overestimates the number of components,
and the number of artifacts grows with N . A similar trend is
observed for the LASSO solver. Also note that with increasing
SNR the number of artifacts grows, indicating an overfitting.
This effect can be compensated by increasing the threshold
τ for rLASSO and LASSO algorithms, which, however, has
an effect on the MSE performance as the following results
indicate.

The MSE performance of the methods is summarized in
Fig. 8. Here we see that with an exception of the LASSO
method with τ = 10−4, the MSE performance remains in-
dependent of N over the tested SNR range. The LASSO
algorithms with τ = 10−4 performs poorly simply due to the
fact that with a high threshold the relevant sources are being
removed from the model. This does lead to sparser model
estimates, with fewer sources, as can be see in Fig. 7, but
at the expense of growing reconstruction error. A similar be-
havior is also observed for EMD criterion: the results show

370 VOLUME 5, 2024



FIG. 8. The MSE value of the estimated concentration f (x) as a function of discretization accuracy N for different SNR values and fixed number of
measurements M = 50.

independence of N , with an exception of the LASSO algo-
rithms. These results are however not shown here, as they
follow those of MSE evaluations quite closely.

V. CONCLUSION
The proposed method addresses the problem of nonlinear
estimation of the parameters of partial differential equations.
Specifically, a linear Poisson’s equation has been considered,
with the right-hand side – the source signal – represented as a
linear combination of Dirac measures with unknown support
and weights. The standard approaches to identify parameters
of the source signals would imply suitable discretization of
the equation, followed by an estimator that imposes sparsity
constraints on the source weights of the discretized model
using, e.g., 
1 constraints.

The method proposed here does not require such dis-
cretization. The algorithm is realized within the framework of
Sparse Bayesian learning, which allows seamlessly combin-
ing the nonlinear support estimation and weight estimation.
The weights are found with the support of Dirac measures
kept fixed. This step can be implemented using standard
sparse Bayesian learning inference algorithms. The estima-
tion of the source locations, on the other hand, requires a
nonlinear optimization and is implemented using the adjoint
state method. The latter allows computing the gradient of the
corresponding cost function very efficiently. Specifically, op-
timization is done over the support parameters with non-zero

weights, which for highly sparse source signals reduces the
dimensionality of the optimization problem. The advantage of
such an approach is that it can be extended beyond Poisson’s
equation to more general Partial Differential Equations with
sparse right-hand side, including time-dependency of the PDE
and advection effects. It requires the solution of a Partial
Differential Equation to be expressed in terms of Green’s
functions. The latter, however, are not always available in
closed form for general boundary conditions; moreover, some
solutions might include discontinuities, as is the case for a
2D Poisson’s equation, which might complicate the applica-
tion of the proposed technique. A promising approach in this
perspective is to approximate the Green’s function through
learning, e.g., with a physics-informed neural network, which
is an approach currently being investigated. This study re-
mains however outside the scope of this work.

The performance of the proposed method has been com-
pared in simulations to solutions obtained with other sparse
estimators utilizing LASSO and re-weighted LASSO schemes
applied to a linearized model. The latter is obtained by
finely discretizing the search space for possible source loca-
tions, and then recovering sparse source weight estimates. We
found such re-weighted LASSO with an additional, relatively
high threshold can perform comparably with the proposed
SR-GSL algorithm. Yet other tested estimation methods per-
form worse, often introducing false sources – artifacts. While
these artifact sources do tend to have low weights and have
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relatively small impact on the concentration estimation, they
are nonetheless detected and cannot be easily distinguished
from potential true gas sources. The results clearly demon-
strate the potential of the sparse Bayesian learning method for
estimating parameters of Partial Differential Equations with
additional sparsity constraints by using non-linear optimiza-
tion techniques, as compared to classical approaches based
on, e.g., 
1 constraint.
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