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Abstract—This work concerns control-oriented and structure-
preserving learning of low-dimensional approximations of high-
dimensional physical systems, with a focus on mechanical sys-
tems. We investigate the integration of neural autoencoders
in model order reduction, while at the same time preserving
Hamiltonian or Lagrangian structures. We focus on extensively
evaluating the considered methodology by performing simulation
and control experiments on large mass-spring-damper networks,
with hundreds of states. The empirical findings reveal that
compressed latent dynamics with less than 5 degrees of freedom
can accurately reconstruct the original systems’ transient and
steady-state behavior with a relative total error of around 4%,
while simultaneously accurately reconstructing the total energy.
Leveraging this system compression technique, we introduce a
model-based controller that exploits the mathematical structure
of the compressed model to regulate the configuration of heavily
underactuated mechanical systems.

Index Terms—Hamiltonian dynamics, Model order reduction,
Autoencoders

Note: For additional detailed information related to this
study, please refer to the supplementary material accessible
at [1].

I. INTRODUCTION

SEVERAL application domains exhibit high-dimensional
dynamics, e.g., continuum mechanics, fluid dynamics,

quantum systems, financial markets. In such contexts, a useful
approach for effective control, which often relies on system-
specific expertise, is to find low-dimensional approximations
of these systems that preserve their key structural properties
[2]–[4]. This work concerns itself with automatic discovery of
these approximations using machine learning.

In machine learning, a wealth of research focuses on ap-
proximating complex nonlinear dynamical systems while en-
suring the learned dynamics fulfill specific structural properties
[5]–[8], which enabled application to model-based control [9],
[10]. The case of direct learning of a compressed dynamics
of an high-dimensional system has also been thoroughly in-
vestigated in the literature and applied to model-based control
[11]–[14].

A relevant alternative to directly learn the dynamics com-
bines analytic models with machine learning [15]. An estab-
lished strategy is to project the dynamics into a latent space
using principal component analysis (PCA) [16]. Nonlinear
counterparts of PCA, such as neural autoencoders (AE), have
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Fig. 1. The proposed strategy is a two-step process. First, we
compress the configuration space q of the physical system into latent
representations via deep neural autoencoders. We then generate a
compressed dynamical system that uses the learned latent represen-
tation while maintaining the Hamiltonian structure of the complete
system.

been considered only in recent years in [17] and [18]. These
pioneering works target the rendering of deformable objects
in computer graphics, only providing qualitative analysis of
simulation behavior.

In this work, we make a further step in that direction
by combining deep learning with structure-preserving model
order reduction [19], [20]. Our approach is schematized in
Figure I. We exploit AEs, investigating both flat [21] and
graph-based AEs [22], to extract compressed representations
of the system’s configuration directly from evolution traces.
Then, by combining the decoder of the autoencoder model
with the original system specification, we derive a new set of
dynamic equations describing the system’s dynamics, while
at the same time maintaining their original Hamiltonian or
Lagrangian form. Relying on such a structure, we also propose
a closed-loop controller that can regulate the configuration of
high-dimensional systems relying on a small amount of inputs.
We thoroughly test these methodologies on networks of masses
interconnected by springs and dampers that can be seen as a
finite element approximation a continuous mechanical system.
We conduct numerical simulations in the latent space, focusing
on the adherence of the reduced dynamics to the original
system and its physical principles. In addition, we explore
the capability of the reduced system to approximate the real
system under highly constrained latent space dimensions.
Finally, experiments on planar posture regulation are per-
formed, exploiting the learned representations and developed
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Fig. 2. The five planar models of deformable objects considered in this works, in their rest position when no gravity is present. Each model
is a mass-spring-damper network composed of 205 masses and 636 connections.

controller.
This approach holds potential for diverse applications in-

volving soft robots [23] or deformable objects [24]. For
instance, it could address control tasks on soft robots, lever-
aging approximations of their state to deal with their high
dimensionality and limited actuation. Similarly, it may find
application in the manipulation of deformable objects, where
analogous limitations and challenges exist.

