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Abstract

The increasing number of crises, including natural disasters and military conflicts, underscores the impor-
tance of resilient critical infrastructures (CIs), especially for urban areas. However, current approaches
for CI modeling, monitoring, and resilience assessment are lacking a holistic view of cities as complex,
interconnected, and socio-technical systems. This paper explores the application of the Digital Twin (DT)
concept as a promising tool to assess and improve the resilience of urban CIs in light of various hazards.
DTs are virtual real-time representations of a physical system that can be used to perform real-time analysis,
simulate what-if scenarios, and provide decision support, during crises and normal operations. To this end,
we identify and discuss key challenges for the development of Urban Digital Twins (UDTs), including data
management, technical and social modeling of CIs, integrated CI co-simulations, model validation, and
resilience assessment. To address the complex nature of urban areas as systems-of-systems, we present over-
arching modeling concepts by considering CI interdependencies and socio-technical interactions, resulting
in the concept of the Socio-technical Digital Twin (STDT). Beside incorporating agent-based modeling,
we discuss the issue of demand synchronization and propose the concepts of model selection and model
transfer to facilitate the modeling process for UDTs. Furthermore, a multi-layered modeling framework for
interdependent urban CIs is presented, where the proposed concepts are integrated and an overview and
discussion of the technical and social modeling of CIs is provided, with a particular focus on the power, water,
and transportation domain. Finally, we deal with the quantitative resilience assessment for interconnected
CIs and discuss ways of integrating these methodologies in DTs. Our approach frames CIs as socio-technical
systems and integrates the human perspective into the modeling process and resilience assessment. The
presented modeling framework can be used to simulate various scenarios for analyzing their consequences
in advance and measuring resilience in a holistic context. Moreover, the proposed concepts and modeling
approaches can support future developments towards UDTs for crisis management.
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1. Introduction

In the contemporary era, the omnipresent threat of crises, appearing in the form of pandemics, natural
disasters, and military conflicts, can profoundly impact peoples’ lives. In 2021, historic flash floods
devastated parts of Western Europe, causing dozens of deaths. The disaster revealed the missing awareness
and anticipation of such events, gaps in disaster response planning and communication, and rudimentary
coordination between institutions [1]. Moreover, the Pakistan floods of 2022 affected over 33 million people
with over 1700 deaths and estimated economic losses of over $30 billion [2]. In addition, the Ukraine-Russia
and Israeli-Palestinian conflicts further emphasize the high reliance of humans on continuous access to
essential services, specifically critical infrastructures (CIs). These catastrophic events demonstrate the
emergence of unforeseen cascading effects, created by interdependencies, which are "invisible" during
normal operation. Furthermore, the COVID-19 pandemic highlighted, that even without physical damage,
human behavior in crisis situations can have significant, unexpected impacts on CIs, e.g. logistics [3]. Despite
the distinct nature of these crises, they highlight the urgent need for novel approaches to ensure the reliability
and security of CIs. To deal with future scenarios, innovative methods are needed to identify, predict, and
analyze potential events, support crisis management, and formulate effective solutions.

Urban areas are particularly vulnerable to crisis situations due to their high density of population,
infrastructures, and built environment. In fact, urban areas are highly complex, dynamic, and self-organized
systems [4]. Moreover, cities and infrastructures have to be considered and analyzed as socio-technical
systems (STS) [5]. The interplay of humans, infrastructures, and the environment creates a complex web
of dependencies, interactions, and vulnerabilities. Urban critical infrastructures (UCIs), such as power
distribution systems, water supply, transportation systems, information and communication technologies,
healthcare systems, and more, provide vital services to citizens and represent the foundation of modern
society.

For these reasons, ensuring the resilience of UCIs is a crucial task for mitigating the impact of disasters
on urban populations. Resilience is a key concept in disaster risk management and refers to the ability of a
system to withstand and recover from (potentially unexpected) disruptions while ensuring a certain level of
functional operation. Although there are several definitions of resilience, most of them agree on a timeline of
four common phases [6], as shown in Figure 1. In particular, the plan phase involves proactive identification
and preparation for potential threats, while the absorb phase deals with the rapid response to a disruptive
event, aiming to minimize the initial impact. Subsequently, the recover phase focuses on the restoration and
returning to normalcy after the initial shock has been absorbed. Finally, the adapt phase concerns learning
from experience and making long-term adjustments to enhance system capabilities against future incidents.

To enhance the resilience of UCIs, resilience needs to be defined and assessed in an objective and holistic
manner. However, no standardized methodologies for resilience assessment of UCIs exist, especially when
multiple domains are considered [7]. Moreover, resilience implies to consider various scenarios that may
not have occurred yet and for which no empirical data are available. As a consequence, there is a need
for comprehensive simulations of the system. Thereby, a holistic approach is necessary since CIs exhibit
interdependencies between various systems, as highlighted by the mentioned examples, ultimately resulting
in cascade effects [8, 9]. However, the simulation of interdependent CIs is computationally and conceptually
challenging and only few works exist [10, 7]. Furthermore, the role of human behavior on CI resilience is
rarely considered in the literature and lacking research [11, 12].

The Digital Twin (DT) concept is a promising approach to overcome the aforementioned issues. A
DT can be viewed as a virtual replica of a physical system, such as a city and its CIs, that can be used to
model and simulate the behavior of the physical system in real-time [13]. In turn, the DT can be used to
perform actions on the real system. DTs are considered a key enabler for the digital transformation [14].

Figure 1: Illustration of the resilience cycle, adapted from [6], used under CC BY 4.0
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In the context of CIs, DTs can establish real-time analysis, allow for the simulation of "what-if" scenarios
in a virtual environment, provide decision support during normal operation as well as during a crisis, and
thus increase the resilience of UCIs [13]. Additionally, the simulation capabilities of DTs can be used for
resilience assessment, for example to study system behavior for different scenarios, compare infrastructure
improvements, or test different control strategies. However, while the body of research on the technology is
growing, DTs have not yet become widely established in the context of UCIs. Until now, Urban Digital
Twins (UDTs) have mostly been used for urban planning [15, 16, 17]. Despite the potential, the adoption of
UDTs for disaster risk management is still in its infancy [18].

This paper aims to contribute to the understanding of improving and assessing the resilience of socio-
technical UCIs with the help of DTs. We discuss how the DT concept can be applied to UCIs and which
challenges in the employment of UDTs arise. To leverage UDTs for crisis management, we consider UCIs as
STSs by including the human influence throughout the modeling process. Thereby, three key CI domains are
investigated in more depth: power systems, water distribution systems, and transportation infrastructures. We
emphasize the importance of a holistic view by explicitly modeling technical and social interdependencies
under various crisis scenarios, allowing for a deeper understanding of interconnected UCIs and urban systems
as a whole. On this basis, we explore and discuss challenges, concepts, modeling, and resilience assessment
in the context of UDTs:

• Challenges Identification: Several conceptual and technical challenges impede the development and
application of DTs for urban areas. We discuss challenges regarding the acquisition, transmission,
and processing of data, which are significant in the context of CIs and crises, compared to other
DT applications. Moreover, the technical and social modeling of UCIs is discussed, highlighting
general limitations and principles. We present the role of simulations within DTs and summarize
major challenges for interconnected CI simulations. The validation of socio-technical models and
the DT itself presents another significant challenge. We further discuss current issues in resilience
management and assessment and point out the lack of holistic approaches.

• Concepts Definition: In this work, we present six overarching concepts for the modeling and
design process for UDTs. The concepts address several of the identified challenges, for example
by considering different kinds of CI interdependencies and socio-technical dependencies. Building
on the DT paradigm, we introduce the new concept of the Socio-technical Digital Twin. Moreover,
agent-based modeling is applied as a bottom-up approach to address the complexity of the system.
We then investigate the synchronization of infrastructure demands, possibly leading to overloads,
especially during crises. Moreover, the selection and transfer of models are essential concepts for
DTs to deal with data scarcity and model uncertainty. The proposed concepts can aid future modeling
approaches of UCIs and developments of UDTs.

• Modeling Approach: We propose a holistic modeling framework for UCIs and their simulation for
the employment in DTs and other applications. The framework integrates the proposed concepts
and consists of the layers technical system, social system, and environment. By understanding CIs
as services for the population, our human-centered modeling design provides a new approach for
improving resilience from a human perspective. To address the complex nature of CIs and enable
the discovery of emergent effects, we combine agent-based modeling with network-based simulation
approaches. The framework uses a multi-layered graph-based representation of CIs and accounts
for physical and geographical interdependencies. While the framework can be applied to UCIs in
general, we provide a special focus on power, water, and transportation infrastructures by presenting
modeling approaches for the technical and social system for each domain and evaluating their use
for the application in DTs. The integrated modeling of the STS and CI dependencies leverages the
evaluation of UCIs under various disaster events, providing an all-hazards framework for measuring
and improving the resilience of cities in a holistic way.

• Resilience Assessment: Finally, the quantitative resilience assessment for UCIs on the basis of
the proposed modeling framework is examined by providing an overview of resilience metrics,
including general definitions and domain-specific examples. We provide important considerations and
approaches for assessing UCI resilience in a holistic way by addressing the interconnectedness of the
systems and uncertainties. This includes the integrated assessment across multiple CI domains and
hazard types. We discuss how the concept of resilience can be integrated into the DT paradigm and
how resilience assessment can be leveraged by DTs for the real-time monitoring of UCIs.

The remainder of the paper is structured as follows. In Section 2, existing works on UDTs are reviewed.
Section 3 provides a deep discussion on challenges involved in the development of UDTs. In Section 4,
we present major concepts relevant for UDTs and the modeling and analysis of UCIs. Section 5 presents
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our holistic modeling framework and discusses the modeling of UCIs and the integration of the concepts.
Section 6 deals with the resilience assessment for UCIs in DTs. Finally, conclusions and practical implications
of the proposed framework are drawn up in Section 7.

2. Related Work on Urban Digital Twins

The idea of the DT is attributed to Michael Grieves, who described this concept in 2002 [19]. A DT
is conceived as a virtual representation of an object, process, or system and its real-time connection to the
physical counterpart. DTs are often realized using data and information to perform simulations and analyses,
even in real time, and are typically used to improve performance and support decision-making processes.
With the advancement of digital technologies, the Internet of Things (IoT) [20], and data analytics, the
idea of DTs has been increasingly considered in the recent years in various disciplines, e.g. manufacturing,
building information modeling (BIM), smart cities, energy, transportation.

For example, the authors in [28] have conducted a comprehensive exploration for novel opportunities
applying the DT concept within the sector of water resources management. An in-depth analysis of the
main challenges inherent in the establishment and continuous upkeep of DTs was carried out, and finally
a set of strategic recommendations designed to advance the integration and application of DTs in the field
of water infrastructure management have been proposed. Instead, the research in [25], [26], and [27] was
primarily dedicated to the investigation of DTs in the transportation domain. On the one hand, in [25], a
simulation approach was used to study the urban environment of Barcelona by integrating mobility data
sets obtained from mobile devices with traditional urban network data extracted from OpenStreetMap, thus
enhancing insights into the dynamics of urban mobility. On the other hand, in [26], the authors introduced a
new approach for modeling motorway traffic and showcased it by applying a continuously synchronized
DT model of the Geneva motorway, while in [27] the paper focuses on the exploitation of a DT using traffic
data to deal with evacuation scenarios. Moreover, the authors of [24] focused on smart cities and proposed
a life-cycle model for UDTs, distinguishing between reactive, predictive and forecasting functionalities.
In [13], particular attention was paid to the application of DTs in the field of CIs and crisis management.
More specifically, starting from potential hazards to infrastructures and on the basis of the analysis of
requirements related to infrastructure characteristics, a conceptual framework to support the improvement

Table 1: Comparison and positioning of the current work with respect to the related works on UDTs

Paper Context Infrastructure
Domains

CI
System
Modeling

Human
Behavior
Modeling

Focus on
crisis
events

CI Interde-
pendencies
modeling

Dembski et al. [15] Collaborative urban
planning Transportation yes no no no

Schrotter et al. [16] Urban planning, 3D
model general no no no no

Hämäläinen et al. [17] Urban planning, 3D
model general no no no no

Herzog [21] Urban planning general no yes no no
Ruohomäki et al. [22] 3D model Energy no no no no

Nochta et al. [23] Sustainability Energy,
Transport no yes no no

Bauer et al. [24] Smart city, IoT general no no no no
Sánchez-Vaquerizo et
al. [25]

Urban traffic
micro-simulation Transportation yes no no no

Kušić et al. [26] Motorway traffic
micro-simulation Transportation yes no no no

Rundel et al. [27] Evacuation,
Visualization Transportation yes no yes no

Berglund et al. [28] Optimization,
Monitoring

Water
distribution yes no no no

Pedersen et al. [29] Error diagnosis,
Monitoring

Water
distribution yes no no no

Xu et al. [30] Energy management,
Optimization Energy yes no no no

Meuser et al. [31] Disaster
Communication

Communication
system yes yes yes no

Ford et al. [32] Crisis Management general no yes yes no
Fan et al. [33] Crisis Management general no yes yes no
Brucherseifer et al.
[13] Crisis Management general no no yes no

Current work Crisis management,
Resilience assessment

Power, Water,
Transportation yes yes yes yes
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of the resilience of infrastructures has been proposed. In addition, the subject of disaster management has
received considerable attention in the research described in [33]. Here, DTs have been elaborated as a
paradigm for enabling four interdisciplinary areas concerning multi-data sensing for data collection, data
integration and analysis, multi-actor game-theoretic decision-making, and dynamic network analysis for
dealing with disaster response and emergency management. Further research in this direction has recently
been presented in [18] with reference to the potential of DTs as a combination of digital-based intelligence
technologies, by distinguishing between four different levels (Digital Twin Prototype, Digital Twin Instance,
and Digital Twin Environment, the latter divided into Adaptive and Intelligent).

To summarize the overview of the related work, Table 1 compares our work with the related works
on UDTs. Most developments in the field of UDTs focus on urban planning, where city development,
citizen participation, and sustainability are the major objectives. Among CIs, the transportation domain
was most commonly considered. DT applications in the water and energy domain exist as well, however
they are mostly concerned with system optimization and monitoring. A holistic perspective on urban areas,
considering multiple CIs and their interdependencies, is missing. Moreover, in the mentioned contexts,
the focus is usually on the normal operation and not on crisis scenarios and critical events. In addition,
the consideration of human behavior is often lacking, but is crucial in the context of crisis management.
Furthermore, only few works exist that connect DTs with the concept of resilience [13]. Although UDTs are
recently also considered in the field of crisis management, most of this work does not deal with CIs in detail.

Our work aims to fill the described research gap by connecting UCI modeling with the idea of DTs and
the concept of resilience. In contrast to related works dealing with domain-isolated approaches, we consider
multiple, interdependent CIs, with a focus on power systems, water distribution systems, and transportation
infrastructures. In this context, we investigate the application of UDTs for smart cities, thereby integrating
human behavior modeling, contributing novel approaches for resilience assessment and crisis management.

