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Abstract

This report is dedicated to research activities conducted during the secondment at the
US-Air Force Academy (USAFA) in Colorado Springs from end of October 2022 until end
of July 2024. The content includes a brief description of the three published contributions
to the AIAA Aviation Forum in San Diego, which took place in summer 2023. Also
listed are the additional research that have arisen outside the common activities with
the USAFA, namely bio-inspired Swarm Intelligence optimisation strategies and the
treatment and implementation of the geometrically exact beam. Finally, there is a
summary about the topics and an evaluation of the stay at the USAFA.
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USAFA US Air Force Academy
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1 Introduction

Every year, the Deutsches Zentrum für Luft- und Raumfahrt (DLR) offers the opportu-
nity to apply for an Otto Lilienthal research semester which was awarded to me in the
year 2021. After a period of discovery, the US Air Force Academy (USAFA) in Colorado
Springs, USA, was chosen for the secondment. The connection for a successful coopera-
tion was provided by the NATO AVT-351 group, which deals with numerical methods
of reduced order models, and in which the USAFA and the DLR have a leading role. A
topic that fits well with current activities embedded in the Optimally Load-adaptive
Aircraft (oLAF) project. After administrative preparations for the secondment to the
USA, the stay at USAFA started on October 24, 2022 and ended nine months later on July
24, 2023. American Institute of Aeronautics and Astronautics (AIAA) hosts biannual
conferences that are held in the U.S., and the time frame of the secondment made it an
excellent opportunity to submit papers for the 2023 summer conference in San Diego.
This is also a great opportunity to document the joint work with USAFA and all work
that has been completed during this secondment.

One of the main reasons for the secondment was to strengthen the long-term collabora-
tion between the USAFA and DLR. The common topic was already narrowed down in
advance and shortly after arrival at the USAFA the content was fixed with an abstract for
the AIAA Aviation Forum 2023. The abstract included a comparison of both numerical
codes used at USAFA (Kestrel) and DLR (TAU), for the DLR-F22 ONERA wind tunnel
model, a combat aircraft configuration. Furthermore, different Reduced Order Model
(ROM) approaches for the evaluation of stability derivatives were also considered.

Another component during the stay was to complete the final report as a publication
for DLRs internal project oLAF. Here, too, an abstract was submitted to AIAA Aviation
Forum 2023 with results from the efficient high-accuracy loads package. Both of the
mentioned earlier publications were submitted by taking the role as the lead author.

The third publication was a follow-up to the first Stability and Control Prediction
Workshop (SCPW) also organized by AIAA and held in early 2021. The purpose was
to conduct numerical simulations and investigations on a sub-problem of the original
problem of the first SCPW to improve the predictive accuracy of dynamic derivatives
and then to integrate this into best practice guidelines. The main-lead for this paper had
a DLR colleague from the AS-Institute. My contribution was related to the preparation
and classification of the numerical simulations and their results.

In addition, the secondment also provided time to focus on other topics. An overview
of the work performed is given in chapter 3, which covers Swarm Intelligence (SI)
optimisation and the simulation of a Geometrically Exact Beam.

This report contains the following chapters, the main activities chapter 2, these are
the three publications presented at the AIAA Aviation Forum 2023 in San Diego, the
additional research in chapter 3 conducted at the USAFA, and finally a conclusion
in chapter 4 about the secondment to the USAFA in Colorado Springs, USA.
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2 Main Activities

While at USAFA, three publications were submitted to the AIAA 2023 Aviation Forum
summer conference. Two publications were authored as lead author and a third by a
colleague from another department of DLR-AS. The first paper serves as a documenta-
tion for the excellent cooperation in the field of simulations of unsteady flows with the
USAFA as well as the application of ROM’s for the applicability of high agile aircraft.
The second contribution is a paper on the work done in the DLR internal project oLAF,
in which I was involved at the time of the secondment. The third paper was an add on
to the first SCPW held by the AIAA. Finally, all three papers were presented at the 2023
AIAA Summer Conference in San Diego.

2.1 Comparison of Reduced Order Models for Evaluating
Stability Derivatives for the DLR-F22 ONERA model

This paper [44] is about the comparison of reduced order models to predict aerodynamic
stability derivatives. The study involved two widely used frameworks for simulating
unsteady flows, DoD HPCMP CREATERM-AV/Kestrel and the DLR Unstructured
Hybrid Flow Solver (TAU). The DLR TAU contains a linearised version of the discrete
unsteady Reynolds-averaged Navier-Stokes equations based on the small perturbation
approach which are solved in the frequency domain. This allows a comparison between
distinctly different approaches of reduced order aerodynamic modelling. Two reduced
order models are applied to unsteady simulations to extract stability derivatives from
predicted time histories of the force and moment coefficients. A third approach is based
on the linear frequency domain solver which computes stability derivatives directly.
In the case of unsteady simulations, a system identification approach is applied to the
time history of the force and moment coefficients for different training manoeuvres
to extract the stability derivatives. The second reduced order model is based on the
calculated indicial responses to unit step changes in the angle of attack and pitch
rate. The weaknesses and strengths of the individual approaches are shown and, in
particular, the efficiency of the methods is outlined. The use case is the DLR-F22 ONERA
model, a generic research wind tunnel model of a triple delta wing fighter type aircraft
configuration, at transonic flow conditions for various angles of attack.

The paper [44] includes the following outline, which are Numerical flow solvers, applied
ROM approaches, Test Case Description, Comparison of flow simulations, Dynamic
response data, and Evaluation of Static and Dynamic Derivatives. The ROM approaches
involves the time-linearised approach (Linear Frequency Domain (LFD)), the Stability
Derivative Method, Indicial Response Modelling, and System Identification.

This investigation covers various reduced order models applied for predicting stability
derivatives with two well established Unsteady Reynolds Averaged Navier-Stokes
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12 USAFA-DLR

(URANS) flow solvers, Kestrel and TAU. In addition, the TAU LFD method has been
introduced to show the extent whereto it is possible to use this method for vortex-
dominated flow applications. Both URANS methods, Kestrel and TAU, predict stability
derivatives in general in good agreement to each other, however certain deviations are
found since the prediction of the flow physics shows differences and thus the dynamic
response data differs. Regarding the ROM approaches applied on the dynamic response
data of the unsteady simulations, the trend at lower angles of attack range is well
preserved. At and above the 20 deg case predictions between the URANS methods
are difficult to judge because deviations in the global force and moment coefficients
become evident and therefore a better insight in predicting flow features like shock
location, separation and vortical structure would be necessary. Vortex-dominated flows
are mainly unsteady occurrences, and this transonic case surely represents a special
case, since steady-state solutions are possible, a prerequisite for the application of the
TAU LFD method. However, one LFD simulation in comparison with URANS boosts
the time reduction factor above two orders of magnitude. Because of its good agreement
for the smaller angle of attack range, the LFD is well suited as a prediction tool. A
moderate range of angles of attack up to twenty degrees can be predicted with the LFD
in less than a day, providing exactly this advantage of a fast response time. An URANS
simulation takes about a week for a single angle of attack and a single motion, and it
requires a good amount of experience to get the flow solver parameters right to get a
usable result the first time. All of this is eliminated with the LFD method. It has to be
stated that the current LFD linearisation can be further improved by the linearisation
of the SA turbulence model with rotational correction, actually a must for consistency
with the discretisation of the governing equations of the URANS equations using the SA
turbulence model with rotational correction. Indicial responses were generated using
Computational Fluid Dynamics (CFD) and a grid motion approach. These responses
show an initial peak, a transient behaviour before asymptotically reaching steady-state
values. These functions could be used to generate a non-linear unsteady aerodynamic
model. However, in this study, the indicial functions were used to estimate the stability
derivatives from the steady-state values and transient behaviour. These derivatives
were compared with LFD and classical methods and a reasonably good agreement was
found. Finally, a system identification method was used to estimate stability derivatives
of the model from two different training signals. The Schroeder motion was generated
using a optimal criterion of the input parameter space, however, the model covers a
wide range of angles of attack. The second motion is a piece-wise chirp signal, that is its
instantaneous frequency is time-dependent. The aerodynamic model is a polynomial
with input parameters of angle of attack, time-rate of change in the angle of attack, and
pitch rate. The model was then used to predict static aerodynamic data and stability
derivatives. The model based on the piece-wise chirp predicts the static data better
than the model based on the Schroeder motion, in particular at high tested angles of
attack. For stability derivatives, the model based on Schroeder predicts smooth curves
for the stability derivatives though the values are similar to evaluated data from other
methods. The model based on piece-wise chirp shows more changes in the prediction
plots, however, the values seem to be off for some derivatives at some angles.

