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Step and Timing Adaptation during Online DCM Trajectory
Generation for Robust Humanoid Walking with Double Support Phases

Tobias Egle, Johannes Englsberger, and Christian Ott

Abstract— In this paper, we present a robust DCM-based
online trajectory generator with step timing adaptation using
MPC in addition to manipulating the ground reaction forces by
the DCM tracking controller. The proposed control framework
utilizes three strategies to react to disturbances: timing adapta-
tion, footstep position adjustment, and CoP modulation. Most
state-of-the-art walking controllers only address some of these
aspects, and especially the timing adaptation is often neglected
in the presence of double support phases as the resulting
optimization problem generally becomes nonlinear. We show
that we can keep the fast disturbance rejection from the DCM
tracking controller while adjusting the timing and location
of the footsteps via MPC if the CoP-based ankle strategy is
insufficient to maintain balance. This framework is particularly
relevant for robots with active control of the CoP inside the
support polygon by utilizing a combination of ankle and step
strategy to take full advantage of the robot’s capabilities in
response to external disturbances. The method is validated
in simulation on the robot kangaroo. It has lightweight, fully
actuated legs and a sufficiently large contact area, making it
highly suitable for a combined step time adaptation and contact
force modulation approach.

I. INTRODUCTION

Bipedal locomotion holds excellent potential for navigat-
ing complex environments and allows robots to move in
terrain created for humans. However, locomotion in human
environments not only requires adapting to varying terrain
conditions but also rapidly changing the desired trajectory,
responding to external disturbances, and safely maintaining
balance. Humans have developed three strategies to maintain
balance: ankle, hip, and step [1]. These strategies have been
applied to different extents in robotic locomotion.

To date, some of the most effective methods for walking
pattern generation focus on simplified models, with particular
emphasis on the linear inverted pendulum (LIPM) model [2],
or reduced models like the Divergent Component of Motion
(DCM) approach [3], [4]. DCM-based trajectory generation
[5], in combination with a DCM tracking controller [4], has
been shown to produce a stable walking motion on compliant
and uneven terrain [6]. This walking controller utilizes the
ankle strategy by manipulating the ground reaction forces
for fast disturbance rejection. However, it is limited by the
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Fig. 1. Simulation snapshots of the robot kangaroo during a lateral push of
F = 300N for ∆t = 0.1 s in the direction of the stance leg while walking
forward at vref = 0.2ms−1. The remaining time in the first transition phase
T1,r and the footstep positions are adjusted to retain balance.

assumption of unconstrained CoP modulation. To make the
walking control more robust against disturbances, several
approaches to step adaptation were presented, e.g., using
the current DCM error to find an analytical solution for
the next footstep adjustment [5], [7] or optimizing for the
footstep position in a linear MPC approach [8]–[10]. Urata
et al. [11] presented a push recovery method by utiliz-
ing non-divergence conditions of ZMP-CoM pairs through
preview control. Feng et al. [12] introduced an optimal
control algorithm based on the LIP model, and [13] used an
analytical solution of the DCM to optimize ZMP and foot-
step placement simultaneously. These methods use constant
step/phase timings since considering the step duration as an
optimization variable for a multi-step preview would result
in a nonlinear optimization problem [14]. Similarly, Aftab
et al. [15] investigated ankle, hip, and stepping strategies
for humanoid balance recovery with step duration adjust-
ment using nonlinear MPC. To improve real-time capability,
Khadiv et al. [16] presented a robust walking controller using
convex optimization of the next step location and timing to
ensure gait viability by specifying a desired distance between
the DCM and the swing foot landing point. Griffin et al.
[17] developed a walking stabilization approach using an
analytical DCM-based recursive algorithm that involved step
timing and location adjustment for the humanoid robot Atlas.
Shafiee et al. [18] present an MPC-based step and timing
adaptation using an exponential interpolation of the ZMP
trajectory, which is only active in the single support phase.
The next step and, more importantly, the phase duration is not
adjusted in the double support phase. Similar works based



on the LIPM that consider the ankle and step strategy with
time adjustment compute the step and time adjustment in a
sequential analytical solution [19] or with a quadratically
constrained quadratic program [20]. Mesesan et al. [21]
recently introduced an online DCM trajectory adaptation for
push recovery using DCM tracking control and an analytical
solution for the next footstep position, which is active in the
double support phase but uses constant phase timings.