Further related work on specific aspects of UDTs will be discussed throughout the following sections. In
the next section, we discuss in more detail the main challenges that need to be addressed in the development
and application of a UDT in the context of smart cities and crisis management.

3. Challenges

As has emerged from the previous sections, the DT concept is a promising tool for improving the
resilience of UCIs. However, several conceptual and technical challenges impede the development and
application of DTs for urban areas.

This section aims to highlight those challenges in the development of UDTs, especially in the context
of UCIs and crisis management. Section 3.1 presents challenges related to the acquisition, transmission,
and processing of data, which is the foundation of a DT. Since modeling is an essential task towards the
creation of a DT, Section 3.2 and Section 3.3 highlight challenges regarding the modeling of UCIs from
a technical and social perspective. The potentials and challenges of simulations within DTs are presented
in Section 3.4. The validation of models and simulations presents an additional challenge, outlined in
Section 3.5. Incorporating the concept of resilience into the DT paradigm, assessing the resilience of UCIs,
and the associated challenges are discussed in Section 3.6. Section 3.7 deals with domain-specific challenges
for energy, water, and transportation infrastructures.

3.1. Data Provision and Management
The foundation of a DT is a well-established database that provides all necessary information for the DT

functionalities at the required level of detail. A UDT requires a solid technical infrastructure to manage data
acquisition, transmission, processing, and storage. In the context of CIs, this results in various challenges.

A main challenge for UDTs is the acquisition of data from CIs. Compared to DTs for industrial processes
that are typically applied in a closed physical and technical environment, access to CI data, both static and
real-time data, presents several difficulties. Access is often hampered by security concerns from CI operators
or a limited knowledge about construction details of the built environment. While the former issue requires
both technical solutions and political commitment by accounting for several stakeholders, the latter problem
needs significant technical commitment to be resolved [34]. Topological reconstruction approaches for
underground infrastructure based on open data might provide approximate information [35]. Nevertheless,
the existing limitations result in data scarcity for UCIs, hindering the development of UDTs.

UDTs are closely related to the idea of smart cities, as they aim to accelerate the digital transformation,
provide a data platform for different stakeholders, and improve urban processes [18]. Thus, smart city data
platforms could serve as a starting point for UDTs by providing various data from the city, such as IoT
sensor data, and data catalogs for historical data [22]. Existing UDT projects, like those in Wellington, New
Zealand [36], Zurich, Switzerland [16], and Helsinki, Finland [17], currently aid urban planning procedures
and rely on many different data sources. Thereby, the improvement of data acquisition and processing is a
key research question in creating a comprehensive UDT [37].
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Moreover, data from urban areas is highly heterogeneous and data representations from different CI
domains can vary significantly between different systems. Hence, the fusion of various data sources and
types requires a common ontology description to enable the usage of the data in further UDT functionalities,
e.g. cross-domain simulations. Although smart city ontologies have been developed, they may not cover
the extent of the intended DT application, requiring the adaption or development of a customized ontology.
Moreover, there is a lack of common data models and standardizations for DTs [38].

Since DTs are a real-time representation of the real world, they need to fulfill real-time requirements.
In order to update the virtual replica of DTs with the latest information, sensor data needs to be filtered,
combined, and processed with regard to the corresponding virtual objects. On a citywide scale, processing
and extracting information in a timely manner is a significant challenge. The efficient and automatic
processing of data from varying input sources is an open research question [33]. Furthermore, uncertainties
in the information extraction present a challenge that must be accounted for in the system estimation and
simulation of CIs.

Table 2: Examples and Classification of Data Types for UDTs
Data Category Domain
Topography static Environment
Land usage static Environment
Time and date dynamic Environment
Temperature dynamic Environment
Humidity dynamic Environment
Socio-economic status static Population
Population movement dynamic Population
Residential buildings semi-static Civil infrastructure
Public buildings semi-static Civil infrastructure
Bridges semi-static Civil infrastructure
Power grid semi-static Energy
Power demand dynamic Energy
Water network semi-static Water
Water demand dynamic Water
Road infrastructure semi-static Transportation
Traffic dynamic Transportation

Table 2 shows a collection of the most relevant data in the context of UCIs and their classification. Data
used in DTs can typically be categorized as static or dynamic [39]. Static data refers to information that
persists for a longer time horizon than the time frame being analyzed. In contrast, dynamic data changes
within the observation time of the DT and requires regular updates of their state. During crisis situations,
objects that are normally considered as static can change unexpectedly, requiring the new category of semi-
static data. One example of this third category is the sudden destruction of roads because of an earthquake.
This aspect needs to be taken into account for DTs used for crisis management.

Representing crisis situations in UDTs presents further complexities. To deal with semi-static data,
information that is not collected on a regular basis, e.g. network topology and parameters, needs to be
verified. Accordingly updating semi-static data has to be considered in the data management of the DT,
which complicates technical designs. Furthermore, in crisis situations, many data sources might not be
available and may need to be replaced with other sources. The data available under such circumstances may
significantly differ from the data used in the normal operation, resulting in a even more diverse set of data
inputs. Remote sensing, social sensing, and crowd-sourced data can be used to gather necessary information
in crisis situations [33, 40]. However, this is only possible to a limited degree and the fusion of these data
into the database of a DT requires new technologies.

The link between data transmission and communication infrastructures creates additional challenges
for DTs in crisis situations. Disasters might affect various CIs, including communication and information
infrastructure. Specifically, the loss or limitation of data transmission from sensors and other sources could
have an impact on the data available in the DT, and thus the DT functionalities. Hence, DTs need to be
designed in a way to deal with data loss and the resulting uncertainty, and further make it transparent to the
user. The impact of data losses can be limited by the use of alternate communication channels, which are not
dependent on central infrastructure [41]. However, decentralized communication infrastructures are still in
the research stage and existing infrastructures are optimized for centralized data processing.

3.2. Modeling of Urban Critical Infrastructures
Models play a fundamental role in the DT concept because they form the basis for simulations, system

estimation, and analysis. The first step towards creating a DT is the initialization of the virtual replica
which contains a virtual, always up-to-date representation of the real system in form of models and data [13].
The contained models can be categorized into structural models, describing the composition of real-world
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components, and behavioral models that describe their dynamics [13]. The specific approach to modeling
can vary significantly based on the intended application and context of the DT.

For DTs in general, both data-driven (black-box) and physical (white-box) modeling is possible, as
well as hybrid approaches [42]. When ample data is available and physical modeling is difficult, machine
learning techniques can be applied effectively [43]. However, in situations of data scarcity, physical modeling
becomes essential. As discussed in the previous section, the availability of data depends on the environment
and application for the DT and is especially challenging in the context of CIs. Moreover, the effectiveness of
data-driven models is usually limited by the range of operating states in the training data, which typically
reflects only the normal operation. Combining physical and data-driven modeling in DTs might be promising
for achieving increased performance but involves several challenges.

The multitude of potential modeling approaches and available models highlights an essential question for
scientific reasoning: the selection of models. Choosing the right model means to decide which assumptions
about the real system should be included to facilitate the understanding of the real world. A general design
principle in this context is the principle of parsimony, also known as Occam’s razor. This principle states that
each model should be as simple as possible while describing all relevant features of the real world. The term
"relevance" needs to be clearly defined, as one can always argue that an additional or different assumption
would potentially increase the understanding of the real system. However, if the number of assumptions is
increased excessively, the model’s usefulness and comprehensibility can decrease. Therefore, the choice of
adequate assumptions and models remains a considerable challenge for UDTs.

CIs can be seen as a collection of manifold interacting components that can change their properties and
adapt their behavior, and can therefore be characterized as complex adaptive systems [8, 44]. Since the
term "critical infrastructures" encompasses several sectors, UCIs have to be considered and modeled as a
system-of-systems. In the normal operation, CIs appear to be isolated systems that do not interact with each
other. However, they exhibit hidden interdependencies, which can lead to critical cascade effects [9, 45].
Therefore, it is crucial to consider these interdependencies between CI sectors in modeling and simulations
for the DT to aid in the comprehension and forecasting of these critical effects.

Prior to modeling, CI interdependencies have to be identified, which represents a challenge itself. Due
to their "invisibility" during normal operations, the dependencies between the multitude of systems and
components are not obvious. Domain knowledge from experts and empirical data from past incidents and
disasters can be used to identify interdependencies, although this process involves extensive manual work
[46].

3.3. Social Modeling
Critical infrastructures are deeply interconnected with the behavior of people. The entirety of influences

of human behavior on a superordinate system is often called human factors. Human factors include the
influence of a single human’s behavior on a system, as well as the combined interactive behavior of groups
of people, also called social behavior.

The nature and extent of human factors in the context of infrastructures have been described by [5],
highlighting that infrastructures should be considered as a socio-technical system (STS). An important
connection between citizens and infrastructures is that the demand of infrastructure users constitutes the load
placed on an infrastructure, e.g. the burden of traffic on roads or the energy and water demanded from a
distribution grid. However, this demand is also influenced by the availability of the infrastructure, e.g., users
might adjust their demand behavior to traffic jams or low water pressure.

Additional interdependencies arise since legal, political, and societal expectations shape the development
of infrastructures. For example, the availability of a technology shapes the expectation of citizens on
the infrastructure and thereby the infrastructure’s development. These expectations include minimum
acceptable standards for the infrastructure, but also limit the development of the infrastructure to the
technologies considered in the regulatory framework for the development of the infrastructure. For example,
the road infrastructure is typically built by considering existing cars, while cars are also built to fit into the
infrastructure. The traffic laws that govern the use of these cars are further developed for the existing cars
and infrastructure, again shaping which technical features are built into newly developed cars.

While this socio-technical perspective is frequently discussed in the literature on UCIs, socio-technical
interdependence is less incorporated in DT research [13]. This is because initial DT concepts are centered
around the modeling of purely technical systems, such as machines or production systems [19]. The socio-
technical perspective has recently received attention in the context of UDTs in [23], although the primary
focus was on the role of DTs as a tool for communication and decision support in social systems. The
integrated modeling of social and technical systems remains an open issue.

The interconnectedness of social and technical systems raises key issues that we will highlight in the
following. The first two issues concern the modeling of individual and collective behavior of humans, the
third and forth issue concern two key capabilities of DTs: sensing variables from and act upon the real
system.
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Individual behavior involves decision-making, which is rarely rational, but rather depends on cognitive
and emotional factors [47, 48]. In the last century, various theories have been proposed to quantitatively
describe this behavior, e.g. the theory of bounded rationality [49] and the prospect theory [50]. Bounded
rationality describes the fact that human decisions are always dependent on incomplete knowledge of the
world and finite cognitive abilities to process information. In addition, the prospect theory highlights that
the context plays an important role in human behavior and decision-making, especially in decisions under
uncertainty and decisions that are subject to risks. This irrationality of individual behavior has been shown to
be highly relevant for the understanding and management of disasters [51].

Collective behavior, i.e. the behavior of groups of people, inherits and extends the complexity of
individual behavior [52]. Especially in times of crises, human relationships and the resulting collective
behavior can lead to emergent behavior. Such emergent behavior is usually dominated by controlled,
prosocial decisions and contrary to popular belief, panic rarely occurs [53]. Moreover, prosocial collective
behavior can be seen as a potential key strength of cities in overcoming challenges beyond the capabilities of
purely technical solutions [54]. However, emergent behavior can also be associated with a high degree of
improvisation and creativity [55], resulting in unexpected responses, and further increasing complexity and
uncertainty in social systems.

Sensing of social behavioral variables is limited by practical, legal, and ethical constraints. It is obvious
that accurately measuring certain human traits, such as emotional states or intentions, is not feasible.
Moreover, potential approaches for the sensing of human factors are often restricted by privacy and data
protection laws [56].

Acting capabilities of DTs for STSs should be considered a challenge. One promise of DTs is the aided
or automated action on and control of the real-world system. For STSs however, this concept can only be
applied to the technical components and only to a limited degree, as the complex nature and potentially high
impact of decisions typically raises concerns about the automated action when social systems are involved.
Furthermore, any action within the social system is itself subject to the political, legal, and institutional
context of society. In the case of urban crises, this includes the responsibilities and lines of command of
local institutions as well as the applicable laws in the affected city.

In summary, the inclusion of socio-technical perspectives in the DT paradigm raises a number of
challenges to consider for future UDTs. The uncertainty and complexity of human behavior and the planning
of societal interventions, have led to the term wicked problems [57]. This term essentially embodies the
notion that no singular and definite "solution" can be found for such societal problems. The long-standing
discourse of the social and human sciences on the intricacy of these challenges further underscores the
improbability of definitive solutions. However, it is essential to take the complexity into consideration when
building systems aimed at alleviating issues of STSs. This is especially pressing, as solutions solely focusing
on technical aspects might underutilize the smart capabilities urban spaces inherit from their citizens [54].

3.4. Simulations in Digital Twins

Simulations are a highly important tool in the context of critical infrastructures, as real experiments are
mostly infeasible, due to practical and ethical reasons. Nowadays, simulations of CI systems are typically
used within the scope of single CI sectors for different objectives, such as system estimation, prediction, and
infrastructure planning. Developing simulation models and keeping them up-to-date with the real system is a
laborious task.

In the DT concept, the use of simulations is a key feature that allows for the analysis of various scenarios
and the exploration of potential consequences. This encompasses simulations for all considered sub-systems,
their connections, and environmental conditions. Models and simulations can be employed in the DT
framework in three different functionalities:

• System estimation: The virtual replica is continuously receiving raw data, which need to be processed
before it can be used for further applications. The received data usually represent only a partial picture
of the real system as not every UCI component might be equipped with sensors. As the virtual replica
should contain a complete copy of its real counterpart at any time, the state of components, for which
no direct measurements exist, needs to be estimated. For this task, a model that describes the system
dynamics pertaining to the according CI domain is required.

Since the implementation needs to fulfill real-time requirements, the computational complexity of the
state estimation method needs to be regarded carefully. Analytical approaches might be infeasible for
systems that contain many variables, e.g., a large number of traffic participants might be present in a
transportation network. In this case, other approaches for determining the state of hidden variables
need to be considered, for example Approximate Bayesian computation.

• What-if (Ad-hoc) simulation: In the context of crises or critical situations, the quick analysis of
potential countermeasures is essential. Often, a decision must be made between alternative actions
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under time pressure and extensive studies to find the optimal solution are not possible. Therefore,
these decisions have to be made heuristically by the involvement of experts and empirical knowledge,
which can lead to suboptimal results.

The DT concept addresses this issue with Ad-hoc and fast-forward simulations. As the virtual replica
of the DT always represents the current state of the real system, simulations can be conducted on the
basis of the current situation. So-called virtual clones can be instantiated from the virtual replica to
provide a safe environment for experiments [13]. This can offer comprehensive forecasts of the system
behavior as a firm basis for timely decision-making.