The full text of the manuscript is available on the AIAA internet page at the following
link doi:10.2514/6.2023-4199.
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2. Main Activities 13

2.2 Nonlinear Low-Dimensional Model Order Reduction
with Subspace Interpolation for Gust Applications
with the Linear Frequency Domain Approach

Gust load predictions are time-consuming for aircraft design since these are unsteady
events and depend not only on the flow conditions but also on many other parameters
such as weight and altitude changes. The linear frequency domain solver allows a
rapid calculation of gust loads in contrast to a time-accurate method, although the
calculation of several harmonics is necessary to reconstruct the equivalent time signal.
A further increase in efficiency can be obtained with the use of a Proper Orthogonal
Decomposition-Galerkin method for interpolating certain frequencies for the gust time
signal for a single operating point of the flight envelope. If several operating points
are already known, an interpolation of gust loads between the operating points can be
performed with the Grassmann manifold. Considering the flight conditions, subsonic to
transonic, of a whole flight envelope, the Proper Orthogonal Decomposition-Galerkin
method achieves a good prediction accuracy. For the Grassmann manifold, however, it
turns out that it is only suitable in the immediate vicinity of sampled operating points.

The results of the Hauptarbeitspacket 4 (HAP) entitled 4.3.5 Efffiziente hochgenaue
Lasten für MDO (Multi-Disciplinary Optimisation), in the project oLAF is described
in detail in the manuscript [43]. It includes the following outline, Method formula-
tion, POD Galerkin-Projection method (LFDROM), Grassmann Manifold Interpolation,
Numerical Methodology, Results for the Common Research Model (CRM) wing/tail
section, as well as Results for the CRM configuration, and Computational Efficiency.

Two subspace models, the POD-Galerkin projection and the Grassmann manifold
interpolation technique were applied in conjunction with POD to obtain reduced order
models for solutions of the linearized Navier-Stokes equations. While the first approach
is well suited for interpolating individual solutions from a set of LFD solutions to
reconstruct the gust loads of a single operating point, the second approach interpolates
the POD modes of the total gust loads between operating points. The two approaches
yield very low-dimensional systems of Ordinary Differential Equation (ODE) to describe
the dynamics of coefficients that modify the POD basis functions. The coefficients were
reduced-order variables that were used to reconstruct the entire flow field for a time-
accurate solution. For subsonic flows, the time signal of the gust LFD solutions can be
interpolated from the second to third frequency without major loss in accuracy by using
the POD-Galerkin projection method (LFDROM). For transonic flows, interpolation of
LFD solutions may start from the fourth or fifth frequency, which still results in a high
efficiency. It should be noted; however, that the interpolation should not be applied to
the first two to three reduced frequencies of the frequency spectrum, since these are the
dominant frequencies and large errors occur. The reduced frequencies for a time signal
also drop exponentially from the third to the fifth reduced frequency onwards which
is another indication why it works well at higher frequencies. Applications for the
LFDROM can pay off for gust simulations of a complete flight envelope, if only single
missing frequencies for a gust signal have to be determined to reconstruct the complete
gust signal. It is much faster than performing an additional LFD simulation. For the
Grassmann Manifold Interpolation (GMI) it is currently only applicable in the near
vicinity of sampling points for a gust evaluation, especially in the transonic flow region.
Its merit in saving computational time lies in the reduction to number of snapshot times
snapshot POD matrix, and that is an almost negligible time effort to reconstruct all LFD
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field solutions for a single gust encounter between operating points. Regarding the
evaluation of the integral force and moment derivatives to reconstruct the gust time
signal to obtain the load factor, currently both subspace ROM models implemented
in Surrogate Modeling for Aero-Data Toolbox (SMARTy) are slowed down under the
inherent construction of the flux Jacobian matrix in the TAU code. It remains to this
day a question between memory space that is storing the Jacobian, or computational
effort that is computing the Jacobian on the fly. It has been shown that GMI still needs
improvements for the interpolation of gust signals, especially in the transonic range.
Since the gust encounter analysis is a multidisciplinary process, the applications of GMI
can be readily adopted to other disciplines such as structural deformations.

The full text of the manuscript is available on the AIAA internet page at the following
link doi:10.2514/6.2023-3947.

2.3 DLR Results for the 1.5 AIAA Stability and Control
Prediction Workshop Investigating a Wing and Wing-
Tail Section of the Common Research Model

A summary about the DLR results for the Special Session of the AIAA Stability and
Control Prediction Workshop regarding the wing section only and wing/tail section
of the Common Research model (CRM) is presented. The first prediction workshop
revealed a deficit in the accurate determination of the pitching moment coefficient of the
Common Research wind tunnel model. Thus, the idea is to perform investigations on a
wing only and wing/tail section to improve the prediction accuracy for the pitching
moment, and in consequence pitching moment derivatives, to increase the prediction
reliability for future workshops. The two-dimensional sections of the CRM wind tunnel
model are used to calculate a transonic Mach number sweep for a given lift coefficient
to explore mesh-independent solutions. Using aerodynamic coefficients and their
partial and total derivatives, and determining the velocity vectors at a defined location
provides insight into the different meshing strategies for both airfoils and the wing
wake. In addition, DLR also computed the optional test cases by evaluating the lift
coefficient range from zero to the maximum for the wing only and the wing/tail case,
and evaluating the derivative of the pitching moment coefficient with respect to angle
of attack and tail incidence angle for the wing/tail case. The analysis shows that the
derivative prediction on the two-dimensional CRM case proves to be very sensitive
regarding the grid quality, wing and tail incidence angle as well as the shape of the tail
geometry.

The manuscripts [37] describes the Test Cases performed for the workshop, and includes
the outline for the DLR-TAU flow solver, and the summary of the results for the CRM
wing and wing/tail section.

This work covers the DLR results for the 2D Airfoil Study of the 1.5th Stability & Control
prediction workshop. The test cases are a consequence of results from the first Stability &
Control prediction workshop, where the numerical simulation results of the participants
diverged for the prediction of stability derivatives for the CRM model, especially for
the prediction of the pitching moment. This stripped down approach with the two-
dimensional airfoil section of the CRM wind tunnel model of the wing and the tail
proved, that the prediction of derivatives is very sensitive to a number of factors.

The grid requires a high quality on the wing and tail surface, on their respective shock

2024-6

https://doi.org/10.2514/6.2023-3947


2. Main Activities 15

locations and in the wake area between wing and tail. The compression shock on wing
and tail for higher Mach numbers and the incidence angle of wing and tail need a
sufficient resolution, in order to achieve acceptable results. Also, the pitching moment
has shown to be very sensitive to changes in the angle of attack, the addition of the tail
geometry and the tail incidence angle. Because of its lever arm, the tail is responsible
for most of the pitching moment generation, therefore the exact numerical simulation of
the aerodynamics of the tail is crucial for the pitching moment prediction. However, for
an ideal prediction of the tail aerodynamics, the main wing aerodynamics need to be of
the same high accuracy as well, since the tail is affected by the wake of the main wing.
The counter pressure of the tail body in the wake of the main wing also influences the
aerodynamics on the main wing, decreasing the suction peak at its leading edge and
pushing the shock location upstream.

The studies conducted in this special session have shown, that even for a simplified
two-dimensional case of the CRM wind tunnel model with only wing and tail, the
numerical simulations must be very accurate to achieve a satisfying stability derivative
prediction. Next steps will be the comparison of the results of all participants, the
analysis in which magnitude and where the predictions agree and the deduction for the
next steps leading to the 2nd AIAA Stability & Control prediction workshop.

The full text of the manuscript is available on the AIAA internet page at the following
link doi:10.2514/6.2023-4397.

2024-6

https://doi.org/10.2514/6.2023-4397




3 Additional Research

This chapter summaries work performed during the secondment which was not in-
cluded in the main focus. These are topics that have little affinity with the author’s
usual research topics. However, the first topic in section 3.1 is related to optimisation
techniques for finding the global optima based on meta-heuristic approaches, and the
second topic dealt with the mathematical treatment for uniqueness in solving the set of
equations for the geometrically exact beam in section 3.2.

3.1 Swarm Intelligence (SI) Algorithms

SI is one of the computational intelligence techniques which are used to solve complex
problems. Historically, the phrase SI was coined by Beny and Wang in the context
of cellular robotics [1]. SI involves collective study of the individuals behaviour of
population interact with one another locally and with their environment. Simple rules
are followed by agents and no centralized control structure exists in order to predict
the behaviour of individual agents. The random iteration of a certain degree between
the agents provides an “intelligent” behaviour which is unknown to individual agents.
Millonas [29] proposed that SI must satisfy five basic principles: adaptability, diverse
response, stability, quality, and proximity.

Table 3.1: SI basic principles by Millonas [29].

Principle Definition

Adaptability Swarm should have the potential to change its search be-
haviour when the computational cost is high.

Diverse response Swarm should not perform its activities along extremely
narrow channels.

Stability Swarm should not change its search behaviour in response
to the environment changes.