For several recent robots, such as Digit [22] or Kangaroo
[23], which have lightweight, fully actuated legs, and a
sufficiently large contact area, a combination of ankle and
step strategy is desirable to take full advantage of the robot’s
capabilities and avoid the need for constant stepping. This
paper proposes a combination of MPC and DCM tracking
control to implement both ankle and stepping strategies. The
MPC provides optimal step position and timing to correct the
error the DCM controller cannot compensate for because of
the limited CoP manipulation in the support polygon. With
this framework, the suggested control law considers three
aspects to maintain balance: timing of steps, step location,
and manipulation of ground reaction forces. Most state-
of-the-art walking controllers consider only some of these
aspects.

The main contribution of this paper is the presentation of a
new method of combining ankle and step strategy with time
adaptation. In addition, we explicitly consider double support
phases, which, combined with the ankle strategy, allow the
robot to quickly eliminate minor disturbances without taking
a step. This enables precise tracking of a pre-planned footstep
plan.

The paper is organized as follows: Section II recalls previ-
ous works on DCM trajectory generation and Sec. III gives
an overview of the proposed control framework. Section IV
describes the footstep planner and Sec. V introduces the
step and timing optimization framework. We evaluate the
proposed methods in simulation with the robot kangaroo in
Sec. VI. Possible extensions and future work are discussed
in Sec. VII and Sec. VIII concludes the paper.

II. PRELIMINARIES

The walking trajectory generation is based on the con-
cepts of three-dimensional Divergent Component of Motion
(DCM) and Virtual Repellent Point (VRP) introduced in [4].
The DCM ξ is defined as a linear combination of the CoM
position x and velocity ẋ as

ξ = x+ bẋ, (1)

where the time constant b =
√
∆z/g is given by the average

CoM height over the ground ∆z and the gravity constant g.
The VRP v encodes the total force f on the CoM as

f =
m

b2
(x− v) , (2)

where m is the total mass. We find the DCM dynamics
by differentiating (1) and inserting the CoM dynamics ẍ =
f/m with (2) as

ξ̇ =
1

b
(ξ − v) . (3)

Being defined as a general three-dimensional point, the VRP
is not constrained to the ground or the support polygon.
However, it is related to the CoP and for the following
trajectory generation, we choose the vertical projection of
the VRP onto the ground to be within the support polygon.

A. DCM Trajectory Generation

An efficient computation of the DCM trajectory is given in
[24]. The walking motion is divided into nφ transition (single
and double support) phases. For each phase φ with duration
Tφ, we specify the VRP trajectory vφ(t) as a spatially linear
interpolation between a VRP start point vφ,0 and a VRP
end point vφ,T to allow for double support phases and pre-
planned CoP movement during single support phases. Given
vφ(t), we solve (3) as a terminal value problem to obtain

ξφ(t) = αφ(t)vφ,0 + βφ(t)vφ,T + γφ(t)ξφ,T , (4)

where t ∈ [0, Tφ] and αφ(t), βφ(t), and γφ(t) are nonlinear
coefficients in time that depend on the temporal interpolation
of vφ(t) (see Appendix). To ensure continuity of the trajec-
tory, the transition phase start and end points of adjacent
phases are linked, i.e., vφ,0 = vφ−1,T and ξφ,0 = ξφ−1,T .
We specify a terminal condition ξnφ,T = ξf at the end of
the last transition phase and recursively compute the DCM
waypoints in matrix form:

Ξ = ΞCV V + Ξcξξ
T
f , (5)

where and the n = nφ+1 VRP and DCM waypoints are
collected in the matrices V = [v1 . . .vn]

T and Ξ =
[ξ1 . . . ξn]

T, respectively. A detailed analytical computation
of the matrix ΞCV and vector Ξcξ can be found in [24].