Because the simulation results should be available as fast as possible, the simulation speed of the
fast-forward simulation is required to be much faster than real-time. Moreover, the level of detail of
the models and thus their computational effort needs to be chosen carefully. However, since the aim
of the "what-if" analysis is to predict non-obvious, emergent effects, a certain minimum of detail is
required. In particular, the modeling of interdependencies is essential for this task to assess potential
wide-spread consequences. The parallel execution of multiple what-if simulations with different levels
of detail and durations is conceivable.

• Scenario simulation: To assess the impact of various crisis events on UCIs, scenarios can be
defined, e.g. floods, earthquakes, or an explosion. With these scenarios, resilience assessment can be
conducted by simulating the consequences on the entire system. A scenario could be simulated under
different configurations to compare system performance, e.g. comparing infrastructure modifications or
restoration strategies. Potential scenarios can either be defined from scratch or with the use of recorded
data from the DT. In particular, a past real incident could be analyzed in retrospective and alternative
response measures could be simulated to learn and adapt from crises. Multiverse Simulations could be
used to analyze alternative outcomes after a point of divergence [58].

Scenario simulations can be performed offline to thoroughly assess and prepare for these events. For
this case, more detailed simulation models with longer execution duration can be used. Additionally,
software-in-the-loop or hardware-in-the-loop testing could be performed for more advanced analysis,
which is not possible for fast-forward simulations.

During the implementation of a DT, the different requirements and the reuse of simulation models in
several functionalities of the DT should be considered for its design architecture.

The modeling of interdependencies and the holistic assessment of the system necessitates an integrated
simulation of the complete system. However, the co-simulation of multiple CIs, i.e. the synchronized
execution of all sub-system simulations, brings additional challenges compared to a simulation in a single
domain [10]. We identify the following main technical challenges for CI co-simulations:

• Modularization: Simulators for different CI domains, which might have different system, platform,
and hardware requirements, have to be brought together to run in a common software environment.
Federated simulation approaches have been proposed for the handling of multi-domain CI systems
[59, 60]. For example, each of the sub-systems (e.g. power grid, communication network, etc.) can
be run in parallel in a dedicated environment with specifically allocated computational resources.
However, the construction of a simulation platform requires sophisticated software designs to handle
the communication between the sub-systems.

• Simulation Time Synchronization: In a co-simulation, it is essential to "orchestrate" the execution of
sub-system simulations in a way that their respective outputs and other events can be exchanged in
time by considering causality and determinism [61]. As most existing simulation tools are optimized
to run as standalone solution, many of them are not prepared for dynamic interactions during the
simulation. Therefore, they may have to be adjusted for the use in co-simulations or new tools with
suitable interfaces need to be developed.

• Different Time Scales: The time scales of dynamic behavior differ significantly among CI domains.
For example, power systems contain relevant dynamics in the range of milliseconds, while traffic
systems show dynamics that occur in the range of hours. Building an efficient architecture that
synchronizes the simulation of different CIs despite their different time scales presents a major
challenge [62]. For example, using equidistant time steps would be inefficient since small time steps
required to capture the dynamics of the fastest CI system produce unnecessary computational overhead
for other simulators. Discrete event simulations can be used to handle the management of events with
variable simulation time steps, but involve challenging design efforts [58].

• Event Management: As external events may influence every sub-system, these events have to be
defined in a common format, transmitted to every affected sub-system, and processed by the respective
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sub-systems [61]. This event management requires a sophisticated software architecture to ensure that
all events are transmitted and processed in time before the simulation continues.

• Deployment: The management of several software applications and packages for the simulators
is not trivial. Software dependencies, updates, and IT security need to be considered for reliable
IT-based solutions. Containerization tools, e.g. Docker, may simplify this process. However, licensing
issues and missing interfaces of commercial simulations can complicate the deployment in different
environments.

3.5. Validation

In scientific and commercial endeavors alike, the question "Is our result good?" is highly relevant. In this
context, the term validation is often mentioned. Colloquially, the term validation is often associated with
the question whether the right system was built. The IEEE Standard for System, Software, and Hardware
Verification and Validation 1012 [63] defines validation more precisely as the evaluation whether a system
satisfies specified requirements, solves the right problem, and satisfies user needs. However, the application
of this definition to the context of DTs is not trivial.

As the definition of validation relies heavily on the definition of requirements, the validation of a DT as a
whole depends on the intended use of the DT. Therefore, the validation of a DT would provide evidence
for the question "Did the DT solve the problem, that it was intended to solve?". If the purpose of the DT
is to assess and enhance the resilience of UCIs, this includes to help in a crisis or assess the system in all
phases of resilience. Therefore, validation would answer the question "Did the DT help in the planning for,
absorption of, recovery from, or adaption to a crisis?".

It is obvious that these questions can only be answered after the implementation and thorough long-term
review of DTs. If validation is intended before such a long-term review, it should assess whether the
DT provides services that are assumed to aid the aforementioned goals. This question then resorts to the
validation of functions or sub-systems of the DT for a specific application. In particular, validation questions
for sub-systems or functions of a DT could be:

• Data acquisition: "Does the measured data correctly represent the physical system’s state?"

• State estimation: "Are the unmeasured state variables of the physical system correctly estimated?"

• Monitoring: "Does the overall picture correctly and continuously represent the physical system’s
state?"

• Simulation models: "Do the simulated models correctly represent the physical system’s behavior?"

• Decision Support: "Can conclusions and decisions be drawn from the provided information?"

• Actuation: "Are the actions on the physical system performed as intended?"

Each of these questions is part of the respective research field that investigates the methods and technolo-
gies used for these functions or sub-systems. As these research areas encompass a multitude of scientific
fields, we will highlight challenges on the validation of simulating socio-technical models with a focus on
crisis situations. The validation of simulated computer models is a broad field that is in depth discussed in
[64]. For the context of crises and resilience of UCIs, we want to highlight three challenges: facets of data
scarcity, limitations of validation methods, and the increased role of uncertainty.

In classic engineering and natural sciences, validation of models is typically performed through the
comparison of model outputs to a set of data from the real system. This data can be generated through
experiments, simulations of other previously validated models, or sufficient observation of the real system.
However, as highlighted in Section 3.1, data from experiments, previous observations, and other validated
models for UCIs are typically considered unavailable for crises, especially if they are unprecedented.

Additionally, the validation methods of classical engineering typically use statistical hypothesis testing,
such as t-tests. These tests typically assume a number of strong assumptions that are rarely justified in the
context of crises. One example is that the most common tests for validation assume statistical properties,
such as normality of error distributions, or seek to fit expected values of statistical models. However,
non-normality and unexpected dependencies can become an issue in the context of rare, critical events.

Lastly, typical approaches for validation assume that it is possible to fit a model to data in a way that the
model output errors are sufficiently small, so that the predictions of a model can be utilized for further actions
on the system. However, as discussed in Section 3.3, the uncertainty of STSs makes it virtually impossible to
make accurate predictions. Therefore, the arising uncertainty in model assumptions and outputs leads to
potentially unreliable predictions, even if the governing behavior of the system was correctly characterized
in the model.
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As the above challenges highlight, the validation of DTs in general and socio-technical models in
particular is complex and multifaceted. Nonetheless, ascertaining validity is crucial for both research and
application, highlighting the relevance of this aspect. Subsequently, a discussion is required on the reasonable
expectations and applicable methods for validating socio-technical models.

3.6. Resilience Management and Assessment

The concept of resilience receives increasing attention and has been used in many different research
fields, such as economics, psychology, and ecology [11]. In the context of CIs and crisis management,
resilience-related terms are frequently used [6]. The various research fields have adapted the resilience
concept to their domain contexts and considered diverse scenarios [6, 7]. This however, complicates a
general, interdisciplinary definition of resilience. Even for particular domain contexts, a formal definition
and quantification has been elusive and there are no universally recognized standards.

The concept of resilience is connected to DTs in three different ways. First, DTs provide extensive
simulation tools to assess the consequences of potential scenarios for UCIs and the population [13]. Within
these simulations, performance measures can be evaluated in order to assess the resilience of the system.
This assessment can be conducted in a short-term context, for example for decision-making during crisis
events, or in a long-term context for infrastructure planning to evaluate different options for hardening the
infrastructure. Second, the practical application of a UDT in a smart city would improve the resilience
of the real UCIs in the future. The UDT could provide improved decision support with reduced time for
sense-making processes, which would lead to quicker and more effective disaster response, thus increasing
resilience [13]. Last, the DT itself and the platform it is running on need to be constructed in a resilient
manner [13, 18].

Resilience management can be seen as an addition to traditional risk management in the operation of
CIs [6, 11, 65]. While risk management mostly focuses on known hazards, their likelihood, and prevention,
incorporating the concept of resilience means to consider unexpected events and assessing and improving
the resilience of the system. Like the DT, resilience management encompasses all phases of the resilience
cycle, mostly monitoring and adaption [6]. However, the different and partially conflicting understandings
of resilience and its analysis hinder a broad and effective integration of resilience-based measures and
standards in the planning and management of CIs in the near future. Resilience management is generally
applied separately in different CI domains. Hence, bringing the resilience management of different CI sectors
together is a major challenge for DTs.

To evaluate the resilience (improvement) of UCIs in an objective manner, a quantification of resilience
is required. However, no universal method for resilience assessment that could represent a comprehensive
picture of multiple UCIs exists [7, 12]. Therefore, the selection, combination, or creation of suitable metrics
that capture resilience across several CI domains poses a significant challenge. Additionally, while traditional
risk-oriented assessment methods usually focus only on the failure of components or the immediate impact
of an event on the system, resilience assessment implies considering all resilience phases, which is rarely
done at once in the literature [65]. For example, the system recovery and the time needed for the repair of
infrastructure components are of relevance for assessing resilience. However, for simulations, this requires
the modeling of the system restoration, often including uncertainties and several assumptions. Moreover,
following the concept of general and specified resilience [6], assessing the general resilience of a system, i.e.
the behavior to any kind of (unknown) hazard, is much more difficult and rarely discussed in the literature
than assessing resilience against a specific type of hazard.

As pointed out in Section 3.3, CIs are deeply interconnected with the behavior of people and need to be
considered as STSs. However, the role of societies and human behavior on CI resilience is rarely considered
and lacking research [11, 12].

3.7. Domain-specific Challenges

Here, we identify domain-specific challenges to consider towards DT applications that are particularly
relevant in the CI domains of energy, water, and transportation infrastructure.

3.7.1. Energy Infrastructures
Although this work focuses on power systems as the most vital and fundamental energy infrastructure,

gas networks and heating grids belong to the category of energy infrastructures, too. However, their technical
characteristics and challenges are more similar to those of water networks, as they transport fluids.

Compared to other types of infrastructures, power systems are highly dynamic systems, i.e., they can
change their state in a very short time. This is emphasized, for instance, by the event of abrupt frequency
drops in the European interconnected transmission grid that resulted in a highly critical system separation
in 2021 [66]. This event further demonstrates that (intra-domain) cascade effects within the power system
can occur when power flows are shifted to other lines due to a failure. This fact makes the right selection of
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models representing all effects relevant for DTs at different timescales important. Therefore, model reduction
and system identification (e.g. due to aging) remain open challenges [67].

While transmission grids are often well-equipped with sensor and control infrastructure, distribution
grids at urban scales typically lack real-time measurements, particularly in the medium and low-voltage grid.
The unavailability of data or limited time resolution has to be considered for the application of sensing and
state estimation within the DT.

Many systems and devices rely on power systems nowadays and almost every other CI system depends
on power in some way. With the trend to an "all electric society", these dependencies are becoming even
more important. Therefore, this overarching dependency needs to be taken into account in modeling.

3.7.2. Water Infrastructures
Water infrastructures consist of many distinct and technically heterogeneous types of systems. These

systems include water potabilization and treatment plants, water distribution systems for potable water, waste
water systems, water irrigation systems, and open bodies of water used for multiple causes like water supply,
waste disposal, and transportation. Each of these types of infrastructures presents specific challenges, for
which DTs have been proposed as a viable tool [28, 68, 69]. Our work focuses on water distribution systems
for potable water, as access to drinking water is crucial to human survival.

A growing number of DT applications in the domain of water distribution systems have been discussed
in literature. A recent review of the key approaches and challenges highlights the lacking capabilities of
models to include continuous updating through data in a DT [28]. Furthermore, limitations are highlighted
regarding the high uncertainty of system parameters, e.g. roughness of pipes, and uncertainty in real-time
data, e.g. positions of manually operated valves.

3.7.3. Transportation Infrastructures
Transportation infrastructures provide the service of mobility, which plays a highly relevant role for

modern society, as it enables people to efficiently travel between their locations of interest, e.g. their residence
or workplace. This leads to a firm linkage between the dynamics of urban transportation systems and the
daily routine of the citizens. Urban transportation systems consist of different sub-systems for different
transportation modes and numerous technical structures, such as traffic lights, streets, or rail systems, and are
complemented by the travelers. As these components are interconnected, the transportation system itself
forms a system-of-systems.

Moreover, the travelers within this system-of-systems interact with each other, e.g. in a congestion or
overloaded public transportation, and mutually influence their mobility behavior and decisions. This results
in complex relationships that are hard to account for when modeling transportation systems. In addition,
travelers have a plethora of choices, ranging from the selection of transportation mode to individual routing
decisions. As the decisions of individual travelers cannot always be assumed to be rational [47, 70], the
representation of the current state of urban transportation systems faces a high degree of uncertainty.

Furthermore, creating a multimodal model of urban mobility and keeping the model up-to-date with
its real counterpart poses the challenge of fusing multiple heterogeneous data sources. As transportation
systems comprise different sub-systems and numerous technical components, a variety of different sources
of mobility data is available, including traffic counting sensor networks, mobile GPS trackers, and LiDAR
sensors. However, fusing such data to create a holistic model is challenging and an active field of research
[71].

4. Concepts

To address the aforementioned and discussed challenges, this section presents conceptual approaches for
the design process of UDTs and the modeling of UCIs. We identify and discuss six overarching concepts
that are relevant in the realm of DTs and can aid future development for UDTs. In particular, we discuss:

1. the prevalence of interdependencies in UCIs,
2. how the socio-technical nature of UCIs can be incorporated in DTs,
3. how agent-based modeling can be applied for the context of UCIs,
4. the cause and risk of the synchronization of CI demands,
5. the selection of models to reduce uncertainty,
6. and how data scarcity can be addressed through model transfer.
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4.1. Interdependencies

As mentioned in Section 3.2, interdependencies between CIs are barely visible, but can lead to unforeseen
critical effects, e.g. cascade effects in disasters. Because CI interdependencies play a minor role during
normal operations, they are often not considered, let alone modeled or simulated. While the isolated modeling
of CI domains might be viable for UDTs designed for urban planning, the modeling of interdependencies is
indispensable for UDTs in the context of resilient UCIs to take critical failures into account.