Quality Swarm should have the potential to respond to performance
measures in the environment.

Proximity Swarm should have the potential to smoothly perform time-
and space-consuming computations.

Table 3.1 lists their meanings. The following algorithms are evolutionary computational
techniques with a meta-heuristic approach. Especially for biological systems nature of-
ten acts as an inspiration to mimic the collective and social behaviour of living creatures.
The behaviour of a solitary ant, bee, termite and wasp often is too simple, but their
combined and social actions are of paramount consequence. Although there is normally
no centralized control structure dictating how individual agents must behave, limited
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18 USAFA-DLR

interactions between such agents often lead to the emergence of global behaviour [17].
Many biological creatures such as fish shoaling and schooling 1 and bird flocks clearly
display structural order, with the behaviour of the organisms so integrated that even
though they may change shape and direction, they appear to move as a single coherent
entity [5]. The main properties of the collective behaviour can be pointed out as follows
and is summarized in fig. 3.1.

Figure 3.1: Main properties of collective behaviour.

Homogeneity is that every agent in flock has the same behavioural model. The flock
moves without a leader, even if leaders emerge at times. Locality means that the nearest
flock-mates just influence the motion of each agent. Vision is considered the most
important sense for the organization of the flock. Collision avoidance is used to avoid
collisions with nearby flock mates. The velocity matching tries to match the velocity
of nearby flock mates. The flock centring involves trying to stay close to flock mates.
Individuals attempt to maintain a minimum distance between themselves and others at
all times. This rule has the highest priority and corresponds to a frequently observed
behaviour of animals in nature [24]. If individuals do not perform an avoidance manoeu-
vre, they tend to attract other individuals (to avoid being isolated) and align themselves
with neighbours [32, 31].

Currently, SI algorithms are very popular for optimization because they promise to find
global optima, and can also be used efficiently in machine learning approaches. The
differences in the algorithms are often only marginal, which explains the multitude
of available SI algorithms. The uniqueness of the algorithms is not always evident
from the biologically related names. Nevertheless, certain algorithms offer different
approaches that are worth mentioning by name. One of the initial SI algorithms was Ant
Colony Optimisation (ACO) [6, 3], introduced in 1992 by Marco Dorigo, a probabilistic
technique for solving non-deterministic (discretised) problems which creates different

1In biology, when any group of fish swim together in a loose cluster for social reasons, this is typically
called a shoal (shoaling). It can be a mix of different species. If the group of the same fish species is
swimming in the same direction in a coordinated manner, they are schooling [38], thus, a school is a
group of fish swimming together in synchrony; turning, twisting and forming sweeping, glinting shapes
in the water.
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3. Additional Research 19

solutions through a sequence of decisions. Another significant different algorithm is the
Artificial Bee Colony (ABC) [18, 19] developed by Karaboǧa and Akay which has been
proposed for solving continuous and unconstrained optimisation problems and gained
success on especially high dimensional and multi-modal unconstrained problems. And
finally the Particle Swarm Optimisation (PSO) [20] established by Kennedy and Eberhart
where the coordinates in the search space that are associated with the best solution is
tracked by each particle and most noticeable it is performed randomly.

3.1.1 Ant Colony Optimisation (ACO)

ACO is inspired by the concept of the self-organisation of swarms and derived from
swarm intelligence. This technique was first developed by Marco Dorigo [6, 3]. The
fundamental idea is that ants organize themselves to travel to the food source and have
the ability to follow each other.

The two important properties of ACO that basically simulate the real ant system are as
follows [3]:

• Stigmergy: This is a property that plays an important role in developing a col-
lective behaviour of the social insects. The stimulatory factor pheromone2 trail is
secreted from an ant, the amount of which decides the preference for the next ant
to choose a path. This basically depicts the property called self-organization.

• Autocatalysis: According to this property, the shorter the path, the sooner the
pheromone is deposited by the ants, and the more ants use the shorter path. This
ensures the fact that the algorithm introduces the chance of rapid convergence
while heading toward the optimal solution. The important property of this al-
gorithm is the decaying of pheromone, which influences the convergence by
governing the amount of accumulation of pheromone in the paths. It ensures that
the search process does not get stuck in the local optima.

In essence, ACO mimics the foraging behaviour of social ants in a colony, and phero-
mone is used for simulating the local interactions and communications among ants.
Pheromone is deposited by each ant and it evaporates gradually with time. The exact
form of evaporation model may vary, depending on the variant and form of ACO used
in implementations. Both incremental deposition and exponential decay of pheromone
are widely used. ACO is particularly suitable for discrete optimization problems. For
example, for routing problems, a route or path is encoded as a solution. When ants
explore different paths, explored routes are marked with deposited pheromone that
evaporates over time. The fitness or quality of a path (a solution) is related to the
concentration of pheromone on the path. Routes with higher pheromone concentrations
will be preferred or be chosen with a higher probability at a junction. Similar to Genetic
Algorithm (GA), ACO is a mixed procedure with many variants and applications. ACO
can be combined easily with other methods; it shows well performance in resolving
complex optimization problems.

So far, ACO has been widely and successfully implemented for solving discrete optimiza-
tion problems. It has been tried on both static and dynamic combinatorial optimization

2A pheromone is a secreted or excreted chemical factor that triggers a social response in members of
the same species. Pheromones are chemicals capable of acting like hormones outside the body of the
secreting individual, to affect the behaviour of the receiving individuals.
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20 USAFA-DLR

problems (Dorigo et al., 1999). A few examples of static optimization problem are given
as follows:

• Travelling salesman problem: In this problem, n cities are travelled in such a way
that the total travelling cost is minimized. ACO has shown better performance
than the GA for a small problem (30-city problem), but not for a larger problem
(Dorigo et al., 1997).

• Quadratic assignment problem: It is the problem of assigning n facilities in n
locations so that the total cost of assignment is minimized. The results obtained
for this problem is shown in Dorigo et al. (1999).

• Job-shop scheduling problem: A set J of jobs are to be assigned on M machines in
such a fashion that the total completion time is minimal, satisfying the constraint
that no two jobs can be processed on the same machine at the same time. ACO
was able to find 10% of the optimal value of the results for a 15-machine, 15-job
problem (Dorigo et al., 1999).

• Vehicle routing problem: This problem is about obtaining minimum-cost vehicle
routes for a fleet of vehicles starting from a depot or more than one depot. Dorigo
et al. (1999) applied ACO on this problem and obtained reasonable results.

• Truss structures: ACO in structural engineering was presented by Bland (2001) for
design optimization of a 25-bar space truss. Kaveh and Shojaee (2007) employed
ACO for optimal design of skeletal structures. A hybridization of ACO and other
meta-heuristic techniques, like Particle Swarm Optimisation, have been applied
for design optimization of steel frames and truss structures (Kaveh and Talatahari,
2007; Kaveh and Talatahari, 2009).

Some of the dynamic optimization problems where ACO is applied are the connection-
oriented network routing problem and the connectionless network routing problem.

The principle of ACO can be explained using the Travelling Salesman Problem as follows
using a simple example. Suppose that there are two different reversible paths,

←−−−−→
ECADF

and
←−−−−→
ECBDF available to a group of ants. The ants can travel in either direction, with

the objective of deriving the shortest path. The
←−−→
CAD leg is twice as long as the

←−−→
CBD

leg. The underlying concept is that ants lay pheromone along the travelled path, which
evaporates over time. Thus, the shorter a travelled leg, the longer the pheromone lasts.
An ant travelling in the

−−−−→
ECDF direction is faced with two options,

−−−→
CBD or

−−−→
CAD, at

point C. The decision of choosing a path over the other at point C is purely arbitrary
and has equal probability. But the probability of choosing the shorter path

−−−→
CBD grows

in time for the follower ants, as the pheromone trail left by preceding ants lasts longer
on the shorter path. After sufficient time intervals, all ants converge to the shortest path.

Algorithm 1 outlines a high-level description of the ACO to the Travelling Salesman
Problem (TSP). This algorithm was taken from the books [3] as well as [40, 41]. Three
algorithms are available which are PyACO.py [40], PyACO_1.py is a high-level ACO-TSP
program with various modifications of the original ACO of Dorigo, and there is also a
Matlab version MatLabACO.m.

