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Introduction: NASA’s Mars Science Laboratory
(MSL) rover Curiosity is equipped with the ChemCam
instrument suite to analyze chemical composition of
rocks and soils in Gale crater [1, 2]. The instrument
consists of two components: the first planetary science
Laser-Induced Breakdown Spectrometer (LIBS) and a
Remote Micro-Imager (RMI) [3]. The LIBS instrument,
composed of a powerful laser and spectrometers, pro-
vides elemental composition of rocks and soil at the
surface of Mars [4]. The RMI images through the same
telescope as the LIBS providing context to the samples.
The RMI dataset consists of images taken before and af-
ter the LIBS measurements. As small portions of sample
material are ablated with each LIBS measurement, the
post-LIBS images can show small (=500 pm) craters
depending on sample properties, e.g. rock hardness
[3]. The instrument pictured approximately more than
3000 targets and collected LIBS spectra from multiple
points of each target (5-25 points per target). This
study is focused on classifying rock types and soils
based on RMI images, thus on visual characteristics
such as texture, grain sizes etc. In a previous study,
attributes corresponding to rock facies were assigned to
RMI images resulting in 17-digit binary strings for each
target. These were then used to group similar targets
together [5, 6]. In this work, the RMI images are used
directly as input for methods from the field of machine
learning to first explore the unlabeled data and group
similar types of rocks together. In the second step, the
results are used to label data and train a classification
model.

Dataset: The images for this study are retrieved from
PDS Geosciences node [7]. We selected only those im-
ages showing the context of LIBS measurements. For
each LIBS target, there are two RMI images: before and
after the LIBS measurement. Inputting the images with
the LIBS craters would force the model to learn traces
of the LIBS measurements and group them accordingly.
Although the appearance of LIBS craters provides ad-
ditional information about the target, we decided to fo-
cus in this study on the visual characteristics of the sam-
ples. Therefore, only images before the LIBS measure-
ments were picked. We have scrapped a total of 2700
images from sol 1000 to sol 3300. The original image
size is 1200 x 1200 pixels. We have cropped and resized
the images to accelerate the model and ended up with
128 x 128 pixel images. These steps shortlist and pre-
pare data for the further exploration.
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Figure 1: Schematic representation of a transfer learn-
ing model showing the creation of embbedings by freez-
ing the layers in the dashed box.

Methods: In order to get familiarized with the broad
range of unlabeled targets, one of the options is to apply
unsupervised learning. Despite taking a few preprocess-
ing steps in the previous section, there is still a need for
additional data preparation to better expose the underly-
ing patterns to algorithms. As an input feeding raw data
to a model groups the images according to their pixel val-
ues. Although such approach works when the intention
is color segmentation of the image, our prime goal is to
cluster the images according to their texture, grain size,
contours, etc [8]. Therefore, we use Transfer learning to
extract features from the images and cluster them accord-
ingly. Transfer learning, as the name suggests, passes
knowledge of one model to another which will be ex-
plained in the following. Figure 1 illustrates a simple
neural network architecture with inputs of pixel values,
5 outputs, and 2 hidden layers. The layer before the last
one is able to capture all the information from the input
image. These nodes, providing representation of the in-
put, are called embeddings. Embeddings are created by
applying a set of mathematical operations to the input
image. In the case of lacking enough training dataset,
one can repurpose the embedding creation part from a
model that has been trained on a much larger dataset. By
getting rid of the last layer that classifies input data into
specific classes, one can replace it with desired classes.
In this way, a model trained on a large dataset is repur-
posed to classify different data. Here, we have used this
approach to create embeddings as an additional prepro-
cessing step [9]. As a pretrained model, the Inception-v3
is used, which was trained for the ImageNet “Large Vi-
sual Recognition Challenge”. The original data contains
millions of images corresponding to 1000 classes [10].
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Figure 2: RMI images of representative targets for each
of the identified 9 classes.

The wide variety of images provides useful embeddings
for our dataset.

The extracted features are fed to an unsupervised
technique, K-means clustering. On the very first itera-
tion, the algorithm randomly chooses centroids, i.e. rep-
resentative samples, and assigns the closest instances to
them. Iteratively, the centroids and labels are updated un-
til the algorithm converges. In this manner, the method
allows grouping similar instances together into clusters.
The drawback of the algorithm is that it requires setting
the number of clusters beforehand. To find this number,
we use the Silhouette scores which is a measure of clus-
ter quality as it portrays how well the instances reside
within their clusters [8]. The silhouette score plot and vi-
sual inspection of clusters helped us decide to categorize
the dataset into 9 classes.

Data labeling: We initiated the labeling process by an-
alyzing 50 images from the dataset. This subset of im-
ages was chosen using k-means clustering instead of ran-
domly picking the samples. The algorithm grouped all
the images with a total number of 50 clusters. The choice
of the number of clusters was made for labeling pur-
poses. The representative images of the clusters were
picked for review. Such an approach guarantees to have
as diverse images as possible that is beneficial for semi-
supervised learning. Following are the labels: drill, frac-
tured, layered, low nodular, pebbles, smooth, soil, veins,
high nodular. Low and high nodular rocks are different
in size of nodules. Figure 2 illustrates labels and corre-
sponding RMI images.

Classification: As mentioned above, we have catego-
rized the 50 samples into 9 classes. As we are deal-
ing with a small set of samples, 2700 images in total,
training a classification model from scratch would result
in overfitting: As a rule of thumb, at least 1000 sam-
ples are needed per label [9]. Therefore, we again ap-
plied transfer learning by using the 50 labeled images in
semi-supervised learning. Additionally, we manually la-
beled more images according to the 9 classes identified
in the first step. Finally we used 100 images per class
to avoid dealing with an unbalanced set of input data.
Once more we adopted embeddings from the Inception-
v3 pretrained model for the training. Although further
improvements are needed, the preliminary classification
model shows promising results which will be detailed in
a future work.

Challenges: The very first issue, we were facing is the
lack of labeled data. The labeling will be continued and
data augmentation will be employed. The second chal-
lenge is inconsistency in the data that is caused by: image
quality, illumination.

Although we have removed outliers, still there might
be, e.g., out of focus images that contribute to reduced
model accuracy. Moreover, as the images are taken dur-
ing different time periods the illumination changes.

Future plans: Our next step is to augment the exist-
ing data and enhance the current classification method.
The final goal is to fuse LIBS and RMI data to improve
the classification accuracy of rocks based on both visual
characteristics and geochemical composition.
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