We consider a unidirectional relation between two systems as dependency, whereas mutually dependent
relationships can be classified as interdependencies, as shown in Figure 2. Although there may be dependen-
cies between components within one CI system (intra-domain dependencies), we use this term only to refer
to dependencies between two components from different CI systems (inter-domain dependencies).

Figure 2: Illustration of CI layers (e.g. water, power, and transportation system) and dependencies between each other

Interdependencies can be classified into the following types: physical, cyber, geographic, and logical
[8, 10]. For example, the reliance of many systems on power supply can be considered as a physical
dependency. Cyber interdependencies are created through the involvement of communication systems
and data collection, transmission, and processing. Geographic dependencies are created by the vicinity
of UCI components to each other and the geographic scope of external impacts. The different types of
interdependencies need to be addressed by using specific modeling approaches.

The effect of interdependencies varies in the temporal and spatial extent. For example, while the
dependence on power comes immediately into effect, the dependence of fossil power plants on functioning
transportation infrastructures is only relevant at much longer timescales, due to storages [72]. Moreover,
dependencies may exist beyond the scope of urban areas. This has to be considered for the modeling of
dependencies.

Dependencies can further be categorized into their relevance during different resilience phases. During
normal operations, they usually play a minor role, e.g. for planning maintenance works and billing. In the
case of a failure, certain dependencies might propagate a malfunction to other systems, thus amplifying
the original impact during the absorption phase. During the recovery, additional dependencies might come
into play, e.g. the restoration of power systems relies on access to streets, which might be destroyed due to
an earthquake. Furthermore, resources for the restoration process might be limited across all CIs, creating
resource-sharing interdependencies [73].

The existence of CI interdependencies is often regarded in a negative light because they increase the
risk of failures and cascade effects. However, dependencies can also be utilized in a positive manner if well
managed, for example by using synergies between power and water networks during grid restoration [74].

While the concept of CI interdependencies is widely accepted, simulations of interconnected UCIs
are rare, especially for more than two domains [7]. The consideration of interdependencies necessitates
sophisticated design concepts for the modeling and simulation of UCIs. In order to simulate all effects that
could potentially affect every other system, the simulations of different CI systems need to be performed
simultaneously (co-simulation). Alternatively, in the case that all dependencies are assigned in the same
direction, the simulations could also be performed consecutively, e.g. if the power network would have
an influence on the communication system, but not vice versa, the power network could be simulated
beforehand.

Beside the dependencies within CIs, external dependencies represent influences of the environment on
UCIs, such as time of day or temperature. As discussed in Section 3.3, the influence of human behavior can
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also be seen as a mutual dependency, which we call socio-technical interdependencies and is analyzed in the
following.

4.2. Socio-technical Digital Twin

As discussed in Section 3.3, influences of human factors on technical systems are pivotal in the modeling
of UCIs. To accurately represent socio-technical UCIs, the socio-technical interactions need to be considered.
Therefore, we propose to include socio-technical models in DTs, leading to the concept of the Socio-technical
Digital Twin (STDT), which is depicted in Figure 3. This approach extends concepts of existing DTs by
including models of the social sub-systems in the virtual replica.

Socio-technical system (Real world)

Technical
system

Social
system

Technical
model

Social
model

Human
decision makers

Socio-technical model (Virtual world)

Digital Twin

Sensing, data

Figure 3: Concept of the STDT. While sensing and data collection will typically be based on the technical system, actions are made by
human decision makers on the basis of the integrated socio-technical model and can be directed at both the social and the technical
system.

To facilitate the inclusion of models of human behavior, the challenges of acting and sensing discussed in
Section 3.3 have to be addressed. The most common approach is to sense human impact on an infrastructure
directly, e.g. measuring power and water demand through smart meters, or indirectly, e.g. monitoring people
movements through traffic sensors and estimating their impact on other infrastructures. Another opportunity
for sensing in social systems is the analysis of data generated by the widespread use of smart technologies by
citizens. For example, the analysis of smartphone locations or social media data might be used to estimate
the number of people in an affected area during a crisis or to gauge the sentiment of people towards current
events [75].

Acting in a STDT could be facilitated either by automated actions within the technical system, as is the
case for closed-loop control of technical systems, or by using the DT as a tool for human decision makers. On
the one hand, including socio-technical models in the DT could help to improve the precision of automated
control of the technical systems by reducing uncertainty of model outputs. On the other hand, the STDT
could offer support for human decision makers, in particular for crisis management. STDTs could be used
to increase the understanding of the underlying dynamics in UCI systems and highlight potential effects of
interventions. In this context, the concept of the human-in-the-loop in decision-making processes plays a
major role [13].

The STDT concept opens up new possibilities for UDTs by allowing to include knowledge about human
behavior and promises to strengthen DT capabilities. While models of human behavior are limited in their
accuracy, as discussed in Section 3.3, the STDT approach of sensing and integrating data into the STSs could
help to address the issues regarding validation, highlighted in Section 3.5.

4.3. Agent-based Modeling

UCIs are socio-technical systems-of-systems, which can be modeled through a spectrum of approaches.
These approaches can be segmented into "top-down" and "bottom-up" approaches, differing in their perspec-
tives and methodologies. In "top-down" modeling, the focus is primarily set on observing and understanding
the system’s behavior at an aggregate level. This approach treats the system as a whole, often relying on
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high-level abstractions and overarching principles to describe its behavior. In contrast, "bottom-up" modeling
takes a more granular perspective by dissecting the system into its constituent parts. In this approach, the
aggregate behavior of the system is not assumed but is derived from the results of the behavior and relations
of its entities.

Agent-based modeling (ABM) is a prominent bottom-up modeling paradigm that can be used to deal
with the nature of complex systems [44]. Since urban areas and UCIs must be considered as complex systems
that can show emergent behavior, ABM appears to be a suitable modeling choice for UCIs. A variety of
entity types within the STS of UCIs could be represented as agents. Primarily, humans that make decisions
can be considered as agents, but also CI facilities, such as hospitals, or components with which humans
interact, can be treated as agents. As ABM is a widely adopted approach for modeling various systems, this
section will only give a brief overview of the method. For an in-depth presentation of ABM, the reader is
referred to [76] or [77] for a general overview, and to [78] for the context of STSs and CIs.

ABM represents actors or sub-systems as individual entities, called agents. An agent can represent a
human or a technical component capable of making decisions or an abstract entity, such as a corporation,
government, or association. Each agent contains its specific traits as parameters and its behavior as functions.
The agents interact with one another, allowing for the emergence of the aggregate system’s behavior. Agent-
based models further incorporate an environment representing components and constraints of the system that
influence the agents but are not considered autonomous actors. The interactions of agents can either be direct,
i.e., the function of one agent can manipulate the parameters of itself or of another agent, or indirect, i.e., the
agent’s function manipulates an environment variable that then influences the behavior of other agents. An
example of the ABM concept and the structure of an agent is shown in Figure 4.

Agent

parameters:

- unique_name:
- length:
- speed:
- known_neighbors:

functions:

+ increase_speed():
+ find_neighbor():
+ greet_neighbors():

Environmental variables

Sub-system B

Agent 1 Agent 2

Agent 3

... Agent n

Sub-system A

Model horizon

Indirect
interaction

Direct
interaction

Figure 4: Agents (left) are represented as programming objects that carry traits as parameters and action capabilities as functions. The
nested structure (right) allows the modeling of sub-systems as groups of agents and the direct interaction between agents and indirect
interactions through the environment.

The advantages of employing ABM for modeling UCIs are multifaceted. First, ABM is typically driven
by assumptions about the lower system levels, i.e. the agents, rather than assumptions about the aggregate
system. This renders ABM particularly suitable for situations where comprehensive knowledge about the
aggregate system is lacking. Requiring little assumptions on the aggregate system makes ABM especially
promising for the modeling of crisis situations, since empirical data on crisis is rare. In this context, ABM
can enable investigations of the aggregate system’s behavior based on assumptions about individual behavior,
without requiring prior knowledge of the aggregate system in an unprecedented situation.

Second, ABM provides a flexible framework to explore different scenarios and the result of potential
variations in agent behavior. This can help to explore a multitude of potential future outcomes in a crisis
situation under differing assumptions about the reactions of citizens.

Moreover, ABM excels in modeling spatial relationships and is consequently well-suited for systems
with spatially distributed components, such as UCIs. In this regard, combining ABM with the topological
modeling of CIs is key for modeling geographical interdependencies.

Finally, the alignment of agents with easy to recognize real world entities facilitates communication and
understanding of the modeling process and simulation results, making ABM a valuable tool for stakeholders
and decision makers. This is particularly advantageous for policy and management planning in the context
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of resilience for UCIs because the processes and the rationales of decision-making must be made transparent
to stakeholders.

4.4. Demand Synchronization

The synchronization of infrastructure demands is a phenomenon within the social system of UCIs,
created by the collective behavior of people. The effect of spontaneous synchronization has been discovered
in biological, physical, and social systems, and has been studied in the context of complex networks [79].
However, in the context of infrastructures, the effect of synchronization is rarely considered, since people and
their activities are independent from each other most of the time. In the sense of the central limit theorem,
which states that the sum of independent, identically distributed random variables converges to a normal
distribution whose relative standard deviation decreases with a higher number of variables, this means that
individual actions, e.g. demand, cancel out, leading to a smooth course of aggregated variables. However,
synchronization invalidates the assumption of independence.

If human behavior synchronizes, significant consequences can arise, especially when linked to CIs. For
instance, during the coronavirus pandemic, self-increased panic buying of disinfectants and toilet paper
caused a strain on logistics [3]. Furthermore, citizens in the UK are synchronized by the TV program on a
regular basis, which can create immense surges in the power grid due to the simultaneous use of water kettles
[80]. These examples show the relevance of demand synchronization in the context of CIs and emphasize
the importance of analyzing, understanding, and predicting synchronized behavior.

Synchronization can be critical for an infrastructure system in two different ways. First, the synchro-
nization of demand behavior can lead to high aggregated demand if many individual demands are high at
the same point in time. Most infrastructures are not designed to supply all customers with high demand
simultaneously because this situation is very rare and statistically unlikely. Therefore, synchronization
can lead to exceeding capacity limits. Second, spontaneous demand synchronization can lead to sudden,
unexpected changes for the aggregated demand, which can be critical for the system’s stability. A sudden
change would create a mismatch of demand and supply, which can destabilize the system. This effect is
more critical if the demand shift is unexpected.

Demand synchronization is particularly relevant for power systems. Compared to other networks, the
synchronization of power demand can have much more severe consequences. For example, in the water
distribution grid, high demand would cause a temporary drop in water pressure, which would not directly
endanger the stability of the system. If the internet traffic is overloaded, this would lead to increased waiting
times but not to any damage of the physical infrastructure. However, in the power grid, overvoltage and
overloads can damage certain parts of the power infrastructure, such as power lines and transformers. For
this reason, protection mechanisms will usually trip, causing temporary and local outages. For distribution
grids, however, these protections devices often need to be manually reactivated, resulting in significant power
outages. Moreover, in crisis situations, when infrastructure is already damaged or service personnel are
stretched to the limit, the duration of households without power can be even longer. The synchronization of
high power demand therefore represents a significant threat for supply reliability that must be anticipated
and mitigated.

The origin of synchronization can be divided into two categories [81]. External influences, such as
daytime, season, or weather, affect people and their demand behavior in the same way, thus constitute
synchronization. As these exogenous variables can be directly observed, their influence on the demand
can be estimated in advance. Contrastingly, internal dynamics within the social part of the system, e.g. the
spreading of fake news over social media, can also lead to synchronized behavior of people and possibly
their use of infrastructure services. These internal effects can hardly be predicted or observed directly, as
discussed in Section 3.3. The modeling and analysis of such internal dynamics could help in understanding
and predicting irregular demand changes, reducing the risk of such critical scenarios.

4.5. Selection of Models

While the aforementioned concepts can aid the development of models, the challenge of model selection
mentioned in Section 3.2 remains. This challenge is deeply interconnected with the challenge of validation,
outlined in Section 3.5, as both essentially address the question, which assumptions about the real world are
correct, i.e. useful for the goal of the model. While validations aim to assess the overall correctness of a
model, this section focuses on how to decide which assumptions to include in a model.

To address the challenge of model selection, a novel framework for choosing models in the context of
STSs was recently presented [82]. The approach takes an instrumental stand on the aim of modeling by
assuming that a model’s goal is not primarily to understand the world, but its primary focus is to provide
insights as basis for actions and decisions. Thus, an assumption is only relevant with regard to the overall
modeling objective. In the context of this work, model details and assumptions are evaluated based on their
contribution to enhancing the resilience of UCIs and providing insights through the DT. To test this approach,
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the framework utilizes statistical hypothesis testing and technical requirement analysis to verify the relevance
of different levels of detail in social models in regard to critical behavior in the technical system.

First, technical requirement analysis is used to identify, which functions of a UCI are critical, i.e., are
necessary to sufficiently serve citizen’s demands. Second, system states that could impede these supply
objectives are identified, e.g., which loads or dynamics might negatively impact the infrastructure’s physical
integrity.

As an example, the requirements can be derived from technical standards, as they specify the expectations
of stakeholders in a legal context [82]. The results of the requirements analysis are then used to assess
whether a difference in model details is significant for the relevant system properties. The significance can be
assessed through statistical hypothesis testing. The hypothesis tests evaluate whether the model’s predictions
show statistically significant differences in the distributions of the model’s output values.

This approach of model selection could help to avoid unnecessary modeling details, thereby reducing
model uncertainty. The approach could further be used to aid in the selection of competing modeling
structures and support efforts of validation.

4.6. Transfer of Models
The system of UCIs, including the social behavior within this system, exhibits a high degree of complexity,

as elaborated in Section 3. Therefore, sufficient data is needed to accurately predict various dynamics of
UCIs in different situations. However, Section 3.1 revealed that data of UCIs is usually scarce, especially
for crisis events. Moreover, the availability of empirical data sources varies widely between different cities
and existing data sets are naturally limited to their context, e.g. the specific disaster, location, or historical
situation. This fact limits the applicability of machine learning methods as they rely on extensive amounts of
empirical data.

In fact, most machine learning models share the problem that they generalize poorly to unseen domains,
i.e. data distributions that are not represented in the training data. Typically, such models are trained on
massive amounts of data for a specific, defined task and context, in which they may achieve tremendous
accuracy. However, when the context changes, the models may yield imprecise results. For example, machine
learning models trained on data from the normal operation of UCIs may fail when applied to rare events.
Within the last years, notable improvements of the generalization properties of machine learning models
trained on heterogeneous data from different but related domains have been achieved [83]. In terms of urban
areas, this may refer to training a model with data from different cities, aiming to generalize to unseen cities.
While the growing amount of data, e.g. on urban mobility, may facilitate to train such a model for regular
operation, the scarcity of data for rare events complicates such a procedure for crises.