Essentially, then, the limitations of ACO are that it does not exploit a continuous search
space as GA does. The continuous space must be discretised for ACO application, one
of the inherent impediments in ACO applications.
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Algorithm 1 Pseudo Code of ACO for Travelling Salesman Problem

1: Set the algorithmic parameters
2: X , Y vertexes
3: α = 1.0, β = 1.0, ρ = 0.02
4: antPop = 4, maxIterations = 10 ▷ Initial ant population
5: τ0 = 0.01 ▷ Initial value of pheromone
6: Q = 1 ▷ Constant
7: procedure ACO( X , Y , α, β, ρ, antPop, maxIterations, τ0, Q = 1))
8: for every edge (i,j) do ▷ Initialisation
9: τij = τ0

10: end for
11: for k = 1 to antPop do
12: Place ant k on a randomly chosen city
13: end for
14: Compute visibility η(i, j) = 1/d(i, j) ∀i, j ← d(i, j) distance between vertexes
15: Let T+, L+ shortest tour and length found from the beginning
16: for t = 1 to maxIterations do ▷ Main loop
17: for k = 1 to antPop do
18: Build tour T k(t) by applying (n-1) times the steps
19: if exists at least one city j then
20: Choose next city j, j ∈ Jk

i , among cities cl

21: j =




argmax

u∈Jk
i

{[τiu(t)]α · [ηiu]β} if q ≤ q0,

J if q > q0,

22: where J ∈ Jk
i is chosen according to the probability

23: and q is a random variable uniformly distributed over [0, 1]

24: pkij(t) =
[τij(t)]

α · [ηij]β∑
l∈Jk

i
[τij(t)]α · [ηij]β

25: where i is the current city
26: else
27: chose the closest j ∈ Jk

i

28: end if
29: After each transition ant k applies a local update
30: τij ← (1− ρ)τij(t) + ρτ0
31: end for
32: for k = 1 to antPop do
33: Compute Lk(t) of the tour T k(t) maintained by ant k
34: end for
35: if an improved tour is found then
36: Update T+ and L+

37: end if
38: for every edge (i, j) ∈ T+ do
39: Update pheromone trails by applying
40: τij ← (1− ρ)τij(t) + ρ∆τij(t) where ∆τij(t) = Q/L+

41: end for
42: end for
43: return Shortest tour T+ and its length L+

44: end procedure
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3.1.2 Particle Swarm Optimisation (PSO)

PSO is inspired and adapted from the behaviour of birds or fish schooling in a swarm. In
PSO, a population is a swarm and individuals are particles. A population is composed
of many particles. For PSO searching, each particle moves to find an optimal solution
with a velocity, which is adapted from the particle by exchanging the information of
particles in the swarm. A strong point of PSO is that the algorithm saves the local
best positions (the best solution of each particle), and a global best position, which
is the best solution of the swarm, in each iteration. This optimization algorithm was
originally introduced by Kennedy and Eberhart [20] in 1995. The PSO algorithm has the
advantage of simplicity for implementation, insensitive to scaling of design variables, it
is gradient free, and when used for non-linear programming problems with multiple
constraints it can quickly converge to a reasonably good solution. It has very good
global searching ability. One disadvantage is the slow convergence in the refined search
stage (weak local search ability). However, the original PSO cannot be used to solve
certain problems, for example a scheduling problem directly because of its update
formulas. Meanwhile, hybrid algorithms evolved and use the genetic operators to
re-define the update strategy of PSO. Thus, hybrid algorithm combine the advantages
for example of PSO and GA, where differences between both are well documented by
Eberhart and Shi [7], to solve the integrated process planning and scheduling (IPPS)
problem [28]. A detailed survey of PSO and its variants is given by Gad [9] for the years
2017 to 2022 and mentioned approaches such as Clonal Selection Approach used for
surrogate modelling by Bernardino et al [2].

The particle position and velocity of the ith particle at iteration t are represented by D
dimensional vectors. The particle position is represented by

xi = (xi1, xi2, ..., xiD). (3.1)

The velocity of each particle is randomized at the initial iteration and is represented by
pbest and gbest by:

vi = (vi1, vi2, ..., viD). (3.2)

The best local and global positions are represented by pbest and gbest, respectively. At
each iteration, the particles are updated for their positions by pbest and gbest, formulated
as:

v
(t+1)
i = w × vti + ccr1 × (pbestti − xti) + csr2 × (gbestti − xti), (3.3)

x
(t+1)
i = xti + v

(t+1)
i . (3.4)

where w represents the inertia weight (between 0.8 and 1.2), which is the impact of the
previous velocity on the current velocity. When w is set to a medium value, that is in
between [0.8, 1.2], PSO has the best chance to find the global optimum but also takes a
moderate number of iterations [8]. Next, cc, cs represent cognitive and social parameters,
which are acceleration coefficients, in a range of [0, 2], and for all simulations were taken
from the paper [8] (cc = cs = 0.1). (These hyper-parameter values w, cc, and cs need to be
chosen carefully, see [8]) The values of r1, r2 are uniformly distributed random numbers
in the range of [0, 1]. The original PSO procedure from Kennedy and Eberhart [20] is
shown in algorithm 2.
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Algorithm 2 Pseudo Code of PSO

1: Set PSO initial parameter value population size P , inertia weight w, and acceleration
constants cc, cs

2: Set t = 0
3: for i = 1 to P do
4: Generate initial xti, vti ∈ [L,U ] randomly
5: Evaluate fitness function f(x0i )
6: end for
7: Set pbestti, gbestti
8: repeat
9: vt+1

i = w × vti + ccr1 × (pbesttix
t
i) + csr2 × (gbestti − xti) ▷ Calculate new velocity

10: x
(t+1)
i = xti + v

(t+1)
i ▷ Update positions of particles

11: Evaluate the fitness function f(x(t+1)
i ) of all particles in P t

12: if f(x(t+1)
i ) ≥ f(pbestti) then

13: pbest
(t+1)
i = x

(t+1)
i

14: else
15: pbest

(t+1)
i = pbestti

16: end if
17: if f(x(t+1)

i ) ≥ f(gbestti) then
18: gbest

(t+1)
i = x

(t+1)
i

19: else
20: gbest

(t+1)
i = gbestti

21: end if
22: t← (t+ 1) ▷ (Increase iteration counter)
23: until termination criterion is met
24: Get the best solution gbestt

An application example is shown to visualise the solution strategy, that is intermediate
steps are shown how the algorithm behaves. In the following, the algorithm is applied
to the Himmelblau’s function eq. (3.5), which has four minima at zero and one local
maxima occurs, table 3.2, in the chosen parameter range for x and y between -8 and 8.

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2, −8 ≤ x, y ≤ 8 (3.5)

Table 3.2: Minima and Maxima of Himmelblau’s
function.

Global minima
f(3, 2) = 0,

f(−2.805, 3.131) = 0,
f(−3.779,−3.283) = 0,
f(3.584,−1.848) = 0,

Local maxima
f(−0.271,−0.923) = 181.617

Table 3.3 lists the settings to launch the PSO. Firstly, the population of one hundred is
randomly seeded in the parameter space ±8 for the coordinates x and y. Subsequently,
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the initialisation of the particles, their best position, velocity and fitness value is per-
formed. In addition, the best global position is calculated based on the initial position of
the particles. Then it loops from one generation to another. The algorithm should stop
when it reaches the max number of generations, set here to 400, or a success (fitness)
criterion (1× 10−4). In this case, it is when the average fitness value surpasses a specific
value.

Table 3.3: Parameter and solution details for the PSO to
perform the simulation for Himmelblau’s function.

Parameter
Dimension - 2D (x,y) (±8/± 8))
Population 100
Generation (Iterations) 400
Fitness criterion (abort) 1× 10−4

Inertia weight w 0.5
Constant acceleration values cc, cs 0.1

Solution
Global best solution (−3.779, −3.283)
Best fitness value 2.28× 10−7

Average particle best fitness value 0.000 99
Number of generations 60

(a) Step 1 (b) Step 10 (c) Step 20

(d) Step 30 (e) Step 40 (f) Step 51

Figure 3.2: PSO simulation for Himmelblau’s function for the first, various intermediate
and final step.

Figure 3.2 shows the initial, intermediate, and final steps of the PSO simulation for the
Himmelblau function. The initial step in fig. 3.2(a) points out the randomly seeded
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population in the two-dimensional parameter space. The first steps are very large and
already after ten steps, fig. 3.2(b), the population has gathered in the middle of the
parameter range. After another ten steps, fig. 3.2(c), the decision is made for approaching
an optimum. The last thirty steps in figs. 3.2(d) to 3.2(f) reveal a rather long buzzing
around the optimum until the abort criterion takes effect, since all members of the
population need to meet the abort criterion. However, an important aspect of using a
PSO is that each simulation can find one of the four optima. It is not possible to find all
four optima simultaneously with this implementation of the PSO.

3.1.3 Glowworm Swarm Optimisation (GSO)

Glowworm Swarm Optimisation (GSO) is a nature-inspired optimisation algorithm that
simulates the behaviour of lighting worms. The GSO is a swarm intelligence algorithm
for optimization developed by Krishnanand and Ghose which imitate the flashing
behaviour of glowworms [25, 26]. Each glowworm carries a luminescence amount
called luciferin3, which is decided by the function value of glowworm’s current location.
All through the course of movement, glowworm identifies its neighbours based on
local-decision area and selects a neighbour which has a luciferin value higher than its
own using a probabilistic mechanism and moves towards it [26, 40, 41]. GSO algorithm
is suitable for a concurrent search of several solutions and dissimilar or equal objective
function values.

