Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

CAPTURING UNCERTAINTIES OF HOUSEHOLD DECISION MAKING WITH MACHINE LEARNING IN AN AGENT-BASED MODEL

ABM4Energy, 16th of March 2024, Freiburg

<u>Ulrich FREY</u>⁽¹⁾, A. Achraf EL GHAZI⁽¹⁾, Evelyn SPERBER⁽¹⁾, Fabia MIORELLI⁽¹⁾, Christoph SCHIMECZEK⁽¹⁾, Stephanie STUMPF⁽²⁾, Anil KAYA⁽²⁾, Steffen REBENNACK⁽²⁾ ⁽¹⁾ Deutsches Zentrum für Luft- und Raumfahrt, ⁽²⁾ Karlsruher Institut für Technologie

Project: EN4U, FKZ 03EI1029A

DLR

Motivation: Massive uncertainties

- Recent geopolitical disruptions increase uncertainties & change prosumer reactions
- \rightarrow Energy systems pathways highly uncertain
- \rightarrow Assumptions (e.g. fuel prices) might be off
- \rightarrow Prosumer reactions largely unknown
 - Buy an electric vehicle (EV)?
 - Buy PV + storage (PVS)?
 - Buy a heat pump (HP)?

Research questions

- How to represent prosumer investment decisions under uncertainty?
- How to abstract individual decisions of prosumers so they can be integrated in energy systems models?

How to model individual household decisions?

Problem

- Many different households
- High computational effort per optimization
- Dispatch optimization of all household types not possible within AMIRIS simulation

Idea

- Individual household dispatch optimization done for multiple input variations (weather,...)
- Aggregate household results
- Train Neural Net to predict household aggregated behavior based on given input variations

General idea to answer the research questions

- Model individual decisions:
 - Simulate optimal operation of PVS, HP, EV
 - Diffusion model of household investment decisions in PVS, HP, EV
 - Learn aggregated demand of individual households via ML
- Large energy system models:
 - Bring ML-agents into an agent-based simulation of electricity markets, AMIRIS
 - Couple AMIRIS with a stochastic optimization model for the supply side

→ Gain ability to model uncertainties between all these components of the energy system comprehensively

Model Setup

Frey et al. - Modelling Uncertainty

GETTING THE DATA

Survey for individual household characteristics

Representative survey (n=809)

	0/_
ilding ownership	/0
ousehold property	45.5
ented building	54.5
te of renovation	
xtensive retrofit	30.7
eplacement of the windows	21.3
o retrofit	48.1
talled technologies	
notovoltaic	9.9
attery storage system	4.6
eat pump	13.3
ectric vehicle	10.4

MODELING INDIVIDUAL DECISIONS

Optimization models

Frey et al. – Modelling Uncertainty

Exploring various household's decisions

Heat pump model: Optimizing operating costs

GAMS optimization model:

- Minimizes operating cost of residential heat pumps
- Flexibility by varying temperature within boundaries
- Electricity demand calculated bottom-up by reduced-order thermodynamic models of building archetypes¹

1) Sperber, Frey, Bertsch: Reduced-order models for assessing demand response with heat pumps – Insights from the German energy system, Energy & Buildings vol. 223, 2020

15

Electric vehicle model & Photovoltaic + storage model

- Same approach like heat pump model
- Optimization of demand given varying inputs like weather or electricity prices

Modified version of AMIRIS

USING ML TO FORECAST DEMAND

Comparison of Machine Learning Architectures

The competitors:

- Naive Seasonal
- Exponential Smoothing
- ARIMA
- Linear Regression Model
- LightGBM ModelLSTM
- Random Forest
- NBEATS
- TFT

Results Machine Learning NBeats II (P + RE)

Felix Nitsch, Institute of Networked Energy Systems, 23.05.2023

And the winner for the aggregated demand of typical households are... Long Short-term Memory Models (LSTM)

Machine Learning Models: Predicting demand for Germany for EV, PVS, HP

Cost-optimized models provide training data

 Machine Learning models train from individual household data given different inputs

- ML models predict aggregated demand from individual households
- ML models connect to ABM AMIRIS via Fast-API

100

RESULTS

Diffusion model: Survey + latent class analysis

LCA resulted in a 4-class model

(2) PV owners living in (semi-)detached houses (5.4%)

(3) Heat pump owners with comprehensive retrofit (7.05%)

(4) Multiple renewable energy technology adopters (3.0%)

Heat pump model: Aggregating individual household decisions

- Building types
- User comfort types
- Heat pump types
- Weather locations

- Best Model: LSTM with 15 K params
- Look-back-size: 24 h
- Train / Predict: 5 locations / 1 other location
- Data resolution: 8760 h in ¼ h resolution

Exemplary days for HP 7 6 Aggregated electricity demand in GW 5 3 2 0 08.01. 09.01. 10.01. 11.01.

Prediction — Actual

- Best Model: LSTM, 16 K params
 - Look-back-size: 24 h
 - Train / Predict:
 5 locations / 1 other location
 - Data resolution: 8760 ¼ h resolution
 - Error:
 - ~ 8 % error

23

Photovoltaic + Storage model:

Predicting aggregated demand for Germany

- Best Model: LSTM, 16 K params
- Look-back-size: 24 h
- Train / Predict:
 5 locations / 1 other location
- Data resolution: 8760 h resolution
- Error:
 - ~ 6% error

24

CONCLUSION

High-level Conclusion

 Model coupling helps to analyze multiple aspects of the energy system at the same time

 Abstracting individual decisions with ML is a general solution for integrating computationally intensive tasks into simulations that were previously impossible

 Combining an ABM in a feedback-loop with an optimization model produces robust scenario pathways that are in fact economically viable

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

 $\overline{\varphi}$

DLR

THANK YOU!

Contact: ulrich.frey@dlr.de

27

Image sources

- AI-Brain: <u>https://www.linkedin.com/pulse/so-what-difference-between-ai-ml-deep-learning-kanishka-mohaia</u>
- Uncertainty: <u>https://uncertain2degrees.blogs.uni-hamburg.de/?p=2157</u>
- EV+Solar: <u>https://www.istockphoto.com/de/foto/frau-wartet-auf-elektroauto-aufladen-und-sonnenkollektoren-im-hintergrund-gm1284781525-381820745</u>
- Binary tunnel: <u>https://www.istockphoto.com/de/foto/gleichm%C3%A4%C3%9Fige-tunnel-gm181886057-23930618</u>
- Coal stove: <u>https://home.howstuffworks.com/home-improvement/heating-and-cooling/coal-stoves.htm</u>
- Wind/Solar: <u>https://www.tradeindia.com/products/wind-solar-system-5886912.html</u>