For instance, estimating human responses to an earthquake that has not yet occurred in a specific urban
area faces a lack of data to support modeling assumptions about human behavior in this case. This implies the
need for methods specialized for domain adaptation, enabling predictions of human reactions and behavior
in contexts when high-quality and adequate data is not available. In particular, overcoming contextual
limitations may enable models that can predict human crisis behavior in new contexts. This would be a
tremendous achievement to support crisis management. The concept of model transfer, depicted in Figure 5,
consists of learning general spatio-temporal behavioral patterns and adapting them to a novel context, e.g. a
crisis or a new city, to overcome data scarcity. In the above example, this refers to using existing data on
earthquakes from other urban areas to estimate the human behavior in the area of concern. However, further
investigation is needed to explore model transfer within the context of UCI [84].

In machine learning, transfer learning specifically seeks to perform such a task. In transfer learning,
a model is usually trained on data from a source domain before being refined to a target domain. In the

Figure 5: Concept of model transfer: The large amount of data from the source city is used to train a model, which is then adapted to fit
the target city, based on limited data. This results in a model for the target city.
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context of urban areas, a data-rich area may serve as the source domain, while a data-poor area usually is the
target domain. For example, recent works investigated the prediction of citywide mobility by using transfer
learning [85, 86]. A model is trained on human behavior and environment data from the source city to learn
behavioral patterns within the source city first, such as movement patterns between its regions. This model is
then either fine-tuned with limited data from the target domain or applied directly to predict the according
behavior in the target city. Refinement approaches in transfer learning range from freezing certain layers of a
pre-trained neural network and retraining the others to using a pre-trained model for feature extraction for
re-using previously learned data representations [87].

For urban mobility, there are two highly relevant applications for the transfer of models. One of them
concerns the transfer between urban areas. As previously stated, this involves training on data about the
source city with the goal of generalizing movement patterns as a product of environmental influences. The
trained model can then be used to predict the spatial mobility patterns in the target city, with or without
further fine-tuning.

The second application is a transfer between two different events, e.g. disasters, such as floods and
earthquakes, or regular situations as well. Here, the source and target domain represent the same urban area,
but the environment changes, influencing the behavioral patterns within the system. This is reflected by
pre-training a model with sufficient data, e.g. on regular situations, and refining the model with limited data
on crisis behavior.

Combining transfers between urban areas and between events is a promising approach to estimate the
impact of crises on human behavior in an entirely new urban area. Nevertheless, further investigation of the
transfer of models as a particular task of domain adaptation is needed to aid future crisis behavior models.

5. Modeling

This section deals with the modeling of UCIs in the context of UDTs and integrates the concepts
introduced in Section 4. We present and discuss general modeling aspects, such as ABM, interdependencies,
and synchronization, as well as the modeling of CI systems, in particular, power systems, water distribution
systems, and transportation systems.

Figure 6: Modeling framework for UCI simulations within UDTs

The models presented can be embedded in a superordinate modeling framework shown in Figure 6. This
framework can form the basis for co-simulations within a UDT. Following the concept of STSs, the modeling
approach can be divided into three main parts:

• Technical System: This encompasses the physical modeling of all technical components of the UCIs.
The CI systems are modeled and simulated in separated modules. The interdependency manager
handles the dependencies between the systems.

For the physical models, many established simulation tools exist that can be used or adapted. However,
as discussed in Section 3.4, they have to be adjusted for additional interfaces to be used within the
integrated simulation platform.
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• Social System: Humans are part of the STS of UCIs. Since they interact with infrastructures in both
ways, they are considered as agents that can affect every technical UCI system. This approach puts
the human perspective and human needs at the center, understanding infrastructures as services to the
population.

The social and human behavior can be modeled in many different ways. The interface to the technical
system needs to be defined. The absence of readily available implementations complicates the process
of including social behavior into the modeling for DTs.

• Environment: The environment represents all external influences on the system that originate beyond
the system boundary of the UCIs of a city and its residents. This includes exogenous variables and
external impact events such as disasters. The specific impact needs to be modeled individually and
depends on the type of hazard, the affected area, and the vulnerability of components.

To address the nature of CIs as complex adaptive systems, we combine agent-based modeling with
network-based simulation approaches. The modeling approach can be seen as a bottom-up simulation that
considers all individual components and sub-systems. We consider physical components of infrastructures
as entities and humans as agents of the system. The integrated modeling of the STS enables the holistic
assessment of the system and the discovery of emergent effects, created for example by geographic or
socio-technical interdependencies.

We are solely concentrating on physics-based (white-box) modeling. In the context of resilience, which
considers rare and unknown events, physics-based modeling appears to be the more suitable approach
compared to black-box modeling because it allows the simulation of situations that have never occurred in
the real system. Thus, physics-based modeling can be expected to provide more useful outcomes and a better
understanding of the complex system of UCIs, especially for situations outside the normal operation.

The selection of models is a vital process that needs to take the specific requirements and goals of a
UDT into account. In general, it can be said that due to the holistic approach of UDTs and the challenges
arising in the coordinated simulation of UCIs (see Section 3.4), the level of detail in the models used may
be lower compared to domain-specific analyses. They should however be detailed enough to capture all
relevant behavior that impacts the overall system significantly, i.e. the main functionality of components and
the relationships between system domains. For example, the failure of a power device due to undervoltage
and its consequences presents an essential characteristic that should be included in the model for a UDT,
while non-critical power quality features, such as harmonics in the voltage frequency, may only be relevant
for the power grid operator.

5.1. Technical System

This section focuses on the modeling of the technical part of the UCI systems. We introduce the structural
modeling of UCIs and their interdependencies as a graph-based representation. Then, we present and discuss
different approaches that can be used for modeling the physical behavior of UCIs, in particular, power grids,
water distribution systems, and transportation infrastructure.

5.1.1. Modeling UCIs
Infrastructures are systems that consist of technical or organizational components that are connected

between each other and provide a service. The modeling of CIs encompasses the description of their
components, their behavior, and the interfaces to the infrastructure users and the environment.

Many CI systems can be modeled with graphs to describe their structural composition [88, 10]. Table
3 exemplifies that several UCI entities can be represented as nodes and edges. Often, the nodes can be
associated with a demand of infrastructure services, while the edges contain information of flows. Most of
the physical entities can be assumed static in their location.

We therefore model UCIs as graphs, constituting a set of layers, as depicted in Figure 2. Each CI system
k ∈ {1, . . . ,K} is represented as a graph

Gk = (Vk, Ek) (1)

with nodes Vk and (intra-layer) edges Ek that are associated to the CI domain k.
Although the graph representation provides structural insights into the system, the system’s topology

alone is not able to predict the state and behavior of the system under different conditions. In addition,
the modeling of dynamic behavior within CI domains is required to simulate state variables over time, e.g.
flows. For example, while purely topology-based models can estimate the immediate impact of spatial events
on adjacent nodes, simulations are still necessary to assess the degree of resulting service operation and
consequences to the entire system.

Compared to models that are created for a specific application and known environment, models for the
use in UDTs for crisis management must be able to deal with uncertainties, created for example by missing
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Table 3: Examples of UCI Entities that can be represented as Nodes and Edges
Infrastructure Node-like entities Edge-like entities
Power Busses, Consumers, Generators, Transformers,

Substations, Switches
Overhead lines, Underground cables

Water Junctions, Consumers, Pumps, Reservoirs Pipes, Sewer lines
Transportation Crossings, Stations, Transfer hubs Roads, Rail lines, Public transportation connections
Communication Sensors, Data centers, Routers, Mobile base sta-

tions
Communication cables, Wireless communication chan-
nels

Logistics Warehouses, Distribution centers Shipping routes, Supply chains
Healthcare Hospitals Medical pathways, Information flow
Finance Banks, Cash machines Transactions, Payment networks
Emergency Services Fire stations, Police stations Emergency response routes, Emergency Communica-

tion

data, model uncertainty, or abnormal operation modes. While many existing models are only useful in a
predefined operation point (e.g. due to linearization), models in UDTs should be designed in a way that they
are still useful in unusual situations to provide an informative value.

5.1.2. Interdependencies
Different approaches for the modeling and simulation of CI interdependencies exist. System dynamics

and input–output approaches analyze the system and its interdependencies in a top-down perspective by
describing the system with stocks, flows, and feedback loops. The dynamics can often be modeled with
differential equations, which eases the analysis and simulation. However, top-down approaches are limited
by the explicit modeling of interdependencies based on existing knowledge, required calibration of system
parameters with data, and their inflexibility to topology changes [10].

To analyze interdependent CI systems at a component level, bottom-up approaches are required. Network-
based approaches address the graph-like nature of UCIs and can be divided into topology-based and flow-
based. Topology-based methods benefit from computational speed but cannot provide sufficient information
about the internal states of CIs [10, 89]. Flow-based methods, on the other hand, provide a high level of
detail and represent the dynamics of the system, which comes with increased computational cost, especially
when the system is large [10, 89]. Furthermore, network-based approaches are able to consider all types of
interdependencies (physical, cyber, geographic, and logical) [10].

Using the graph-based representation of UCIs, where every domain itself is represented by the graph Gk,
dependencies can be defined as directed or bidirectional edge between two nodes of different domains [88].
The dependency network DN describes dependencies as a directed graph [58]

DN = (V,D) (2)

that connects the set V of all nodes of the disjoint graphs Gk by the set of inter-layer edges

D = {(no, nd) | no ∈ Vi, nd ∈ V j}, (3)

where no represents a node in domain i that is dependent on node nd in domain j. Extended formulations to
describe node-edge or edge-edge dependencies are possible.

The dependency network can model physical dependencies by using edge weights for the inter-layer
edges. For example, an inter-layer edge, pointing from a pump node in the water network to the node within
the power network from where it is supplied with power, could contain the information of the required amount
of power. Cyber dependencies can be incorporated by assigning sensor nodes within the communication
network to the entities from which measurement values about their current state are transmitted. To consider
geographic interdependencies, the entities of all networks are provided with spatial information, which can
be used to model impacts from the environment.

5.1.3. Ontology Description
As discussed in Section 3.1, the use of an ontology description is necessary for modeling all UCI entities

with a common data model. Many smart city ontologies have been developed, but most of them are designed
for sector-specific applications, such as the energy sector, smart homes, and urban planning [90]. For the
context of UDTs, we identified the following ontologies being particularly useful.

CityGML is a widely used standard by the Open Geospatial Consortium (OGC) for representing and
exchanging 3D city models [91]. It provides a comprehensive ontology for urban environments, including
buildings, roads, and other infrastructure. However, CityGML appears to be mainly used for 3D models and
is not so widely used for network-based representations of infrastructures.
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SAREF (Smart Appliances Reference Ontology) is an ontology developed by the European Commission
for describing smart appliances and their capabilities [92]. The focus is to improve the interoperability of
smart appliances, however, it could be extended to cover broader aspects of smart cities.

FIWARE NGSI-LD is an open standard developed by the FIWARE community for representing and
exchanging information about entities in a smart city context [93]. It is designed to support real-time data
exchange and integration, which plays a crucial role for DTs. Furthermore, the use of FIWARE has been
proven useful for UDTs [24].

Due to its openness, flexibility, and adaptability, we consider the FIWARE standard suitable as an
ontology description of UCIs. There exist developments that are centered on smart city applications, such
as the "Smart Data Models" [94]. Nonetheless, the ontology may need to be adjusted to the specific DT
application. Furthermore, adapters for the interoperability with the used simulators are required.

5.1.4. Power System
Three-phase alternating current (AC) has prevailed for the transmission and distribution of power

worldwide. Transformers can convert AC voltage to different voltage levels. The modeling of power systems
is often simplified by considering just one phase under the assumption of symmetric operation.

There are different models for power systems that can represent the electrical behavior at different levels
of detail. In the simplest case, the loads at nodes, e.g. buildings, are aggregated as the sum of active power.
However, this model neglects reactive power, line losses, and the network topology.

The consideration of sinusoidal voltages and currents leads to the AC power-flow model [95]. In contrast,
the so-called "DC power-flow" uses approximations that lead to linear equations, which can be handled more
easily from a computational point of view. However, these assumptions are more justified for high-voltage
networks and not for urban distribution systems. Moreover, the linearized model is only appropriate for
normal operation conditions, when the system state is close to the according operating point. If the objective
includes representing critical situations, the selected model should yield accurate results also for unusual
system states, where the system might operate at limiting conditions.

The power-flow model is a steady-state model that can for example calculate the new resulting steady
state due to a component’s failure. However, it is not able to represent transient effects, i.e. trajectories
between steady states at short timescales. For this, the differential equations of electrical circuits must be
considered. However, their simulation increases computational efforts and simulation time significantly,
which would complicate their use in UDTs. While transient effects might be relevant for system stability in
transmission grids [96], they could be negligible for urban distribution systems. Thus, the AC power-flow
model might be sufficient for capturing the main effects in the context of hazard impacts on interdependent
UCIs.

For the implementation of the power system model, many commercial and open-source tools exist.
Pandapower [97] is an open-source Python package for simulating electrical power systems with a focus on
static and quasi-static analysis and provides solvers for the AC power-flow model. The tool has been used in
other cross-domain simulations [60] and is known for its flexible interface and great performance.

5.1.5. Water Distribution System
As with any system, the level of detail in a water distribution model must be selected based on the desired

insights. For DTs this means, that depending on the physical variables of interest and the available sensors,
different models might be chosen.

For a simple estimation of water availability and the usage of water tanks, simple models, such as the flow
balance in tanks and main pumps, might be sufficient. Such models are extensively utilized in socio-technical
models of water systems [98] but are typically insufficient if spatially distributed insights into the dynamics
of water distribution systems are of interest.

Most current applications of DTs in the realm of urban water distribution systems utilize more extensive
models [28]. In addition to the balance of mass, these models use the topology of the water distribution
system as a graph and assumptions of friction in the pipes to model the water pressure available at each
junction of the water distribution system, i.e. the locations of water demand.

Finally, more extensive models of water distribution systems could be considered for DTs, as there is a
rich literature on models of piped fluid systems [99]. These models could be used to simulate transient effects
in the system, e.g. pressure surges. While these models could merit benefits for highly dynamic situations,
the increased need for data and computational resources makes it hard to employ such models for large scale
systems like urban water distribution systems.

A widely used simulator for water distribution systems is the Water Network Tool for Resilience (WNTR)
[100]. WNTR is an extension of a prior network simulator (EPANET) and is especially useful for resilience
analysis, as it provides built-in capabilities for the analysis of water distribution systems on the basis of
resilience metrics and pressure drops. The tool has been used in other cross-domain simulations [60].
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5.1.6. Transportation System
As pointed out in Section 3.7.3, the transportation system consists of multiple sub-systems, serving

different modes of transportation. The vehicles of different transportation modes either share transportation
networks, e.g. cars and buses share streets, or rely on their own networks, such as trains. Each of these
networks can be modeled individually as part of a multi-layer network.