The basic principle of GSO is developed on the behaviour of glowworms by which they
can change the intensity of bio-luminescence and appear to glow at different intensities.
The quantity of luciferin encodes the fitness of its location in the search space. This
makes the agent glowworms glow at an intensity approximately proportional to the
function value being optimised. It is assumed that agents glowing brighter attract
those that glow with lower intensity. In the algorithm, each glowworm selects, using a
probabilistic mechanism, a neighbour that has a luciferin value higher than its own and
moves towards it.

A critical aspect of the GSO algorithm is that it incorporates an adaptive neighbourhood
range by which the effect of distant glowworms is discarded when a glowworm has
a sufficient number of neighbours with brighter glow or when the range to a neigh-
bouring agent goes beyond the maximum range of perception. These movements,
based only on local information and selective neighbour interaction, enable the swarm
of glowworms to split into disjoint subgroups that converge to high function value
points. It is this property of the algorithm that allows it to be used to identify multiple
optima of a multi-modal function. It has been shown that GSO can tackle the following
class of multi-modal functions: unequal peaks, equal peaks, peaks of concentric circles,
peaks surrounded by regions with step-discontinuities (non-differentiable objective
function), peaks comprising plateaus of equal heights, peaks located at irregular inter-
vals, change in landscape features with change in scale, and non-separability involving
interdependence of objective function variables.

GSO initially distributes a swarm of agents randomly in the search space. The algorithm
encapsulates the interplay between the following three mechanisms:

3Luciferin is a generic term for the light-emitting compound found in organisms that generate bio-
luminescence. Luciferins typically undergo an enzyme-catalysed reaction with molecular oxygen. The
resulting transformation, which usually involves splitting off a molecular fragment, produces an excited
state intermediate that emits light upon decaying to its ground state.
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1. Fitness broadcast
Glowworms carry a luminescent pigment called luciferin, whose quantity encodes
the fitness of their locations in the objectice space. This allows them to glow at an
intensity that is proportional to the function value being optimised. It is assumed
that the luciferin level of the glowworm as sensed by its neighbour does not reduce
due to distance.

2. Positive taxis
Each glowworm is attracted by, and moves toward, a single neighbour whose
glow is brighter than that of itself; when surrounded by multiple such neighbours,
it uses a probabilistic mechanism to select one of them.

3. Adaptive neighbourhood
Each glowworm uses an adaptive neighbourhood to identify neighbours; it is
defined by a local decision domain that has a variable range rd,i bounded by a hard-
limited sensor range (0 < rd,i < rs). A glowworm i considers other glowworm j
as its neighbour if j is within the neighbourhood range of i and the luciferin level
of j is higher than that of i.

Algorithm 3 outlines a high-level description of the GSO. An application example
is shown to visualise the solution strategy, that is intermediate steps are shown how
the algorithm behaves. In the following, the algorithm is applied to Matlab’s peak
function eq. (3.6), which is a function of two variables, obtained by translating and
scaling Gaussian distributions. The peak function has in total six local optima, table 3.4,
in the chosen parameter range for x and y between -3 and 3.

f(x, y) = 3(1− x)2 e(−(x2)−(y+1)2)

− 10(
x

5
− x3 − y5) e(−x2−y2)

− 1

3
e
(
−(x+ 1)2 − y2

)
(3.6)

Table 3.4: Local optima of Matlab’s peak function.

Local maxima
f(−0.0093, 1.5814) = 8.1062,

f(−0.4600,−0.6292) = 3.7766,
f(1.2857,−0.0048) = 3.5925,

Local minima
f(0.2312,−1.6246) = −6.5510,
f(−1.3483, 0.2072) = −3.0498,
f(0.2973, 0.3213) = −0.0649,

Figure 3.3 visualises the fitness function (Matlab’s peak function) with its six local
optima (table 3.4). In both figs. 3.3(a) to 3.3(b) local maxima are marked with blue dots,
and local minima are marked as orange dots.

Table 3.5 lists the settings to launch the GSO. A population of sixty is randomly seeded
in the parameter space ±3 for the coordinates x and y. The abort criterion is set to one
hundred fifty iterations, since a useful bets fitness value does not apply for the GSO.
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Algorithm 3 Pseudo Code of GSO

1: Set number of dimensions n
2: Set number of glowworms m
3: Set step size s ▷ Distance moved by a glowworm at each step
4: Set luciferin decay constant ρ ▷ 0 < ρ < 1
5: Set maximum iteration number = maxIterations
6: Set decision range gain β ▷ β = 0.08
7: Set desired number of neighbours nt ▷ Mostly nt = 5
8: for i = 1 to n do
9: xi ← deploy_glowworm_randomly()

10: li ← l0 ▷ Initial luciferin
11: rd,i ← r0 ▷ Adaptive neighbourhood sensor range - Local decision range
12: end for
13: Set t = 1
14: while (t ≤ maxIterations) do
15: for i = 1 to n do ▷ Luciferin update phase
16: l

(t)
i = (1− ρ)l(t−1)

i + γJ(x
(t)
i ) ▷ γ: Luciferin enhancemnet constant

17: end for
18: for i = 1 to n do ▷ Movement phase
19: N

(t)
i = {j : d(t)i,j < r

(t)
d,i; l

(t)
i < l

(t)
j }

20: for j ∈ N (t)
i do

21: p
(t)
ij =

l
(t)
j − l

(t)
i∑

k∈N(t)
i
(l

(t)
k − l

(t)
i )

22: end for
23: j ← select_glowworm(p⃗)

24: x
(t+1)
i ← x

(t)
i + s

(
x
(t)
j − x

(t)
i

∥x(t)j − x
(t)
i ∥

)
▷ Glowworm movement

25: r
(t+1)
d,i ← min{rs,max{0, r(t)d,i + β(nt − |N (t)

i |)}} ▷ Neighbourhood range
update phase

26: end for
27: end while
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(a) 2D (b) 3D

Figure 3.3: Matlab’s Peak function with local optima, blue dots are local maxima, and
orange dots are local minima. (a) is the projected view from above, and (b) is the
three-dimensional view with the z-axis showing the fitness function.

Table 3.5: Parameter and solution details for the GSO
to perform the simulation for Matlabs Peak function.

Parameter
Dimension - 2D (x,y) (±3/± 3)
Population 60
Number of iterations 150
Luciferin decay constant, ρ 0.4
Luciferin enhancement factor, γ 0.6
Neighbourhood enhancement factor, β 0.08
Sensor range, radius rd 1.8, 2.0, 3.0
Desired number of neighbours, nt 5
6 Step size, s 0.05

Solution - rd = 3
Local maximum (−0.0093, 1.5814) 8.1062

Solution - rd = 2
Local maximum (−0.0093, 1.5814) 8.1062
Local maximum (−0.4600, −0.6292) 3.7766

Solution - rd = 1.8
Local maximum (−0.0093, 1.5814) 8.1062
Local maximum (−0.4600, −0.6292) 3.7766
Local maximum (−1.2857, −0.0048) 3.5925

Hyper-parameters for the GSO such as ρ, γ, β, nt, and the step size s are kept constant
for each simulations. Only the sensor range rd was reduced from 3, to 2, and finally 1.8.
From the solutions of the simulations it can be seen that as the sensor is reduced, more
local maxima are continuously detected. This parameter is one of the most important
for successfully finding optima. A prerequisite for the successful application of this
algorithm is therefore a good knowledge of the problem. With these techniques in
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particular, the setting of the hyper-parameters allows a great amount of freedom, but
this also often means that the algorithm sometimes behaves contrary to the expected
behaviour.

(a) Step 1 (b) Step 30 (c) Step 60

(d) Step 90 (e) Step 120 (f) Step 150

Figure 3.4: GSO simulation for Matlab’s Peak function with the sensor range set to 1.8 in
a two-dimensional view for the first, various intermediate and final step from (a) to (f).

Figure 3.4 shows intermediate steps of the GSO simulation for Matlabs Peak function for
a sensor range of 1.8 in a two-dimensional view. Its corresponding three-dimensional
view can be seen in the same order in fig. 3.5. The initial step in fig. 3.4(a) points out the
randomly seeded population in the two-dimensional parameter space. The first steps
are very large and already after thirty steps, fig. 3.4(b), the population has identified
three local maxima and tend to move toward these maxima. Only thirty steps further,
fig. 3.4(c), each local population has gathered around the three local maxima. Similar
to the PSO, the last sixty to seventy steps, figs. 3.4(d) to 3.4(f), reveal a rather long
buzzing around the three optima until the abort criterion takes effect, which is in this
case reaching the maximum iteration count of 150. Amazingly, a single particle remains
motionless, which is not captured by any local population at around (x/y = -2/1.5).
There are several reasons for this: the number of particles per local population is limited
to the specified input parameter termed number of members. Once this number is
reached, no new particles are captured. Furthermore, it is possible, and especially due
to the specification of the sensor range, that a particle is first attracted by one population
and then by another in the progress of tracking, but due to the different speeds of
movement, the attraction is not sufficient and it falls out of the sensor range. And so it
remains motionless in space.