B. DCM tracking control

Due to the naturally stable CoM dynamics, only the
unstable first-order DCM dynamics must be controlled. En-
glsberger et al. [4] suggested tracking the reference DCM
trajectory by aiming at a closed-loop dynamics of the form

ξ̇ − ξ̇ref = −Kξ (ξ − ξref) , (6)

which is stable for a positive diagonal matrix Kξ. Inserting
the DCM dynamics (3) and the DCM reference velocity into
the desired dynamics (6) and solving for the input v yields
the tracking control law of the form

v = vref +
(
I + bKξ

)
(ξ − ξref) , (7)

where vref is the reference VRP position and eξ = ξ− ξref
is the DCM tracking error.

C. Separation into Ankle and Step Strategy

Mesesan et al. [21] proposed to split the current DCM
error ξ̃(t) = ξ(t)− ξref(t) into two parts as

ξ̃(t) = ξ̃ankle(t) + ξ̃step(t), (8)

where ξ̃ankle is the part that the ankle strategy can correct
and ξ̃step is the part that needs to be corrected by the
step strategy. According to the mentioned CoP relation, we
want to keep the horizontal coordinates (xy) of the VRP
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Fig. 2. Outline of the proposed walking trajectory generation and control
framework. The main contributions of this paper are highlighted in blue.

in the support polygon. Placing the VRP over the center
of a rectangular foot of length 2l and width 2w, the set
Ṽ =

{
ṽ = (x y 0)T | −l ⩽ x ⩽ l,−w ⩽ y ⩽ w

}
is defined

as the set of VRP adjustments that remain in the support
polygon, and Ṽankle is the set of VRP adjustments usable by
the ankle strategy defined as

Ṽankle = Rz,j ⊗ Ṽ :=
{
Rz,j ṽ | ṽ ∈ Ṽ

}
, (9)

where the rotation matrix Rz,j ∈ SO(3) specifies the
orientation of the j-th footstep. The corresponding set of
DCM errors Ξ̃ankle correctable by Ṽankle until the end of the
current step is obtained by evaluating the recursive DCM
computation for the current and next transition phases. Due
to the linear relation between VRP and DCM, we write the
DCM recursion for the first two phases according to (4) in
terms of displacements ξ̃φ = ξφ − ξφ,ref as

ξ̃1(t) = α1(t)ṽ1 + β1(t)ṽ2 + γ1(t)ξ̃2

ξ̃2 = α2,0ṽ2 + β2,0ṽ3 + γ2,0ξ̃3.
(10)

Here, we evaluated the second transition phase at t = 0
and expressed the transition phase start and end point dis-
placements ṽφ,0, ṽφ,T and ξ̃φ,T in terms of VRP and DCM
waypoint displacements ṽi and ξ̃i, respectively. Assuming
that the DCM waypoint error ξ̃3 and thus the required VRP
displacement ṽ3 at the end of the next transition phase shall
become zero, we obtain Ξ̃ankle by evaluating (10) for all
ṽi ∈ Ṽi where i ∈ {1, 2} as

Ξ̃ankle(t) = α1(t)Ṽ1 +
(
β1(t) + γ1(t)α2,0

)
Ṽ2. (11)

Projecting the current DCM error ξ̃ onto Ξ̃ankle minimizes
∥ξ̃step∥ as illustrated in Fig. 4. This ensures that the step
strategy activates only if ξ̃ is not contained in Ξ̃ankle.

III. OVERVIEW OF THE CONTROL FRAMEWORK

An overview of the walking control framework is given
in Fig. 2. The inputs of the footstep planner are the linear
and angular velocity (vref, ωref) of the torso, from which a
sequence of footsteps P = [p1 . . .pnfs

]T with corresponding
timings T = [T1 . . . Tnφ

]T is planned. At the touchdown
of the swing foot, the footstep plan is updated with the
optimized position p∗

1, and in each time step, the current
transition phase time is updated with T ∗

1 . Consecutively, the
reference VRP and DCM trajectories are computed according
to Sec. II-A. The Step/Timing Optimizer computes, based

on the DCM error ξ̃1, the optimized first transition phase
time, DCM waypoints, and foot positions. The commanded
DCM position and velocity are passed to the DCM controller,
which computes the desired force on the CoM as input for the
whole-body controller according to (7). With the optimized
phase timing and foot positions, the swing foot trajectories
are computed using a fifth-order and a sixth-order polynomial
interpolation in the horizontal and vertical direction, respec-
tively. We utilize a QP-based inverse dynamics whole-body
controller [25] to compute the joint torques that are supplied
to the robot. The current DCM of the robot is used as an input
to the Step/Timing Optimizer and DCM tracking controller.