Transportation networks exhibit a graph-like structure consisting of nodes, such as junctions or stations,
and links between the nodes, such as streets or rails. Hence, the individual networks are typically modeled as
graphs. In addition to these intra-layer links, multi-layer networks are equipped with inter-layer links between
the different layers within the transport domain, representing transfer hubs that provide the possibility to
change the mode of transportation.

To create detailed graph-based models for transportation networks, publicly available data, e.g. from
OpenStreetMap, can be leveraged. There are several works that exploit such data sources. For example, the
author of [101] created a repository of street network models based on OpenStreetMap data for every urban
area in the world. Such street network models have been used for a variety of tasks, ranging from routing
[102, 103] over traffic analysis [104] to machine learning applications [105]. Furthermore, OpenStreetMap
data plays a significant role in traffic network modeling for traffic simulations. Several simulators, such as
SUMO ("Simulation of Urban MObility") [106] and MATSim ("Multi-Agent Transport Simulation") [107],
provide the possibility to automatically generate a transportation network model based on OpenStreetMap
data.

These automatically created transportation network models have been proven to serve as a basis for
modeling transportation systems within DTs [26]. Moreover, SUMO comes with a tool to intervene the
simulation, which allows to calibrate the traffic situation with real data and modify the system, providing
interfaces that can be used to model interactions with other CI systems. Thus, simulators equipped with such
interfaces seem promising for the application in UDTs to simulate scenarios with disruption events and test
different traffic control strategies.

5.2. Social System

As discussed in Section 3.3, human behavior significantly impacts the state of UCIs. On the one hand,
the operational load of infrastructures is generated by the actions of its users, e.g. the amount of power
or water that is consumed. On the other hand, CIs are operated and maintained by humans to ensure the
functional operation, which is especially relevant during a crisis, e.g. for restoration. To estimate the state of
a technical infrastructure system or simulate its behavior in a scenario, assumptions about the behavior of
humans are necessary. While both mentioned socio-technical perspectives are highly relevant in the context
of crises, this section focuses on the modeling of user behavior and infrastructure demands. The output of
such demand models represents the input for the models of the technical systems.

Simple demand models include for example the assumption of constant demands or standardized demand
patterns. Moreover, if sufficient sensors are available, real-time demand data on infrastructure demands can
be streamed into the technical models. However, those approaches are limited in simulating crisis scenarios,
as these methods do not allow forecasting for unprecedented situations. Therefore, more advanced demand
models have to be considered as well to provide a deeper understanding of user behavior.

The following subsections give a brief overview how demand behavior can be modeled in the context
of UCIs. For this, we first outline how the concepts of ABM and synchronization can be leveraged for
modeling CI demands. Followingly, examples of behavior models used in the CI domains of power, water,
and transportation infrastructure are presented and discussed.

5.2.1. Agent-based Modeling
ABM has been used for a variety of tasks related to urban areas, infrastructure systems, and crises, as

discussed in Section 4.3. Especially the modeling of human behavior is a highly relevant application for the
STDT, as detailed behavior patterns improve the understanding of urban dynamics.

Many works have used ABM for social models that solely concentrate on modeling human behavior.
For instance, agent-based models of mobility patterns and mobility demand [108, 109, 110] or energy
demand [111] address human interactions with UCIs. Modeling such demands on the microscopic level of
citizens can generate detailed representations of dynamic loads on infrastructures. This enables models of
infrastructures that represent human needs and behavior patterns.

Moreover, several mobility simulation software, such as SUMO [106] or MATSim [107] model traffic
as the aggregated traveling of individual agents. These simulators have been used in several microscopic
models of transportation infrastructure, for instance in a DT of the transportation network in Barcelona [25],
a DT of a highway segment near Geneva [26], or a model of the pedestrian traffic flow in Salzburg [112].
Such agent-based mobility models can introduce spatial dynamics in microscopic infrastructure demand
models, creating spatio-temporal loads for the infrastructures. Moreover, ABM has been deployed to model
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the behavior and evacuation efforts of people exposed to natural disasters, such as hurricanes [113] and
earthquakes [114], demonstrating the applicability of agent-based behavioral models also for rare events.

These models for infrastructure demand and behavior patterns can serve as a basis for modeling in-
frastructures as STSs. In fact, human behavior has not only been modeled in isolation, but also embedded
in models of infrastructure systems. In [115], human behavior is integrated in a model of power, water,
and transportation network by ABM to analyze the effects of seismic events. Moreover, in [116], agents
have been used to model households and businesses and their respective consumption and production in an
interdependent infrastructure model. Such socio-technical agent-based models are particularly suitable for
investigating emergent effects in social systems and analyzing their impact on UCIs.

As a modeling paradigm that is closely related to simulation, the potential of ABM for STDTs lies
especially in the use of scenario simulations and Ad-Hoc simulations (see Section 3.4). For this purpose,
ABM has been explored in the context of DTs for urban social systems [21].

While these examples showcase the benefits of ABM for modeling UCIs, a drawback of ABM lies
in the high number of variables due to the disaggregated structure of agent-based models. Therefore,
ABM simulations may require extensive implementation and tend to be computationally expensive [10].
Furthermore, the large number of variables increases the uncertainty of model inputs.

One approach to address model uncertainty is model validation, which we discussed in Section 3.5. This
aspect has been highlighted as especially relevant for ABM [117]. The goal of validation in this context
would be to reduce uncertainty by establishing trust in the model assumptions based on measurement data.
Furthermore, model uncertainty can be decreased through methods of model selection (see Section 4.5).
Similarly, model selection aims to reduce model uncertainty either by selecting models that fit the obser-
vational data or by reducing model complexity, i.e. getting rid of unnecessary assumptions. One facet of
data-driven model selection can be the instantiation of the model, i.e. the estimation of a system’s initial
state as starting point for the simulation.

5.2.2. Synchronization
The concept of demand synchronization, as described in Section 4.4, can be modeled by building on

ABM. In ABM, agents may influence each other’s behavior, but often maintain independent, individual
actions. In the case of synchronization, the agent’s actions become synchronized, which can have significant
implications on the overall system behavior.

Synchronization can be modeled in different ways. For example, the Kuramoto model [118] is a
popular mathematical description of synchronizing coupled oscillators. It has been extended to more
advanced formulations and has been examined under various configurations. However, it has been applied
mostly for problems which involve oscillating variables, which is not the case for infrastructure demand.
Synchronization has also been studied in the context of multi-agent systems with a focus on system control
[119].

By understanding synchronization as correlation between the individual properties, e.g. power demand,
synchronization can be modeled with random variables, which exhibit dependencies. Copulas provide a
flexible way of modeling dependencies between random variables by separating the modeling of marginal
distributions from the dependence structure [120]. Copulas have been used in finance, risk management, and
engineering to model dependencies. In the context of demand modeling, copulas have been used to model
correlated stochastic electricity demands with a normalized parameter [81]. This approach can be used to
generate synthetic demands given a synchronization parameter, as well as for monitoring the synchronization
from real-time demand data. With this model, statistical properties of the aggregate system can be analyzed,
e.g. the likelihood of exceeding system limits.

5.2.3. Power Demand
Compared to industrial and commercial power demand, residential power demand can be assumed to

contain the most variability and uncertainty. This is because human behavior has a major impact on residential
power demand, while the load of industrial, commercial, or public buildings can usually be considered more
static. Especially in crisis situations, the residential power demand is most prone to unexpected load shifts.
Therefore, a focus on residential power demand modeling is essential for this study. Modeling demand at an
individual level is indispensable to address the concept of ABM.

Power demand partially follows deterministic patterns, induced for example by the time of day, season,
and weather variables. Therefore, the aggregated demand is often modeled by using these factors, e.g. by
creating standard load profiles or regression models. However, at an individual demand level, e.g. buildings,
the power demand appears to be much more stochastic, especially on shorter timescales, i.e. intra-hourly.
This is because power demand patterns are often characterized by human behavior.

Stochastic models for the power demand have been developed to represent uncertainty. Residential
demand models can be divided into top-down and bottom-up models [121]. In this context, bottom-up refers
to the modeling at appliance level, however, other definitions exist.
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Probability distributions are a simply way to represent the statistical nature of power demand and can be
obtained with historical data of household power demand. Different parametric distributions, such as the
Beta, Weibull, Log-normal, generalized extreme value distribution, as well as Gaussian mixture models have
been proposed [122, 123, 124, 125], although none of them has emerged as a universal fit. The Log-normal
distribution has proven to successfully model fat-tailed demand data at high-resolution [81]. For a more
specific model, a distribution can be obtained for every hour of the day or month of a year, although this
increases the number of models while reducing the data to fit them [124].

More detailed models utilize data of people’s activities to model power demand at appliance level
and have demonstrated their ability to generate realistic load profiles [126, 127, 111]. The demand is
often modeled with the Markov chain Monte Carlo (MCMC) method. With this bottom-up approach, the
implications of human behavior and decisions under varying conditions on power demands can be studied in
detail, allowing predictions for unprecedented situations. While these models can be considered agent-based,
existing implementations often neglect interactions between people. Moreover, this approach requires a large
amount of calibration data about activities and electrical appliances and is computationally intensive [121].

5.2.4. Water Demand
In the context of DTs, simple water demand models, using either recorded or live streamed data, are

the most common [28]. However, the modeling of water demand has a long history of research on its
own, resulting in numerous models that describe functional relationships of explanatory variables of water
demand.

Traditional econometric models of water demand use regression models to estimate water demand on
variables, such as costs or socio-economic household parameters. Examples for such models have been
reviewed by [128] and [129]. Due to the high fidelity required for DTs, the applicability of these models is
limited, as they typically evaluate water demand over extended periods, such as monthly or annually. For
short-time demand forecasting, data-driven models, e.g. artificial neural networks, are frequently used [130].

All the aforementioned methods are typically focused on aggregated water demand, i.e. the water demand
of a whole city or neighborhood. However, as discussed in Section 5.1.5, DTs require spatially detailed
models for water infrastructure. While a diverse set of spatially heterogeneous models for water demand
exist, these models rely on spatially detailed data, highlighting the challenge of data scarcity for the model
development [131]. These data requirements can in part be addressed by smart metering technologies, but
further utilization of data and development of methods are needed [132]. Modeling approaches deemed
promising for highly dynamic modeling and spatially distributed water demand are ABM and system
dynamics models, with ABM providing additional capabilities to model agent interactions on a fine spatial
scale, i.e. neighbor interactions [131]. ABM in this context can be used to estimate the impact of management
strategies, but the predictive capabilities can be limited due to the high uncertainty regarding the definition
and instantiation of ABMs [133].

A systematic literature review of agent-based models for residential water demand found a heterogeneous
body of approaches, building on various of the aforementioned demand modeling strategies [98]. Agents’
water demands can for example be generated through deterministic values or through stochastic demand
pulses for demand profiles based on the frequency of appliance use, e.g. the models presented by [134],
similar to the methods described for electricity demand in the previous subsection. The modeled water
demand is then influenced by assumptions of the agent’s decisions, e.g. decisions whether to conform
with the behavior of neighbors or to reduce their demand according to public announcements. Despite the
potential benefits of ABM for modeling socio-technical interactions, only a small sample was found to
integrate extensive technical models of water distribution systems. As ABM shows the capability to simulate
spatially distributed water demand at high temporal fidelity and can include reasoning about human behavior,
ABM seems promising for modeling water demand in UDTs.

5.2.5. Mobility
As mentioned in Section 3.7.3, human travel behavior can exhibit limited rationality and is therefore

difficult to model. There are multiple approaches to overcome this difficulty to capture human mobility
behavior in urban areas. These approaches range from mathematical models, such as simple random waypoint
models [135] or probabilistic models [136], to data-driven approaches, such as generative adversarial
networks [137, 138].

Because simple mathematical models lack a foundation of behavioral patterns and data-driven models
require massive amounts of data, both approaches face limitations for realistically modeling urban mobility.
An alternative approach is to leverage time-use data to create time-activity profiles [108]. This is a popular
method for generating the mobility demand of synthetic populations by incorporating ABM. Several
works have used time-use diaries or large-scale time-use surveys to generate such time-activity profiles
[139, 140, 141].
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By incorporating socio-economic and spatio-demographic data, time-activity profiles can be matched
with demographic profiles and activities can be located within an urban area. This involves identifying
the relationship between time-use and demographic characteristics to generate time-activity patterns. By
assessing the spatial distribution of demographic characteristics within the city, demographic profiles can
be mapped to locations, representing the citizens’ residence. In addition, activities can be assigned to
their location in the city by using points of interest, such as schools or shopping centers. This results in
detailed information about the exact whereabouts of the synthetic citizens over time. Moreover, this approach
provides not only origin-destination pairs for each synthetic citizen, but also a context for each activity. An
example of a model that follows this method is the agent-based demand model TAPAS ("Travel Activity
PAttern Simulation") [109].

A limitation of time-activity models is their usual restriction to regular situations. Most of the existing
time-activity models represent usual mobility patterns, indicating limited applicability for rare events, such as
crises. While crisis applications are rarely incorporated in time-activity models, other models aim to model
human mobility behavior during crises through the use of ABM. This approach involves the incorporation of
decision models for the agents’ responses to disruptions and constitutes a popular choice for modeling the
complex dynamics of human mobility behavior during crises [113, 141].

5.3. Environment
The environment comprises all external factors that affect the UCIs of a city and its residents. This

includes exogenous variables and external impact events.
Exogenous variables, such as time of day or weather conditions, can influence various CI systems and

also impact human behavior. For example, the mobility behavior depends on the time of day or the season.
Furthermore, outdoor temperatures affect the operation of power lines by reducing their operational limit.

While exogenous variables are relevant for normal operations, crises and disasters are frequently caused
by external events, creating specific scenarios. The cause can further be divided into natural and man-made
(accidental or intentional) disasters. Therefore, it is necessary to model the specific impact of a given scenario
on the entire system.

A variety of scenarios for external events has been considered in the context of CI resilience. Literature
has focused most commonly on floods, hurricanes, earthquakes, pandemics, and climate change [65]. These
scenarios can affect urban areas at different timescales, creating a further challenge for their joint simulation
with CI dynamics. Moreover, scenarios can be categorized by their area of impact as:

• point events, e.g. single component failure, explosions, fire incidents,

• track-based events, e.g. floods, tornadoes,

• or city-wide events, e.g. earthquakes, (snow-)storm, heat wave, power blackout.

Since different scenarios create different kinds of impacts, the exposures and failures need to be modeled
for each scenario individually. This affects the area of impact, e.g., the impacted area of an explosion can be
considered radial with decreasing impact from the center, while a storm would probably cover large parts
of a city. In addition, different types of entities can be affected in different ways, e.g., underground power
cables would not be affected from a hurricane, while overground infrastructure might be.