Finally, it should be noted that the algorithm has a weak point in the current implemen-
tation, namely the termination criterion. Several authors have taken on this problem,
but have never been able to solve it satisfactorily. The reason is the treatment of several
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(a) Step 1 (b) Step 30 (c) Step 60

(d) Step 90 (e) Step 120 (f) Step 150

Figure 3.5: GSO simulation for Matlab’s Peak function with the sensor range set to 1.8 in
a three-dimensional view for the first, various intermediate and final step from (a) to (f).

local optima at once. To the author’s knowledge, a solution for an efficient termination
criterion is still being worked on.

3.1.4 Advances for Aerodynamic Applications

Since the birth of what is now known as swarm intelligence, bio-inspired solution meth-
ods have evolved into algorithms with a higher degree of sophistication that involve
mimicking other processes and behaviours observed in nature. Bio-inspired computa-
tions are based on the emergence of collective intelligence from large populations of
agents with simple behavioural patterns for communication and interaction. A myriad
of bio-inspired SI methods have been proposed and the current list is huge and grow-
ing almost daily. Almost each SI algorithm usually works well for a specific problem
only. Many of the recent developments have set themselves the goal of combining the
advantages and disadvantages of individual SI methods as well as non-SI approaches,
which are referred to as hybridisation approaches in the literature. Hybridisation can
be used to extend the range of applications or the methodology of SI algorithms. An
example of this is the development by Ceollo and Lechuga [4] for the extension of PSO
for multi-objective optimisation. Their approach uses the concept of Pareto dominance
to determine the flight direction of a particle and it maintains previously found nondom-
inated vectors in a global repository that is later used by other particles to guide their
own flight. Efficiency measurements indicate that their approach is highly competitive
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with current evolutionary multi-objective optimisation techniques. Another valuable
approach was proposed by Han and Liu [12] for the hybridisation of SI algorithms.
Proposed is a diversity-driven hybrid PSO based on gradient search to improve the
search ability, since it is easy for the PSO to cause the swarm to lose its diversity and
lead to premature convergence. The adaptive PSO is first used to search the solution
till the swarm loses its diversity. Then, the search process turns to a new PSO, and the
particles update their velocities with their gradient directions as well as repel each other
to improve the swarm diversity. Depending on the diversity value of the swarm, the
proposed hybrid method switches alternately between two PSOs. The hybrid algorithm
adaptively searches local minima with random search realized by adaptive PSO and
performs global search with semi-deterministic search realized applying the second
PSO, which then improves the search ability. Results show that the proposed hybrid al-
gorithm has better convergence performance with better diversity compared to classical
PSOs.

From an application perspective, bio-inspired inspired computation is popular in com-
puter graphics, robotics and collaborative cluster control scenarios such as path planning
and task assignment. For example, Gálvez and Iglesias [10] investigate the use of PSO
to recover the shape of a surface from clouds of (either organized or scattered) noisy
3D data points, a challenging and well known problem in computer graphics that
appears recurrently in a wide range of applications such as CAD design, data visualiza-
tion, virtual reality, medical imaging and motion picture industry. SI algorithms have
also found their way into the field of aerodynamic activities, even if the applications
are still limited. A series of developments and improvements for airfoil optimisation
were conducted by Khurana and colleagues [23, 22, 21]. In this context, an adaptive
mutation-particle swarm optimisation method has been developed as this method tends
to converge to a sub-optimal solution for complex aerospace design problems. Khurani
has thus found out that for his applications and formulation of the optimisation problem
a local optimum is found instead of a global optimum. The reasons for this may be
manifold. Thus, a Gaussian-based operator is implemented to optimise the diversity of
the particle search by mutation with a given probability. The amount of mutation during
the optimisation phase is determined by the collective search patterns of the swarm.
The proposed algorithm prevents convergence towards a sub-optimal design and at the
same time limits the computing resources required during the optimisation cycle. The
aerodynamic optimisation of high-speed trains has also been successfully examined. He
and Liu [13] proposed also hybridisations of the particle swarm optimization algorithm
for improving the aerodynamic optimization efficiency of a high-speed train head shape.
At first, a hybrid particle swarm optimization algorithm, which employs the basic PSO
and a backward learning strategy in particle swarm optimization, is introduced for
constructing an optimal least squares support vector regression model. The second
approach is an elite-evolved multi-objective particle swarm optimiser, which employs a
grouping-based stochastic elite competition mechanism and elite gathering behaviour
to further improve the efficiency of multi-objective optimisation. In addition, various
surrogate models were evaluated to increase the prediction accuracy of the total drag
coefficient. The results show that the regression model achieves the lowest prediction
errors in comparison to their standard PSO approach. In a concluding remark, it can be
stated that due to the large number of hybridisations, the core of the basic SI algorithm
fades into the background, or the original algorithm is modified to such an extent that it
is difficult to understand whether the application of an SI algorithm still makes sense.

A more promising approach has been undertaken for the simulation of dynamic, un-
certain environments and the complex tasks that arise in this context to ensure that
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the unmanned aerial system (UAV) will evolve towards clustering, autonomy and
intelligence. Zhou, Rao and Wang [45] provide an elaborate survey for the problems
arising for hierarchical control frameworks. Their view to investigate the research
work by classifying UAV swarm intelligence research was split into five layers, namely,
decision-making layer, path planning layer, control layer, communication layer, and
application layer. The relationship between each level is explicitly illustrated, and the
research trends of UAV swarm intelligent technology for each layer are given. Finally,
limitations and possible technology trends of UAV swarm intelligence are also covered
to enable further research interests.

In recent years, the research community has witnessed an explosion of literature dealing
with the mimicking of behavioural patterns and social phenomena observed in nature
towards efficiently solving complex computational tasks. This trend has been especially
dramatic in what relates to optimization problems, mainly due to the unprecedented
complexity of problem instances, arising from a diverse spectrum of domains such as
transportation, logistics, energy, climate, social networks, health and industry, among
many others. Numerous papers outline the state of the art and identify open challenges
concerning the most relevant areas within bio-inspired optimisation. It remains to be
seen whether SI algorithms will gain a foothold in aerodynamics, as a single optimum
is usually sought rather than multiple optima, highlighting the need to reach consensus
and join forces to gain valuable insights into understanding this family of optimisation
techniques.

3.2 Geometrically Exact Beam (GEB)

The following introduction to the geometrically exact beam theory was taken from
papers of Charlotte Rodriguez [36, 35, 27] and her dissertation manuscript [34].

Beam models, which describe the three-dimensional motion of thin elastic bodies that
are subject to large deflections and rotations, have found many applications in civil
engineering, mechanical engineering and aerospace engineering. Depending on the
assumptions made for the beam (material law, motion magnitude, shearing), there
are various Partial Differential Equation (PDE) models for flexible beams, e.g. the
Euler-Bernoulli, Rayleigh and Timoshenko beam equations, which apply to small dis-
placements and strains. However, if the deflections and rotations are not small compared
to the overall dimensions of the body, which is the case with modern highly flexible
lightweight structures, a geometrically non-linear model is required. Examples include
robotic arms [11] as well as flexible aircraft wings [30] or wind turbine blades [42] de-
signed to be lighter and slender to improve aerodynamic efficiency. The Geometrically
Exact Beam (GEB) model and the Intrinsic Geometrically Exact Beam (IGEB) model
discussed herein are such geometrically non-linear models describing the motion of a
three-dimensional beam. They take account of shearing without warping: the cross-
sections remain plane, i.e. do not change shape, but can rotate independently of the
motion of the centre line. The beam can experience large displacements of its centre line
and large rotations of its cross-sections. Both systems are one-dimensional. A frequently
used categorisation for the definition of a GEB is as follows

• Beams are structures with one dimension that is much larger than the other two.

• The term "geometrically accurate" refers to the fact that there are no approxima-
tions in the geometry of the reference line or the reference cross-section.
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• The geometrically exact equations of motion in their most fundamental form are
first-order PDEs, which may be written with or without displacement or rotational
variables.

One important reason why both systems are described is that the solution of the equa-
tions is done with the IGEB model and with a non-linear transformation the GEB model
can be restored and the deformation of the beam can be calculated.

Chapter 1.