IV. FOOTSTEP PLANNER

We assume a level ground and no environmental con-
straints such as obstacles or stepping stones for the footstep
planner. Possible extensions are discussed in Sec. VII.

A. Nominal Footstep Plan

Based on the desired walking speed vref , we select the
walking cycle time Tc and stance percentage sp ∈ [0, 1]
according to empirical observations for humans [26]. The
walking cycle time Tc is scaled by a factor cr ∈ [0.5, 0.7]
to fit the robot’s kinematic and dynamic capabilities, i.e., the
robot rather makes smaller and more frequent steps compared
to a human. Thus, we obtain the stance and swing times as

Tst = spcrTc,

Tsw = (1− sp)crTc,
(12)

and subsequently, the single and double support times result
in TSS = Tsw and TDS = (Tst − Tsw)/2, respectively. The
walking step length is given by

l = Tc vref/2. (13)

Similarly, we define a desired angular (yaw) velocity ωref

of the torso and obtain the relative angle between two
consecutive footsteps as

θ = Tc ωref/2. (14)

With these parameters and a nominal step width w, we gen-
erate a footstep plan with nfs footstep frames Hf,j ∈ SE(3)
representing footstep positions pj and rotations Rz,j(θj) ∈
SO(3). An illustration of the footstep plan is shown in Fig. 3.
The walking direction is to the right, and the rotation of the
footsteps is omitted for conciseness.

B. Nominal Footstep Plan with Disturbance

We update the first foot position to coincide with the cur-
rent foot position of the robot. In case of strong disturbances,
the current foot position may no longer be compatible with
the planned footsteps due to the kinematic limitations of the
robot. To obtain feasible foot positions pj,feas, we project
the next planned footstep positions pj consecutively onto
a feasible set of footstep positions Pj,feas defined by a
polygonal approximation of a semicircular region with radius
r relative to the previous foot position. In Fig. 3, the first
planned footstep position (p1, left foot) is updated with the
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current foot position p1,cur. Thereby, the robot cannot step to
the next planned footstep (p2, right foot) due to kinematic
constraints. The footstep is projected onto P2,feas to yield
the new footstep position p2,feas. Accordingly, the remaining
footsteps are projected to feasible positions ensuring that the
footstep plan remains valid even in the case of significant
disturbances.

V. STEP/TIMING OPTIMIZER

In the following section, we introduce the DCM trajectory
generation as an optimization problem in Sec. V-A, extend it
with time adjustment in the first transition phase in Sec. V-
B, combine it with the ankle strategy in Sec. V-C and
formulate it as a Quadratic Program in Sec. V-D. The DCM
trajectory generation presented in Sec. II-A provides an
efficient way to compute the DCM trajectory for a given
set of VRP waypoints and a DCM terminal point. However,
it is of limited use as an online trajectory generator since the
DCM waypoints are computed in a backward recursion and
yield a unique DCM start point, which will not coincide
with the current DCM of the robot. If the DCM error
ξ̃ becomes larger than the error that the DCM tracking
controller can compensate for (see Sec. II-C), the trajectory
becomes infeasible.