II. DEEP PHYSICAL COMPRESSION

A generic Port-Hamiltonian1 system is defined as
ẋ = [J (x)−R(x)]∇xH(x) + G(x)u, (1)

where x is the system’s state, and u the input. J is a skew-
symmetric matrix that specifies the interconnection structure,
R is a semi-positive definite dissipation matrix, G is the
input field, and H is the Hamiltonian of the system - i.e.,
its total energy. We consider here systems whose state can
be represented as x = (q, p) ∈ R2n, with q being the
configuration and p the generalized momenta, and having the
following structure
q̇ = ∇pH(q, p), ṗ = −D(q)∇pH(q, p)−∇qH(q, p)+G(q)u, (2)

where D(q) ∈ Rn×n is a dissipation matrix , assumed positive
definite. The term D(q)∇pH(q, p) is a common way to
describe effects that make the energy strictly decrease in time,
as mechanical friction. Note indeed that Ḣ = −q̇⊤D(q)q̇ ≤ 0.
The control action u is assumed to be of size a and thus
G ∈ Rn×a. For the sake of clarity of derivations, we assume
the Hamiltonian H : R2n → R to be quadratic in the
generalized momenta

H(q, p) =
1

2
p⊤M−1(q)p+ V (q), (3)

where M : Rn → Rn×n is a positive definite matrix
and V : Rn → R the potential energy. Note that Ḣ =
− (Mp)

⊤
D (Mp) ≤ 0 as D ⪰ 0. For example, mechanical

systems have such a structure. In this case, M is called the
inertia matrix.
We assume that a description of the system in the form (2) is
available. Our goal is to obtain a new system with the same
Hamiltonian structure but with a substantially smaller state
space, leveraging the concepts described in the following.

a) Autoencoders: We propose to use a neural autoen-
coder [21] to compress the configuration space representation
from dimension n to dimension m << n. An autoencoder is
composed of two parts; an encoder network E : Rn → Rm

1Analogous derivations would be possible in the Lagrangian one.

that compresses q into its latent representation ξ ∈ Rm<<n,
and a decoder network D : Rm → Rn which maps ξ in
an approximation of q. An ideal autoencoder is one such that
E (D) is close to the identity function, despite m << n. Since
we want to solely assess the robustness of the deep compressor,
we use a simple MSE loss without task-specific regularizations

Lrec(q) = ||q −D(E(q))||22. (4)

b) Compressed System: We perform derivations by as-
suming an ideal autoencoder, i.e., one for which the loss in
(4) is close to zero. We will discuss this hypothesis later. We
want to give to the latent dynamics the same Hamiltonian
structure of the complete system (2)-(3). We thus impose the
following latent dynamics
ξ̇ = ∇πη(ξ, π), π̇+∆(ξ)∇πη(ξ, π) = −∇ξη(ξ, π)+Γ(ξ)u, (5)

with π ∈ Rm<<n being the generalized momenta associated
to the latent space configuration ξ ∈ Rm introduced in the
previous subsection. The terms ∆,Γ describe the latent-space
dissipation and input field respectively. The latent Hamilto-
nian/energy is

η(ξ, π) =
1

2
π⊤M−1

η (ξ)π + Vη(ξ), (6)

with Mη and Vη being latent space counterparts of M and V .
We now need to derive all the unknowns from the knowledge
of the original dynamics and of the autoencoder. We start by
relating the time derivative of the latent configuration with the
one of the full configuration by the chain rule q̇ = ∇ξD(ξ) ξ̇,
where ∇ξD is the Jacobian of the decoder. Combining the
first equation in (5) and (6), we also get π = Mη(ξ)ξ̇. We
then impose that the latent energy is the same as the total
energy of the system

η(ξ, π) = H(D(ξ), p(ξ, π)) (7)

where p(ξ, π) is a mapping from the latent state to p, and
H is defined as in (3). The following choices of compressed
potential Vη and inertia matrix Mη fulfill the constraints
imposed by (3), (6), and (7)

Vη(ξ) = V (D(ξ)) (8)

and
π⊤M−1

η (ξ)π = p⊤M−1(D(ξ))p,

⇒ ξ̇⊤MηM
−1
η Mη ξ̇ = ξ̇⊤ (∇ξD)⊤MM−1M∇ξDξ̇,

⇒Mη(ξ) = (∇ξD(ξ))⊤M(D(ξ)) ∇ξD(ξ).