The modeling of impact events consists of two parts: exposure modeling and failure modeling. Exposure
modeling first identifies all entities that are affected by a scenario and defines the quantitative impact of the
exposure. The exposure can be based on geographic properties, e.g. in the event of a storm or explosion, or
on logical features, e.g. systems affected by IT vulnerabilities. Second, the consequences to entities based on
the impact need to be evaluated. The failure assessment can be deterministic, e.g. using a fixed threshold
value, or stochastic by defining probabilities for a failure. On the one hand, stochastic failure modeling
can represent a wider range of potential consequences, since exact thresholds might be unknown. On the
other hand, introducing randomness in the model increases the computational effort to effectively cover the
resulting outcomes by sampling. Furthermore, the failure can be continuous (partial failure) or binary (no
effect or total failure). Fragility curves can be used to precisely characterize the impact of certain events to
individual entities [114].

6. Resilience Assessment

Assessing UCI resilience effectively, holistically, and continuously is essential for future smart and secure
urban infrastructure systems. To allow for grounded comparisons and decisions, resilience assessment usually
needs to be conducted in a quantitative way. As elaborated in Section 3.6, DTs provide comprehensive
simulation capabilities, which can be leveraged by applying the modeling framework presented in the
previous section. From the integrated simulation, desired metrics can be computed to evaluate UCI resilience
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holistically. As DTs are coupled with the real system, they can provide real-time resilience monitoring and
bridge the gap between empirical and simulation-based resilience assessment.

This section presents approaches on how to assess the resilience of interdependent UCIs as a system-of-
systems and discusses central aspects that need to be considered in this regard. The definition of performance
and summary metrics is introduced, along with general and domain-specific examples. We then focus on
assessing resilience across CI domains in an integrated way and highlight important considerations for
a holistic assessment regarding specific hazard events and uncertainty. Finally, we discuss the resilience
assessment with DTs.

Quantitative resilience assessment for UCIs entails the definition of resilience metrics, which can be
classified as graph-based or performance-based [142, 143]. Graph-based metrics can be used when the
system can be represented as a mathematical graph and address topological features, e.g. connectivity or
betweenness centrality. They are usually time-independent. In contrast, performance-based metrics represent
the functional performance of a system over time. They can be determined through simulation studies or
empirical investigation [12]. Since purely graph-based characteristics neglect the dynamic and emergent
behavior of the system, we focus on performance-based measures in this work.

6.1. Performance and Summary Metrics
The resilience curve (exemplified in Figure 1) illustrates the evolution of a certain performance measure

before, during, and after a disruption [12], representing a scenario. Scenarios can reflect various hazard types,
different environmental conditions, and differences in the system configuration. Formally, a performance
metric can be defined as a function P(t),

P : [t0, te]→ R, (4)

mapping a point in time t ∈ [t0, te] to a performance value that describes the corresponding state of the
system. Here, t0 and te denote the start and end time of the scenario, respectively.

In order to facilitate comparison of various curves, obtained from different scenarios, summary metrics
can be defined to characterize the system’s performance with a single value [12]. Let P denote the space
of the performance metric P(t). Then, a summary metric R maps the function of performance during the
scenario to a scalar value

R : P → R (5)

and therefore represents a time-independent measure. This mapping is only meaningful if the performance
metric is reasonably defined during the entire scenario, covering at least the absorption and recovery phases
of the resilience cycle. Since information is lost during the transformation, summary metrics can not fully
capture the system behavior and should be interpreted with care.

A variety of performance and summary metrics have been proposed, in the context of different objectives
and applications. Metrics can be categorized into availability, productivity, and quality measures [12]. In
the following, we highlight some general metrics of the literature and discuss examples for quantifying the
resilience of UCIs, specifically power, water, and transportation systems.

A commonly used indicator for the satisfactory operation of a CI system is to compare the demand with
the available supply at a given time t [144]:

P(t) =
S upply(t)
Demand(t)

∈ [0, 1]. (6)

This normalized metric is equal to 1 if the current supply matches the requested demand and lower than 1
if the demand cannot be fully served. As supply and demand are general aspects of CIs, the metric can be
applied to any CI. For example, empirical analysis showed that the number of customers with power supplied
over time follows the typical shape of the resilience curve (see Figure 1) in the case of Hurricane Sandy
[145, 72].

Another general performance metric [146] relates the recovery at time t to the loss suffered by the system
at a previous point in time td, i.e.,

P(t) =
Recovery(t)

Loss(td)
=
ϕ(t) − ϕ(td)
ϕ(t0) − ϕ(td)

(7)

where td can be chosen as the point of minimum performance ϕ, quantifying the normalized progress of the
recovery process.

A summary metric from these or other performance metrics can be obtained, for example as the residual
performance, disruption duration, integral of performance, recovery rate, or an ensemble of measures [12].
For example, the integral proposed by Bruneau [147]

R =
∫ te

t0
(Pmax − P(t)) dt (8)
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addresses the cumulative loss of performance, under the assumption that the performance can be related to a
constant maximum value.

Often, it is practical to normalize R for easier comparison, for example as

R∗ =
1

Pmax

∫ te
t0

P(t)dt

te − t0
. (9)

Defining the end time te reasonably often represents an issue, as it directly influences R and R∗, impeding
comparability for different courses of P(t).

6.2. Domain-specific Examples

Several resilience metrics have been developed and tailored to the context of certain CI domains. In
power systems, the "Energy not supplied (ENS)" metric, which can be formulated as an integral of (6), is
commonly used for risk management and reliability assessment [148]. The "Value of Lost Load (VoLL)"
is a similar summary metric, describing the economic costs of an interruption of electricity supply [149].
Besides, the traditionally used "N-k" criterion, considering the failure of any k electrical devices in the
system, can be categorized as reliability measure, but not as a resilience metric. While this deterministic
measure can assess system reliability for random, independent events, it is not suitable in the context of rare
disaster events, e.g. the failure of many components within a certain area.

Assessing the resilience of water distribution systems has been increasingly discussed in recent years. A
systematic literature review of the body of knowledge on the topic can be found in [143]. It was found that
performance-based metrics were used more frequently than graph-based metrics. One example is the metric
(6) which, in the context of water distribution systems, is known as the "Water Service Availability". Other
performance-based metrics, such as the "Todini Index" [150], calculate the system’s excess energy as an
indicator for the system’s robustness against crises. However, the review highlights that most metrics appear
to focus on a single function or property of the system, e.g. the ability of a system to perform in a crisis.

In order to quantify resilience in transportation services, a number of metrics have been developed. One
approach is to measure the travel time of trips and the extent of deviation in times of disruption [151]. An
increase in travel time results in a reduction in throughput, which can be utilized to evaluate the resilience of
the transportation system from a performance-based perspective [151, 152]. A comparable approach outlined
in [153] assesses performance based on a congestion index. A comprehensive review of other resilience and
vulnerability metrics for transportation systems can be found in [154]. The authors of this study found that
most resilience metrics are based on travel costs, accessibility, and travel time delays. While such metrics
may serve to analyze a situation retrospectively, they may be unsuitable for quantifying the transportation
system’s response to unprecedented disasters.

6.3. Cross-domain Resilience Assessment

Although a large number of resilience metrics has been proposed by several works in the literature,
resilience is typically evaluated within CI sectors individually [11, 7]. Due to the interconnected nature of
UCIs and the potential for cascading effects across multiple domains, we claim that the resilience of UCIs is
an overarching system property which cannot be assessed for UCIs in isolation; rather, a system-of-systems
approach is required. However, the integrated resilience assessment of coupled CIs is an open research
question.

There is no general answer to this question, since the optimal approach depends on the underlying goal
of the assessment, which differs among specific applications and contexts. A crucial aspect for holistic
simulation-based assessment is that the simulation data, from which metrics are calculated, stem from an
integrated simulation, where the sub-systems are coupled. Using separated domain simulations without
considering interdependencies and cascading effects is inadequate for a holistic assessment. From the
simulation results, various metrics of choice can be extracted, describing the performance either for certain
sub-systems or the entire system generally. Depending on the application, multiple metrics can be provided
to stakeholders for further decisions.

Nonetheless, if a direct comparison between two simulation runs is required, e.g. for deciding which
system is "more resilient", an overarching scalar metric must be defined. While defining resilience within
certain CI domains is quite challenging alone, defining a metric that captures resilience of UCIs as a whole is
even more difficult. There are two principal options: Either defining summary metrics for each sub-system
and combining them into a single value, or defining an overarching performance metric, which can then be
mapped to a summary metric, e.g. using (8).

For the first option, existing metrics for CI domains in the literature can be adopted. The metrics should
reflect stakeholder interests and goals and should be selected with care because different metrics may lead to
different outcomes and potentially diverging implications. Then, the summary metrics for each sub-system
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Rk have to be consolidated in a sensible way. Commonly, the weighted average has been used [155, 60, 156],
i.e.,

R̄ =
K∑

k=1

wkRk . (10)

How to choose the weighting factors is a non-trivial question and depends on several application-specific
factors. In essence, the weights quantify the importance of the functionality of each sub-system, which can
vary for different stakeholders. Moreover, summing up metrics for different systems implies relating them to
a common basis. For example, if the individual metrics can capture the economic losses, the global metric
could represent the total economic loss. If the Rk represent a physical quantity, the units have to be matched
by the weights wk.

An alternative is to calculate the product of summary metrics, given that they are normalized to the
interval [0, 1] (with 1 meaning fully functional operation):

R̄ =
K∏

k=1

Rk . (11)

This approach has the advantage that a complete failure of one sub-system is represented more significantly
in the resulting metric.

If the main focus of an investigation remains on one particular domain, although interdependencies are
modeled, it can still be reasonable to use a domain-specific metric only. For example, the resilience of a
transportation network coupled with a power network can be assessed with a transportation-related metric,
when the power network is regarded as a mere backbone system, whose performance is not directly relevant
for the objective [73].

The second option refers to creating an integrated performance metric for the whole system, from which
a summary metric can be obtained. This approach may be in favor if a time-dependent evaluation of the
interdependent systems is desired. For example in [157], individual performance metrics for CIs were
combined as a weighted sum and from the resulting performance curve various resilience measures were
derived. New overarching performance metrics could be defined from a user perspective, overcoming the
domain-separated perspective. By understanding UCIs as STSs, as depicted in the modeling framework
in Figure 6, a measure that shall be optimized should actually be formulated from a human centered view.
Such metrics could aim to represent the overall well-being of citizens more precisely, especially during crisis
situations. For instance, the impact of unavailable water supply is contingent upon the time of day and the
specific location of individuals. As another example, the individual perception of the consequences of a
power outage likely exhibits a non-linear pattern, in contrast to economic measures.

6.4. General Resilience Assessment

The assessment of resilience can be further generalized to consider the inherent uncertainty of crisis
events. The above presented methodology can be used to calculate a summary value R for one specific
scenario. However, this is not enough to assess the general resilience of a system. Different kinds of scenarios
as well as uncertainty within a scenario need to be considered in the assessment.

In the literature, many studies often limit the focus of resilience assessment and enhancement to one
certain type of hazard. In this case, the specified resilience [6] to this particular disruptive event can be
evaluated. Nonetheless, it is hard to generalize the specified resilience of UCIs for one hazard type to other
types of hazards because the impact on CIs can strongly depend on the type of event. For example, an
earthquake would create another kind of impact on CIs than a flood or a blackout caused by a cyber attack.

In order to gain a more accurate understanding of the system’s general resilience, a holistic resilience
assessment is required that considers a diverse range of scenarios. Resilience also includes to consider
unexpected events; however, unknown disruptions cannot be simulated in advance. Therefore, the most
effective approach might be to simulate a wide range of known scenarios with as many variations as possible
to adequately capture the potential consequences on UCIs. As the impact modeling needs to be done for
each event type individually, it can be a huge effort to include many event types. In addition, it might be
challenging to find metrics that are general for all scenarios, as many suggested metrics were designed
specifically for certain events [143].

Also, the uncertainty within a specific hazard type should be reflected in the analysis. While past events
can be used as a reference, future occurrences of the same hazard need to be expected in different settings.
Scenarios can be parameterized to simulate variations, including different intensities, areas of impact, and
varying environmental conditions. Probabilistic impact modeling, as described in Section 5.3, may be
advantageous to comprehensively cover the space of potential consequences to the system. For this task,
Monte Carlo simulations may be utilized as a method of addressing the issue of probabilistic modeling.
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Furthermore, sensitivity analysis and the concept of model selection (see Section 4.5) can assist in capturing
the impact of uncertainties in models.

To effectively assess the simulation results among many scenarios, the metrics obtained for each scenario
need to be combined. When considering performance metrics, the mean, median, and percentiles of the
resilience curve could be plotted, resulting in an “expected trajectory” [12]. Nevertheless, meaningful
summary statistics from a set of summary metrics are required for quick comparisons. From all resulting
metrics for each scenario, a histogram could be obtained, representing a probability distribution for the metric,
e.g. the ENS [148]. The statistical nature of this distribution can be analyzed and characteristic statistics can
be derived. The expected value E(R) of a resilience metric R has been called "expected resilience" [158].

While the mean can serve as an indicator for the average impact, concerns have been raised that optimizing
only the mean value is subject to a risk-neutral approach, which neglects extreme values, i.e. significant
impacts on the system [148]. To better account for high impact low probability (HILP) events as a risk-averse
approach, which is fundamental in the resilience concept, rather a quantile of the distribution F−1

R (1 − α), i.e.
the value at risk (VaR) or the conditional value at risk (CVaR) need to be considered. The CVaR quantifies
the expectation of the occurrences above the VaR, i.e. representing the worst-case scenarios, as

CVaR1−α(R) = E
(
R|R > F−1

R (1 − α)
)
. (12)

6.5. Resilience Assessment in DTs

Resilience assessment plays an important role for DTs in the context of crisis management, particularly
in a real-time context. In a DT, where the virtual replica contains information about the current state of the
real system, a "resilience monitoring" could provide an online evaluation of the current performance and
resilience capabilities of UCIs. DTs can leverage resilience assessment and monitoring of UCIs and can
connect simulation-based with empirical assessment.

Various relevant performance metrics, either domain-specific or overarching, could be provided to
stakeholders, experts, and decision-makers in real-time. This could offer a comprehensive overview of the
current state of UCIs, without the need of choosing a certain metric. The online monitoring of performance
metrics is only possible for metrics that are defined on the basis of the current or past states of the system. In
particular, for calculating a metric all required data based on the definition of the metric needs to be available.
This is only possible with an ideal virtual replica. Practically, there will always be time delays due to data
transmission and processing. The fact that measurement values can be obtained with different sampling
resolutions and the delays can vary needs to be considered in the implementation. Also, not all information
about every component might be available, in contrast to a simulation. Thus, the missing data might need to
be estimated or the metric must be able to deal with missing data, introducing uncertainty. Especially during
a crisis, when UCIs and the real-time data infrastructure might be damaged, this could be an issue. The
resulting uncertainty in the performance metric should be communicated to the user.