A. DCM Trajectory Generation as an Optimization Problem

A possible solution would be to formulate the trajectory
generation as an optimization problem and compute adjusted
VRP and DCM waypoints compliant with the current DCM
of the robot as an initial condition. Due to the unstable DCM
dynamics, this formulation also requires a DCM terminal
condition to be set at the end of the predefined sequence
of steps. In the following, we omit the subscript φ for the
transition phase for better readability. First, we specify a

linear interpolation of the VRP trajectory as

v(t) =

(
1− t

T

)
v0 +

t

T
vT ∀φ ∈ {1, . . . , nφ}, (15)

and solve the DCM Dynamics as an initial value problem,
which gives

ξ(t) =

(
1− t+ b

T
− e

t
b

(
1− b

T

))
︸ ︷︷ ︸

α(t)

v0

+

(
t+ b

T
− e

t
b
b

T

)
︸ ︷︷ ︸

β(t)

vT + e
t
b︸︷︷︸

γ(t)

ξ0,

(16)

and the DCM at the end of transition phase time T as

ξT = αTv0 + βTvT + γT ξ0, (17)

where ξT = ξ(T ), αT = α(T ), βT = β(T ) and γT = γ(T ).
The DCM and VRP waypoints are defined as optimization
variables, and we specify (17) and a DCM initial and
terminal condition as constraints. We introduce additional
constraints on the VRP waypoints to ensure that the kine-
matic limits of the robot, i.e., step length and width, are not
exceeded and obtain a feasible DCM trajectory for a given
current DCM of the robot. However, this approach does not
allow for timing adjustment in a convex optimization as the
solution to the DCM dynamics (17) is nonlinear in T and
would involve the multiplication of optimization variables.

B. Allowing for Time Adjustment in First Transition Phase

The adjustment of the VRP waypoints of the current
phase corresponds to a manipulation of the ground reaction
forces. Leaving this task to the DCM tracking controller,
we can keep v1 and v2 constant thus allowing for time
adjustment in the first transition phase by solving the problem
of multiplication of optimization variables. However, the
coefficients αT , βT and γT are still nonlinear in the transition
phase time T . Since (17) is a linear combination between
VRP and DCM, we formulate the equation for all phases nφ

in terms of waypoint displacements as

ξ̃i = αT,i−1ṽi−1 + βT,i−1ṽi + γT,i−1ξ̃i−1, (18)

with i ∈ {2, . . . , nwp}. Here, ξ̃i and ṽi are the deviations
between the optimized and the nominal DCM and VRP
waypoints, respectively. For this computation, the transition
phase times are assumed to be constant. Due to the nonlinear-
ity introduced by the multiplication of optimization variables,
we can only adjust the timing or the VRP displacements
in each transition phase with convex optimization. Thus,
consistent with (18), we keep the timing constant for all
except for the first transition phase. In the first equation of
(18), we adjust the timing and introduce this approximation
in order to obtain a linear equation in the optimization
variables in the following and proceed with a QP. The
exact solution leads to a more general nonlinear optimization
problem. With the constraint that the difference in phase time
between two iterations is limited, i.e., |T ∗

1 −T ∗
1,prev| ≤ 0.01 s,



this assumption is reasonable, as demonstrated in simulation
in Sec. VI. Since we keep the VRP waypoints of the current
phase constant, i.e., the displacements ṽ1 and ṽ2 are zero,
the first equation in (18) simplifies to

ξ̃2 = e
T
b ξ̃1. (19)

In this way, we eliminate the nonlinear coefficients αT,1

and βT,1 from equation (18) and obtain with the variable
substitution τ = e

T
b a linear relation in the optimization

variables. We adjust the first transition phase time T1 and the
previewed footsteps to cancel the part of the DCM error that
the DCM tracking controller can not correct for in the current
footstep. This enables the robot to efficiently manipulate
the ground reaction forces for fast disturbance rejection and
minimize the required step adjustment for the DCM error ξ̃.