Introduction

1.1. Motivation

Beam models describing the three-dimensional motions of thin elastic bodies (much bigger in one
dimension than the other two) have found many applications in civil, mechanical and aerospace
engineering. This is also true for multi-link flexible structures such as large spacecraft structures,
trusses, robot arms, solar panels, antennae [12, 43, 84], generally modeled by networks of inter-
connected beams. Depending on the assumptions made on the beam, there are various partial
di↵erential equation (PDE) models for flexible beams, such as the well-known Euler-Bernoulli and
Timoshenko models where for the former the cross sections remain perpendicular to the reference
line (or centerline), while they may also rotate for the latter – one then speaks of shearing.

However, nowadays there is a growing interest in modern highly flexible light-weight structures – for
instance robotic arms [22], flexible aircraft wings [67] or wind turbine blades [62, 88] – which exhibit
motions of large magnitude, not negligible in comparison to the overall dimensions of the object. To
capture such a behavior, one needs a beam model which is geometrically exact (sometimes also called
geometrically nonlinear), in the sense that the governing system presents nonlinearities in order to
also represent large motions – i.e., large displacements of the centerline and large rotations of the
cross sections.

xe10 `e1
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e3

b1(x)
b3(x)

b2(x)

b3(x, t)

b1(x, t)b2(x, t)
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Figure 1.1.: The straight reference beam (bottom), the beam before deformation characterized by
the curvature ⌥c = vec(R| d

dxR) where R =
⇥
b1 b2 b3

⇤
(upper left), and the beam at

time t described by the state variables p and R =
⇥
b1 b2 b3

⇤
(upper right).

This beam model, similarly to the Euler-Bernoulli and Timoshenko systems, is one-dimensional
with respect to the spatial variable x and accounts for linear-elastic material laws, meaning that the
strains (which are the local changes in the shape of the material) are assumed to be small. As for the
Timoshenko system, models for geometrically exact beams account for shear deformation as well.
Moreover, the geometrical and material properties of the beam may vary along the beam (indeed,
we will see that the coe�cients of the system depend on x) and the material may be anisotropic. As

2

Figure 3.6: The straight reference beam (bottom), the beam before deformation character-
ized by the curvature change Υc = vec(RT d/dxR) where R(x) = [b1 b2 b3] (upper left),
and the beam at time t described by the state variables p(x, t) and R(x, t) = [b1 b2 b3]
(upper right), Rodriguez [34].

Figure 3.6 explains the three stages of the beam. The beam is idealised as a reference
line (bottom), also termed the centre line, and a family of cross-sections with a fixed
coordinate system {ej}3j=1. Before freely vibrating and upon the initial boundary con-
dition (upper left), that is at rest with an initial centre line curvature change defined
as Υc with R(x) = [b1b2b3], both the position of the centre line p(x) ∈ [0, l] as well as the
orientation of the cross-sections are known. The cross-sections are given by the columns
of the rotation matrix R(x) ∈ [0, l]. At any time t ∈ [0, T ] (upper right), both the position
p(x, t) ∈ [0, l] × [0, T ] of the centre line as well as the orientation of the cross sections,
which is given by the columns of a rotation matrix R(x, t) ∈ [0, l]× [0, T ], are unknown.
Since shear deformation is permissible, the cross-sections do not necessarily have to be
perpendicular to the centre line. Note that for the following notations of cross-products,
for example between vectors p, q ∈ R3, these can also be written as a matrix-vector
multiplication p̂q, where p̂ ∈ R3x3 is the skew-symmetric matrix

p̂ =




0 −p3 p2
p3 0 −p1
−p2 p1 0


 , (3.7)

and hence for any skew-symmetric p ∈ R3×3, the vector vec(p) ∈ R3 can be applied as
p = vec(p̂). In other words, these matrix-like cross-products become very useful for
further programming, evaluating the inverse, and for the quaternion treatment. The
standard basis of R3 is denoted by {ej}3j=1 = {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T}
The mathematical model for geometrically exact beams may be written in terms of the
position of the centre line of the beam and the orientation of its cross sections, with
respect to a fixed coordinate system {ej}3j=1 (the standard basis of R3 here). This is the
commonly known Geometrically Exact Beam model, or GEB, which originates from
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the work of Reissner [33] and Simo [39]. The governing system for the GEB model
is quasilinear, consisting of six equations and of second order both in space and time.
The state is then (p,R), expressed in {ej}3j=1 and composed of the centre line position
p(x, t) ∈ R3 and cross section orientation. For a freely vibrating beam of length l, that is
if the external forces and moments, which can represent gravity or aerodynamic forces,
for example, are set to zero, the governing equations of the GEB model is given by

[
∂t 0

(∂tp̂) ∂t

] [[
R 0
0 R

]
Mv

]
=

[
∂x 0

(∂xp̂) ∂x

] [[
R 0
0 R

]
z

]
, (3.8)

v =

[
V
W

]
, z =

[
Φ
Ψ

]
, or

[
R 0
0 R

]
z =

[
ϕ
ψ

]
(3.9)

where the unknown states, for x ∈ [0, l] and t ≥ 0, are the position p(x, t) ∈ R3 of
the beam’s centre line and a rotation matrix R(x, t) giving the orientation of the cross
sections of the beam, both expressed in the body-fixed coordinate system. Rotation
matrices are a set of unitary real matrices (R−1R = I3) of size 3 and with a determinant
equal to 1. Note that for any p ∈ R3, p̂ denotes the skew-symmetric matrix equivalent
to the vector cross multiplication by p, that arises when treating the cross product as
a linear map in the second argument, while vec(·) permits to recover p = vec(p̂). The
mass matrix M(x) ∈ R6x6 is a positive definite symmetric matrix and is set to

M = ρ diag (aI3, J), J = diag (I2 + I3k1, I2, I3), k1 > 0. (3.10)

The cross-section area is denoted by a, I3 ∈ R3×3 is a diagonal unitary matrix, ρ is
the density, and J is the inertia tensor. The polar moment of area is corrected by the
factor k1. V (x, t),W (x, t),Φ(x, t),Ψ(x, t) ∈ R3 denote the linear velocity, angular velocity,
internal forces and internal moments of the beam respectively, all expressed in a moving
coordinate system attached to the centre line of the beam, body-fixed axis, and are
defined by

v := v(x, t) =

[
V
W

]
=

[
RT∂tp

vec(RT∂tR)

]
, (3.11)

z := z(x, t) =

[
Φ
Ψ

]
= C−1

[
RT∂xp− e1

vec(RT∂xR−Υc)

]
, Υc = RT d

dx
R (3.12)

where e1 = [1, 0, 0]T , and R(x) depends on the initial form of the beam, as it may be
pre-curved and twisted before deformation. The flexibility (or compliance) matrix
C(x) ∈ R6x6 is a positive definite symmetric matrix and is defined as

C = diag (S1, S2)
−1,

{
S1 = a diag (E, k2G, k3G)

S2 = J diag (G,E,E)
. (3.13)

G is the shear modulus, E is the Young modulus, and k2, k3 are shear correction factors.
The curvature before deformation, when at rest, is written as Υc ∈ R3.

The mathematical model can also be written in terms of so-called intrinsic variables –
namely, velocities V,W and internal forces/moments Φ,Ψ, or equivalently velocities and
strains – expressed in a moving coordinate system attached to the beam (the body-fixed
moving basis). The unknown state is

y =




V
W
Φ
Ψ


 . (3.14)
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The unknown state y(x, t) ∈ R12 (eq. (3.14)) whose dynamics are then given by a system
of the form

∂ty + A(x)∂xy + B̄(x)y = ḡ(x, y), (3.15)

where the coefficient matrices A,B and the source g depend on M,C and R. The matrix
A := A(x) is defined as

A =

[
06 M−1

C−1 06

]
. (3.16)

It is worth mentioning that the matrix B̄(x) is indefinite and cannot be assumed to be
arbitrarily small. In particular cases, the norm of this matrix can be calculated explicitly
and it turns out that it is different from zero for realistic beam parameters. The matrix
B̄ := B̄(x) is defined as

B̄ =

[
06 −M−1E

C−1ET 06

]
, with E =

[
Υ̂c 03

ê1 Υ̂c

]
, Υc = RT d

dx
R (3.17)

The function ḡ : [0, l] × R12 is defined for all x ∈ [0, l] and u = [uT1 , u
T
2 , u

T
3 , u

T
4 ]

T ∈ R12

with each uj ∈ R3, where the map G is defined as

G(u) = −
[
M−1 06

06 C−1

]



û2 03 03 û3
û1 û2 û3 û4
03 03 û2 û1
03 03 03 û2



[
M 06

06 C

]
(3.18)

Furthermore, the function ḡ is non-linear – quadratic – with respect to the unknown.
Equation (3.15) is the IGEB, which originates from the work of Hodges [15, 16]. It is
of its own interest in aeroelastic modelling and engineering, see [30] and references
therein. Considering the IGEB model raises the number of governing equations from
six to twelve, but with the advantage of dealing with a first-order hyperbolic system (as
A(x) is a hyperbolic matrix thus all eigenvalues of A(x) are real and one may find 12
associated independent eigenvectors) which is only semi-linear; and a large literature,
beyond the context of beam models exists on such models.