Also time-independent resilience metrics such as summary metrics can be determined in a DT. The
results from what-if and scenario simulations (see Section 3.4) can be used to compute desired metrics,
summarizing the impact of a scenario quantitatively. Considering the previously discussed aspects for general
resilience assessment, a more comprehensive assessment could be done with several simulations under
different conditions and events. By summarizing the results, the resilience on the basis of the current state of
the system could be determined. Moreover, comparisons with altered system states could be conducted.

While many models for CI assessment focus on certain resilience phases, often neglecting the prepare
and adapt phase [65], a DT could provide resilience assessment for every moment in time and during all
resilience phases. For example, during the normal operation, the impact of temporal maintenance works and
resulting unavailability of redundant components on the reduction in resilience capabilities against potential
impact events during this situation could be assessed. Moreover, during an ongoing crisis, the resilience of
the damaged system to additional disturbances could be evaluated, addressing the paradigm of multi-crises.

Nevertheless, to comprehensively evaluate general resilience, especially when including probabilistic
modeling, a large number of simulations is needed, making Monte Carlo simulation computationally
challenging. For this reason, often a compromise between depth of assessment and computation time has
to be made. Especially during critical situations, a timely result is of relevance. As individual simulation
runs do not dependent on each other, they could be parallelized. Given sufficient computing resources and a
scalable software platform architecture for the DT, Monte Carlo simulations for such assessments could be
feasible.

Empirical resilience assessment is usually done retrospectively, since it considers the complete evolution
of a scenario until the system has recovered, as described above. If a DT stores all data from the virtual replica
in a database, recordings from previous events can be analyzed. Moreover, the same event can be simulated
with enhanced CI systems to evaluate the level of adaptation. However, the empirical assessment during a
crisis event in real-time is limited since only information up to the current time would be available. Therefore,
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the simulation-based resilience assessment on the basis of the system’s current state as described above could
provide highly valuable information, presenting a significant advancement for disaster management.

7. Conclusion & Outlook

In this work, we explored the application of the DT concept to improve the resilience of UCIs. After
identifying various challenges associated with the application of UDTs, we defined overarching concepts
that facilitate the creation of a UDT. We then presented a modeling framework, which enables a holistic view
on UCIs as system-of-systems, designed for what-if analyses and comprehensive resilience assessment.

Key challenges for the development and application of UDTs have been discussed. Beside domain-
specific challenges, there are several general challenges that impede the application of DTs in the context
of CIs. These challenges are of technical nature (e.g. providing IT infrastructure), conceptual nature (e.g.
defining models and developing simulation platforms), and of practical nature (e.g. overcoming political and
administrative barriers). While some of those challenges can be overcome with sufficient financial resources,
societal efforts, or future research, other challenges appear to be of fundamental nature, such as validation,
data scarcity for rare events, and the impossibility of experimentation.

Major concepts regarding the modeling and analysis of UCIs were defined to address the challenges
involved. In particular, modeling concepts for UCIs have been presented to deal with the complexity of urban
areas. The application of ABM as a bottom-up approach emerged as a suitable approach for modeling cities
as STSs and has been discussed in the context of CIs. The novel STDT concept addresses the socio-technical
interdependencies of UCIs, providing a basis for future DT applications related to urban areas. Furthermore,
we identified concepts to facilitate the modeling process for UDTs. The introduced concept of model
selection can help reducing model uncertainties, which in turn reduces computational efforts for probabilistic
resilience assessment. The discussed transfer of models can overcome the issues of data scarcity among CIs.

A modeling framework for UCIs considering the three dimensions of technical system, social system,
and environment has been proposed. This framework can serve as a cornerstone for the integration of
socio-technical modeling in DTs and CI simulations. The integrated modeling of socio-technical facets
and CI dependencies offers a holistic approach for measuring the resilience of cities. By combining
ABM with network-based simulations, the approach can deal with the complexity of CIs, allowing for the
analysis of emergent effects. Specific implementation approaches were presented for the modeling concepts
interdependencies, ABM, and synchronization, as well as technical and social models for the domains of
power, water, and transportation systems. Finally, the environmental part provided an overview for the
modeling of external impact events considering diverse threat scenarios.

Our study significantly contributes to the discourse on urban resilience by offering insights into the
challenges, identifying conceptual methodologies, and presenting concrete modeling approaches. By framing
UCIs as STSs and incorporating the human influence throughout the modeling process, our approach
offers a more comprehensive understanding of the intrinsic complexities of urban systems. We provided a
comprehensive overview for mastering the quantitative resilience assessment of UCIs, including a discussion
of resilience and performance metrics, as well as general considerations for the integrated assessment of
interdependent UCIs. As cities continue to evolve and face unprecedented challenges, the application of
DTs emerges as a promising path for strengthening urban resilience, ultimately ensuring the well-being and
stability of urban populations in the face of unforeseen crises.

7.1. Practical Implications

The proposed framework for UDTs gives rise to a number of practical implications, which will be
discussed in the following. As the framework was defined in a general approach for UCIs, a large spectrum
of applications can be created. The proposed framework has a range of practical implications spanning from
urban crisis management, AI-driven decision support systems, over assessing infrastructure resilience to
optimization and planning.

UDTs can significantly improve crisis management strategies by providing real-time insights and
leveraging what-if simulations for safe, rapid, and interactive experimentation. This allows decision-
makers to assess potential outcomes and implement optimized response strategies quickly, which mitigates
damages. Municipal authorities and emergency services can better anticipate and prepare for a wide range of
crisis scenarios, such as natural disasters, power outages, or transportation disruptions by simulating their
consequences, thereby enhancing overall urban resilience. For example, in the event of a power grid failure,
the UDT can simulate cascading effects on water and transportation systems, enabling more informed and
coordinated responses. The UDT could serve as a control center and provide decision support systems that
assist decision-makers of crisis management in making data-informed decisions and propose mitigation
strategies to prevent or minimize cascading failures. In this context, the human-in-the-loop concept plays
a major role [13]. Smart decision support tools can be implemented for example by offering multiple
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alternatives, with a summary of their consequences obtained through simulations. AI-driven tools can be
leveraged for example by using historical data of human decisions and computational intelligence methods
for finding optimal solutions.

UDTs can be enriched with spatial information such as 3D models of the urban area for making the
human-computer interface (HCI) with the virtual replica more visual for the user [13]. By adding the time
dimension, this could provide a temporal-spatial 4D model, which can be combined with VR/AR techniques
for immersive monitoring and what-if analyses. These capabilities can support authorities in visualizing
complex systems and preparing more effectively for real-world crises. Moreover, UDTs can be employed for
training emergency response teams by virtually replaying various recorded or hypothetical crisis scenarios.
This capability allows authorities to prepare for complex crises, training personnel on potential real-life
situations, and optimizing response strategies.

Additionally, the presented methodology paves the way for continuous monitoring and assessment of
UCI performance and resilience in UDTs. By accounting for interdependencies between UCIs and cascading
effects, the multi-layered approach allows for a holistic evaluation of urban resilience across various hazards.
With the quantitative evaluation of UCI resilience, different system configurations and extensions can be
compared comprehensively and objectively. This enables the cost-efficient optimization of the system as a
whole, maximizing resilience with limited resources for infrastructure investment.

The framework and resilience assessment methodology can further be used to identify vulnerabilities
within urban systems in a proactive way. For example, critical nodes for the restoration of the system
including the associated costs can be analyzed and optimized [159]. Whether in normal operations or crisis
scenarios, the UDT can highlight critical elements within these systems, providing stakeholders with the
opportunity to address weak points early before they cause widespread disruption. Moreover, the influence
of individual nodes and links on the overall resilience can be quantified, providing an indicator for their
importance and vulnerability within the interconnected networks.

In the context of real-time monitoring, UDTs provide an ideal platform for anomaly detection applications,
even across CI domains. With the extensive amount of continuously collected data, anomaly detection
methods can be developed, possibly in combination with AI-based technologies, for example by comparing
the system state with past data. This way, UDTs enhance situation awareness and promote the early detection
of failures and emerging issues, which ultimately improves overall urban resilience.

Moreover, UDTs enable city planners and infrastructure operators to optimize maintenance schedules and
resource allocation. This predictive maintenance capability can minimize service disruptions of UCIs and
reduce costs by accurate predictions of infrastructure component failures, reducing service disruptions. By
anticipating maintenance needs, cities can prevent system breakdowns and ensure the continuous operation
of essential services.

The proposed UDT framework fosters collaboration across different CI sectors, such as power, water,
and transportation, by providing a unified platform for data exchange and scenario modeling. In the face of
the apparent CI dependencies, operators from different domains can work together in a more coordinated
manner by enhancing communication and data exchange for improved crisis responses. Urban data platforms
and knowledge bases can play an essential role in this context. This cross-domain integration strengthens the
city’s overall resilience by reducing silos and enhancing cooperation among stakeholders.

The socio-technical modeling approach, which includes human behaviors and interactions with urban
systems, allows urban planners and policymakers to create more resilient cities by understanding how societal
factors influence the functioning of UCIs. For example, the UDT can simulate the impact of population
behavior during a crisis, such as evacuation patterns, or assess the social impacts of infrastructure failures on
different demographic groups. This ensures that resilience strategies are not only technically sound but also
socially equitable, leading to more inclusive urban resilience planning.

7.2. Future Work
Although the conceptual challenges are partially addressed by our proposed concepts and modeling

framework, several aspects necessary for leveraging UDTs remain open for future research. While some of
them concern the development of novel methods for sub-functionalities in the UDT, others require focus
on the advancement of interdisciplinary tools and standards. Beside research-related challenges, several
practical challenges need to be solved by practitioners and policymakers until UDTs are established in future
smart cities.

Our interdisciplinary modeling framework pointed out the need for comprehensive simulation tools
for UCIs with new interfaces for their use in DT simulations. In addition, appropriate IT platforms for
future UDTs need to be designed to leverage the extensive simulation tools using cloud computing or edge
computing. Future conceptual efforts could also be devoted to developing standards for interdisciplinary data
exchange and urban data platforms.

The potential of machine learning and AI-based techniques within the DT concept needs to be investigated
in more detail. The applications are manifold, spanning across several functionalities within the DT, but may
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also be limited in some aspects. In an industrial context, AI-based methods in DTs are mainly focused on
model creation, big data analytics, and optimization of production processes [43]. In the context of UCIs and
crisis management, the application of data-driven methods is manifold, though differs from applications in
industrial contexts. Modular UDT designs allow for a flexible modeling approach where individual models
can be supplemented or replaced with data-driven models. This could help to improve accuracy compared to
physical modeling, especially if the system behavior is non-linear or is hard to model analytically. However,
as black-box approaches are often bad in generalizing system behavior to unseen situations, e.g. critical
events, it should be considered with care, especially if the data does not cover extreme operating points.
Employing gray-box modeling could be interesting in this regard to combine the advantages of physical and
data-driven modeling.

An important aspect of a UDT is the human-computer interface (HCI). How to quickly and comprehen-
sively grasp and monitor the extensive amount of temporal-spatial data contained in the virtual replica is
subject to open research questions. Furthermore, the integration of human and artificial intelligence in the
human-in-the-loop concept is a major challenge for which more research is needed.

As has emerged, assessing the resilience of multiple CI in an integrated way is still open for research.
Based on the presented principal approaches, applying resilience assessment in case studies and evaluating
their practical feasibility could yield useful insights. Standardized methods for resilience management and
assessment can aid the broad implementation of resilience-enhancing measures in practice.

As a UDT is meant to operate continuously, like UCIs, system changes need to be considered in a long-
term context. This concerns for example the monitoring of system properties that are actually considered
static, for example, changing system parameters due to aging, or drifts in demand patterns.

In this study, we focused particularly on the city scale. However, CIs are intertwined also at larger scales.
Thus, large-scale DTs, such as nation-wide DTs, or federations of DTs are the next step.
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[156] H. Hafeznia, B. Stojadinović, ResQ-IOS: An iterative optimization-based simulation framework for
quantifying the resilience of interdependent critical infrastructure systems to natural hazards, Applied
Energy 349 (2023) 121558. doi:10.1016/j.apenergy.2023.121558.

[157] J. Kong, C. Zhang, S. P. Simonovic, Optimizing the resilience of interdependent infrastructures to
regional natural hazards with combined improvement measures, Reliability Engineering & System
Safety 210 (2021) 107538. doi:10.1016/j.ress.2021.107538.

[158] M. Ouyang, L. Dueñas-Osorio, Multi-dimensional hurricane resilience assessment of electric power
systems, Structural Safety 48 (2014) 15–24. doi:10.1016/j.strusafe.2014.01.001.

[159] A. Zavala, D. Nowicki, J. E. Ramirez-Marquez, Quantitative metrics to analyze supply chain resilience
and associated costs, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk
and Reliability 233 (2) (2019) 186–199. doi:10.1177/1748006X18766738.

43

http://idl.iscram.org/files/adjetey-bahun/2014/254_Adjetey-Bahun_etal2014.pdf
http://idl.iscram.org/files/adjetey-bahun/2014/254_Adjetey-Bahun_etal2014.pdf
http://idl.iscram.org/files/adjetey-bahun/2014/254_Adjetey-Bahun_etal2014.pdf
http://idl.iscram.org/files/adjetey-bahun/2014/254_Adjetey-Bahun_etal2014.pdf
https://doi.org/10.1111/risa.12093
https://doi.org/10.1371/journal.pone.0190616
https://doi.org/10.1371/journal.pone.0190616
https://doi.org/10.1016/j.physa.2021.126235
https://doi.org/10.1016/j.physa.2021.126235
https://doi.org/10.1016/j.ejor.2019.01.052
https://doi.org/10.1016/j.apenergy.2023.121558
https://doi.org/10.1016/j.ress.2021.107538
https://doi.org/10.1016/j.strusafe.2014.01.001
https://doi.org/10.1177/1748006X18766738

	Introduction
	Related Work on Urban Digital Twins
	Challenges
	Data Provision and Management
	Modeling of Urban Critical Infrastructures
	Social Modeling
	Simulations in Digital Twins
	Validation
	Resilience Management and Assessment
	Domain-specific Challenges
	Energy Infrastructures
	Water Infrastructures
	Transportation Infrastructures


	Concepts
	Interdependencies
	Socio-technical Digital Twin
	Agent-based Modeling
	Demand Synchronization
	Selection of Models
	Transfer of Models

	Modeling
	Technical System
	Modeling UCIs
	Interdependencies
	Ontology Description
	Power System
	Water Distribution System
	Transportation System

	Social System
	Agent-based Modeling
	Synchronization
	Power Demand
	Water Demand
	Mobility

	Environment

	Resilience Assessment
	Performance and Summary Metrics
	Domain-specific Examples
	Cross-domain Resilience Assessment
	General Resilience Assessment
	Resilience Assessment in DTs

	Conclusion & Outlook
	Practical Implications
	Future Work