C. Mixed Ankle and Step Strategy (DCM Error Separation)
This section aims to apply both the ankle and step strate-

gies by separating the DCM error into two parts. The step
strategy compensates one part, while the other is left to the
DCM tracking controller. Thus, we define the part that is
corrected by the step strategy as

ξ̃1(t1) = ξ̃rtstep(t1) + ξ̃edstep(t1), (20)

where t1 is the local time in the first transition phase,
ξ̃rtstep is the DCM error due to an offset in the reference
trajectory, and ξ̃edstep is the DCM error due to an external
disturbance. As described earlier, the computation of the
DCM waypoints in a backward recursion according to (5)
leads to discontinuities in the time evolution of the first DCM
waypoint ξ1(t) in case of discrete changes of the footstep
positions. However, changes of the pre-planned footstep
positions are necessary to change the reference velocity or
to keep a constant number of previewed footsteps. To avoid
these discontinuities affecting the commanded DCM ξ∗1(t),
the DCM offset

ξ̃rtstep(t1) = ξ∗1(t1)− ξ1(t1) (21)

is fully compensated by the stepping strategy. The reference
DCM ξ1(t1) is computed according to (4) with the last
optimized time T = T ∗

1,prev as

ξ1(t1) = α(t1)v1 + β(t1)v2 + γ(t1)ξ2. (22)

Similarly, the current VRP v1(t1) is obtained by evaluating
(15) for the first transition phase as

v1(t1) =

(
1− t1

T ∗
1

)
v1 +

t1
T ∗
1

v2. (23)

To utilize the ankle strategy, the current DCM error

ξ̃(t1) = ξ(t1)− ξ∗1(t1) (24)

is projected onto Ξ̃ankle and thus separated into two parts,
as shown in Fig. 4. Only the DCM error ξ̃edstep due to an
external disturbance, which is computed according to Sec. II-
C, is compensated by the stepping strategy (see (20)). Thus,
if there is no DCM offset, i.e., ξ∗1 = ξ1, and the current
DCM error ξ̃ is inside the red region in Fig. 4, i.e., inside
Ξ̃ankle, only the ankle strategy is active.
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D. Foot Location and Timing Adaptation

To reduce the size of the optimization problem, the VRP
waypoints are expressed in terms of foot positions. The
definition of the VRP waypoints vi depends on whether the
current phase is a single support phase (cSS) or a double
support phase (cDS):

vi = pj +Rz,j [(−1)i∆x 0 ∆z]T ∀i ∈ {2, . . . , nwp}

with j =

{
⌈i/2⌉ for cSS
⌊i/2 + 1⌋ for cDS

and ∆x =

{
lx for cSS
−lx for cDS.

(25)
Here, j is the index used to select the corresponding ref-
erence foot position, lx represents a constant VRP offset
from the footstep center in the x-direction corresponds to
predefined CoP movement from heel to toe in the single
support phase. The rotation matrix Rz,j specifies the orien-
tation of the footstep. For simplicity, we specify ∆x = 0
for the preview footsteps as shown in Fig. 4. Writing (25)
in terms of displacements and inserting into (18) yields

ξ̃i =

{(
αT,i−1 + βT,i−1

)
p̃j + γT,i−1ξ̃i−1 for SS

αT,i−1p̃j + βT,i−1p̃j+1 + γT,i−1ξ̃i−1 for DS,
(26)

with i and j defined as in (25). The optimization problem is
formulated as a quadratic program as

min
τ,p̃j ,ξ̃i

wτ |τ − τnom|2 +
k+npfs∑
j=k

∥∥∥p̃j

∥∥∥2
Wp

+

nwp∑
i=2

∥∥∥ξ̃i∥∥∥2
Wξ

s.t. (19), (26),

e
Tmin

b ≤ τ ≤ e
Tmax

b ,

p̃j ∈ P̃step,j ,

with k =

{
2 for cSS
3 for cDS,

(27)
where τ = e

T
b , npfs is the number of previewed footsteps,

and nwp is the number of waypoints.
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For the timing of the footsteps both the distance between
the current position of the swing foot and the intended target
position and the maximum acceleration of the swing foot
need to be considered. Here, for simplicity, the minimum
transition phase time is determined by an empirically deter-
mined maximal velocity of the foot vf,max and the remaining
distance to the target position X ft,t as

Tmin = max
(∣∣X ft,t −X ft

∣∣ /vf,max

)
. (28)

The adjusted foot positions are obtained as

p∗
j = pj + p̃∗

j ∀j = {k, . . . , k + npfs}, (29)

with k defined as in (27). Similarly, the adjusted DCM
waypoints are given by

ξ∗i = ξi + ξ̃∗i ∀i = {2, . . . , nwp}, (30)

and the current adjusted DCM results in

ξ∗1(t1) = ξ1(t1) + ξ̃1(t1). (31)