Both approaches, that is the GEB versus the IGEB, are related to each other by a non-
linear transformation. The transformation reads

τ : (p,R) 7→
[
I6 06

06 C−1

]



RT∂tp
vec(RT∂tR)
RT∂xp− e1

vec(RT∂xR)−Υc


 = y . (3.19)

The full set of equations and boundary conditions for the GEB, for instance, for the
freely vibrating beam clamped at x = 0 and free at the other end is defined as





[
∂t 0

(∂tp̂) ∂t

][[
R 0

0 R

]
M

[
V

W

]]
=

[
∂x 0

(∂xp̂) ∂x

][
ϕ

ψ

]
∈ [0, l]× [0, T ],

(p,R)(0, t) = (fp, fR) t ∈ [0, T ],[
ϕ

ψ

]
(l, t) = −

[
R(l, t) 0

0 R(l, t)

]
Kv(l, t) t ∈ [0, T ]

(p,R, ∂tp̂,RW )(x, 0) = (p0,R0,p1, w0)(x) x ∈ [0, l],

(3.20)

and in this case the boundary data is written with the feedback control for the internal
forces and moments which is denoted by K ∈ R6×6. That matrix K [34] is based on a
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Lyapunov stabilisation and was taken as it is. A simple switch in the code then enables
K ̸= 0 or K = 0, which means that [ϕ, ψ]T = 0 can be set. For the IGEB the set of
equations is 




∂ty + A(x)∂xy + B̄(x)y = ḡ(x, y), ∈ [0, l]× [0, T ],

v(0, t) = 0 t ∈ [0, T ],

z(l, t) = −Kv(l, t) t ∈ [0, T ],

y(x, 0) = y0(x) x ∈ [0, l]

(3.21)

where for eq. (3.20) (p0,R0,p1, w0) as well as in eq. (3.21) y0(x) are the initial conditions
on the beam over the length l for the set of equations. All others are boundary data
which are applied for the whole simulations over time.

The following simulations are based on the description of Hesse and Palacios [14] for
which the mass and flexibility matrix are set to

M = diag (1, 1, 1, 20, 10, 10), C = diag (104, 104, 104, 500, 500, 500)−1 (3.22)

A single beam is considered, clamped at x = 0 and controlled at x = l which is described
by the system in eq. (3.20) or its intrinsic counterpart in eq. (3.21). An initial datum
without shear, that is the cross-sections remain perpendicular to the centre line, was
chosen. The initial position of the centre line p0 and the cross-section with R0 are given
by

p0(x) :=
1√
2




x
1− cos(x)
sin(x)


 , R0(x) :=

1√
2




1 0 −1
sin(x)

√
2 cos(x) sin(x)

cos(x) −
√
2 sin(x) cos(x)


 . (3.23)

Initial internal forces and moments take the form

z0 =

[
z01
z02

]
, z01 = 03, z02 =

1√
2



−1
0
1


−Υc, (3.24)

and for certain cases Υc := 0 meaning that at rest the beam is not curved. In other
words and to sum that up, the initial angular velocities are set to W := [W1 ̸= 0,W2 =
0,W3 ̸= 0]T over the beams length [0, l] and the initial internal moments are set to
ψ := [ψ1 ̸= 0, ψ2 = 0, ψ3 ̸= 0]T .

It should be noted with regard to the test cases that this is only a small selection and also
an incomplete selection from the numerical simulations performed. Two benchmark
test cases from Hesse and Palacios [14] were selected. Unfortunately, there was not
enough time to complete the analyses and comparisons with both test cases. Therefore,
only the intermediate steps from the first numerical simulations are shown.

Figure 3.7 shows the simulation of the rotating arm (beam) by applying initial angular
velocities and internal moments without initial curvature of the beam in fig. 3.7(a) and
with initial curvature in fig. 3.7(b). Intermediate time steps of the beams deformation
while freely vibrating are indicated with black solid lines. For this simulations, the total
time shown is for fig. 3.7(a) at T = 5 s, and for fig. 3.7(b) it is T = 9 s. Both final beam
settings are marked with a solid red line. The red dashed line in both fig. 3.7 should be
compared with the data from [14] but is missing because there was not enough time to
complete this endeavour. It is important to note that the red dashed line is not purely
circular, as the beam is subject to deformation. Proof of the correctness of the simulation
also includes determining the position when the beam is completely stretched, i.e. has
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Figure 3.7: (a) Rotating arm clamped at x = 0 and free at x = l by setting initial angular
velocities and internal moments across the beams length with an initial curvature set
to Υc = 0, and (b) with an initial curvature Υc ̸= 0. In both figures, the initial position
of the beam (t = 0) is shown with a green solid line, black solid lines are intermediate
positions at time t, and the red solid line shows the final position of the beam at time T .
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Figure 3.8: Flying spaghetti problem.

no deformation, and determining when the exact circle (midpoint at x = 0 with radius
l) is touched from the beam at x = l.

The second benchmark test case was termed the flying spaghetti, fig. 3.8. Both ends of
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the beam are free and again an initial angular velocity and internal moment was applied.
No initial curvature is introduced. The green solid line shows the initial position (t = 0)
of the beam, while the black solid lines indicate intermediate deformation states of the
beam at time t, and finally the red solid line is the final position (T = 15 s) of the beam
for that numerical simulation. The representation looks unusual because the beam
moves in the x-direction, however makes it more convenient to compare the results
with the data in [14]. Proof of correctness of the simulation is by comparing the red
dashed line for the beams position at x = l as well as for the blue dashed line for the
beams position at x = 0. An important aspect of this simulation is that the external
forces are zero, i.e. there is no gravity and no aerodynamic forces acting on the beam.
This means that the y-position always remains the same. In contrast, the frequency of
the oscillation decreases because of internal shear stresses (friction) of the beam, and
after a certain time, returns to its resting state. Also for this experiment and for these
assumed conditions, the beam is deformation-free at a certain time, and the end point of
the beam at x = l touches the exact circle with centre at (x/y = 5/1) and a radius of l4/5.

Sadly, this remains an incomplete work, but the implementation has shown the most
important steps to obtain the uniqueness of the solution of this differential equation, in
this case inverting the non-linear operator from IGEB to GEB in eq. (3.19) to obtain the
deformation of the beam.
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4 Conclusion

This report summarises the main activities as well as additional research activities
during the secondment to the USAFA from end of October 2022 until end of July 2023.
An important part of the secondment was the joint publication at the AIAA Aviation
Forum 2023 in San Diego. The joint publication not only served as documentation for
the secondment, but was also a common topic that brought the two institutions closer
together. It enriched the understanding of vortex-dominated flows around aircraft,
and also contributed to the application of surrogate modelling and its limitations for
such applications. It further showed development paths that have potential to be
investigated in more detail. A continuation of this collaboration between the USAFA
and the DLR depends on the expectations of both institutions. The topics in the field
of high-speed aircraft most often overlap, in this case the numerical aerodynamic
evaluation of industrial applications, and in addition both institutions are integrated in
the NATO AVT-351 research group.

The second paper mentioned in this report, which was also presented at the AIAA 2023
in San Diego, is dedicated to the work conducted in DLR’s internal oLAF project. It
summarises the developments on the efficient prediction of gust interactions on an
aircraft using a linearised frequency domain solver that incorporates various interpo-
lation techniques. Since the oLAF project will be completed by the end of 2023, the
presentation of the work at AIAA 2023 is also a good opportunity to present the work
and evaluate it in a discussion.

The final presentation at the AIAA 2023 in San Diego was contributed to the Stability
and Control Workshop held by the AIAA. During the first workshop it turned out that
the prediction of the pitching moment coefficient showed a large spread among the
participants. This led to an investigation on a smaller test case that would significantly
improve the prediction of the pitching moment coefficient. The results were presented
at the AIAA conference, however no final conclusion or best practice was established,
for example for improving grid generation for moving control surfaces.

The additional developments apart from the main focus also had a personal and scien-
tifically important component. Swarm Intelligence for optimisation and the treatment
of the geometrically exact beam were tasks to explore their potential as well as to take
a closer look at their theory. Despite the conditions, not all investigations could be
completed and some questions remain unanswered.

From a personal point of view, the stay was very successful. Contacts at the USAFA
were refreshed. It is worth mentioning that the USAFA is a military institution in the
USA. A large part of the activities at USAFA are sensitive and the exchange outside of
the common topic is usually difficult or impossible. It remains to be seen whether a
lively exchange in the form of secondments of individual persons will become active
again on both sides.
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