With the optimized remaining phase time

T ∗
1,r = b ln(τ), (32)

the first transition phase time evaluates to

T ∗
1 = t1 + T ∗

1,r. (33)

To compute the next commanded DCM, we evaluate (16)
with the current VRP v1(t1) and adjusted DCM ξ∗1(t1) from
(23) and (31), respectively, and the remaining time T ∗

1,r as

ξ∗1(t1 + ts) = α(ts)v1(t1) + β(ts)v2 + γ(ts)ξ
∗
1(t1), (34)

where ts is the sample time and t1 is the local time in the
first transition phase. The next commanded DCM position
and velocity (via (3)) are passed to the DCM controller.

VI. SIMULATION RESULTS

In this section, we present the simulation results with the
robot kangaroo using the MuJoCo simulation environment
[27]. The height of kangaroo is 145 cm with a mass of 40 kg,
each leg has a mass of 12.5 kg, and its feet are 21 cm long
and 9 cm wide. The quadratic program for the step timing
adjustment (27) and the whole-body controller are solved
with qpSWIFT [28] within less than 1ms on a 3.8 GHz
AMD Ryzen 7 processor.
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Fig. 6. Sagittal (in the walking direction) trajectories during the push
recovery simulation. The vertical grid lines show the change between two
transition phases.
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Fig. 7. Lateral trajectories during the push recovery simulation. The vertical
grid lines show the change between two transition phases.

A. Push Recovery

Figure 5 shows the top view of a simulation, where
the robot is walking forward with the reference velocity
vref = 0.4ms−1 and the SS and DS timings and step length
according to Sec. IV. The reference angular velocity alter-
nates between ωref = ±0.2 s−1. After a first step adjustment
to compensate for the initial DCM error, the robot follows
the footstep plan. In the first steps, desired CoP movement
corresponding to VRP movement in the support area during
the single support phase is demonstrated. This predefined
CoP movement is well suited for the nominal gait if, e.g.,
heel- or toe-off walking is desired. In the case of disturbance
rejection due to external pushes, however, the choice of the
VPR in the center of the foot has proven to be the most
robust since, here, the DCM controller has the largest margin
of possible VRP adjustments in all directions.

The robot is pushed at t = 2.1 s with F = 200N for
∆t = 0.1 s in the lateral direction, causing it to leave the
desired step plan. The controller adjusts the step position to
react to the disturbance and return to the desired step plan.
The sagittal (walking) direction is hardly disturbed, as seen
in Fig. 6. Here, it can be observed particularly well that the
frequency of the footsteps is increased during the disturbance
rejection. The vertical grid lines show the change between
two transition phases. Figure 7 shows how the controller
adjusts the footsteps in the lateral direction to recover from
the disturbance. The time adjustment in the first transition
phase is shown in more detail in Fig. 8. Without disturbance,
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a push as in Fig. 1 while walking forward at vref = 0.2ms−1. The push
occurs in the last two-thirds of the left foot stance phase for ∆t = 0.1 s.

the remaining phase time T ∗
1,r follows the nominal remaining

time T1,r,nom and reduces linearly until the end of the phase.
Due to the disturbance, the controller adjusts the phase
duration according to the constraints given in (27) until the
remaining time is smaller than T ∗

1,r < 0.05 s where it is
reduced linearly again to ensure that the feet have sufficient
time to reach the target position.

The increased robustness due to time adjustment, which
allows to recover from more significant disturbances, is
shown in Fig. 9. Since the robot is standing on its left foot
at the instance of the push, as can be seen in Fig 1, the
maximal disturbances that can be compensated are smaller
to the left (in the direction of the stance leg) than to the right.
The maximum recoverable push in this configuration equals
525N to the rear right.

B. Change in Reference Velocity

Figure 10 shows the tracking of a desired reference walk-
ing velocity vref. During steady-state walking, the measured
velocity of the robot follows the reference velocity, with
oscillations based on DCM dynamics. In case of abrupt
velocity changes, a transient response takes place. The ref-
erence velocity determines the timing of the walking phases
and the step length. As a result, the step plan and the timing
of the steps are instantly modified. Since the robot cannot
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Fig. 10. Discrete changes in the reference velocity result in smooth DCM
trajectories. The CoM naturally follows the DCM according to (1).

always instantly react to an updated step plan, e.g., in the
double support phase, the step position and timing must
be adjusted to accelerate and compensate for the missed
velocity change such that the integral for reference and
measured velocity is equal. After the transient phase, the
robot follows the reference speed again. Since the step timing
adaptation compensates for the speed change, the reference
DCM trajectory remains continuous, as shown in the lower
two plots in Fig. 10.

VII. EXTENSIONS/FUTURE WORK

The semicircular feasible step region shown in Figs. 3
and 4 is only a subset of the actual possible target positions of
the feet since the QP limits us to convex boundary conditions.
A C-shaped region around the current footstep and, thus,
a possible crossing of the feet, which would contribute
significantly to the stability of the movement, cannot be
implemented with a QP. However, the proposed method can
be readily extended by more refined approaches that find
convex regions allowing for a crossing of the legs. The
parameterization of these convex regions by heuristic, model-
based, or model-free approaches is part of future work.

Another possible extension would be to intersect the
feasible step region by kinematic constraints with the feasible
step region by environmental constraints, such as stepping
stones or obstacles. With the proposed multi-step preview
controller, the DCM and footstep adjustments can anticipate
for future obstacles or constraints and thus enable robust
walking in cluttered environments or on stepping stones.

VIII. CONCLUSION

In this paper, we have presented a DCM-based online
trajectory generation framework for walking that adjusts
to perturbations in three different ways: time adaptation,
footstep position adjustment, and modulation of ground
reaction forces. The advantages of the proposed method are
the utilization of the ankle strategy in combination with the
adjustment of the current phase duration, the adaptation of



multiple previewed footsteps, constraints on footstep place-
ment, and the presence of double support phases. The simu-
lations showed robust recovery from external disturbances
while tracking a desired footstep plan and the ability to
respond to discrete changes in reference velocity. The supple-
mentary video contains multiple simulations demonstrating
the proposed walking control with the robot kangaroo.

APPENDIX

VRP AND DCM TRAJECTORY IN THE TRANSITION PHASE

We define the VRP trajectory as a spatially linear interpo-
lation between a VRP start point vφ,0 and end point vφ,T

as
vφ(t) =

(
1− fφ(t)

)
vφ,0 + fφ(t) vφ,T , (35)

where vφ,0 = vφ(0), vφ,T = vφ(Tφ) and t ∈
[
0, Tφ

]
is

the local time of the transition phase φ. Generally, low-
order polynomial splines are used as temporal interpolation
functions fφ(t) for each transition phase. The smoothness of
the DCM and CoM trajectories depends on the order np of
the splines, e.g., a linear interpolation is given by:

fφ(t) = t/Tφ. (36)

Higher-order interpolation schemes are presented in [5].
Inserting the VRP trajectory (35) into (3) gives the DCM
dynamics for the transition phase φ:

ξ̇φ(t) =
1

b

(
ξφ(t)− vφ(t)

)
. (37)

Multiplying (37) by the integrating factor e−t/b facilitates
partial integration and results in the DCM trajectory:

ξφ(t) =

(
1− σφ(t)− e

t−Tφ
b

(
1− σφ,T

))
︸ ︷︷ ︸

αφ(t)

vφ,0 +

+

(
σφ(t)− e

t−Tφ
b σφ,T

)
︸ ︷︷ ︸

βφ(t)

vφ,T + e
t−Tφ

b︸ ︷︷ ︸
γφ(t)

ξφ,T ,

where σφ(t) =

np∑
j=0

(
bj

(j)

fφ(t)

)
,

(38)

with σφ,T = σφ(Tφ). Here,
(j)

fφ(t) denotes the j-th derivative
of function fφ(t) and ξφ,T = ξφ(Tφ) is the DCM end point.
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