(9)

Comparing (2) and (5) and following similar steps as for the
energy yields the following expressions for the input field and
the dissipation
Γ(ξ) = (∇ξD(ξ))⊤ G(D(ξ)), ∆(ξ) = (∇ξD(ξ))⊤D(D(ξ)). (10)
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Fig. 3. Graph Autoencoder architecture. Encoder and decoder are
implemented as a combination of graph convolutional networks
(GCN), to naturally process the graph, and multi-layer perceptrons
(MLP), to process the obtained node embeddings.

To conclude, combining together (5), (6), (8), (9), and (10)
yields the compressed Hamiltonian system in (11).

This is a low-dimensional dynamical system with the same
mathematical structure of the original high-dimensional one
(2). The two models will represent similar behaviors 2 if
Lrec ≃ 0.

III. LEARNING COMPRESSED REPRESENTATIONS

Compressed representations are obtained as the latent repre-
sentations of a neural autoencoder whose architecture depends
on the nature of the input information used to encode the
uncompressed system. To show the flexible formulation of
our approach, in the following we consider two alternative
autoencoder configurations. The former is a flat autoencoder,
comprising dense feed-forward layers in the encoder and
decoder, where the uncompressed system in input is repre-
sented by the configuration vector q. The second is a graph
autoencoder which leverages a structured representation of the
physical systems meant to highlight their composing parts
(e.g. masses) and the relationships existing between them (the
adjacency constraints).

Deep learning for graphs (DLG) [22] deals with the adaptive
processing of information represented in a structured form.
These models typically work by learning to represent the
structural elements (nodes, edges) or the full graphs in em-
bedding vectors h which can then be used for predictive,
descriptive, or generative purposes. The most popular DLG
paradigm leverages a message passing scheme [25] exploiting
local information exchanges between neighboring nodes and
exploits a layered neural architecture (where layering can
be defined also by unfolding in time) to promote effective
information diffusion across the graph. More formally, the
encoding of the v-th node at layer l + 1 is obtained as

hl+1
v = ϕl+1

(
hl
v, Ψ({ψl+1(hl

u) | u ∈ Nv})
)

(12)

where ϕl+1, ψl+1 are parameterized neural layers (lin-
ear/nonlinear), and Ψ is a permutation invariant function
defined over the embeddings hl

u of the nodes u in the
neighborhood Nv of v, computed at previous step l. The
general formulation in equation (12) can be specialized to
cover a wide variety of DLG models, as shown in [22]. Within
the scope of this work, we use a graph autoencoder with the
architecture in Figure 3 where both encoder and decoder are
implemented with a specialization of (12) using SAGE [26] for
neighborhood aggregation followed by an ELU non-linearity
in ϕ (GCN block in the figure). The encoder obtains the latent

2Similar is to be intended as the error between the real and reconstructed
transients and steady-states being small.

embedding ξ of the full graph through MLPs, which are also
used in the decoder to reconstruct the node features q̃.

We comment here on the assumption, made in Section II-b,
that the autoencoder achieves close-to-zero loss. In general,
this is not trivial to achieve, nor to validate, for any given
configuration, apart for those in the training set. However, the
dissipative nature of the considered systems, guarantees that
the set of reasonable configurations is just a portion of the full
configuration space. Therefore, it is much more reasonable to
assume close-to-zero loss only on that subset, which can be
more easily validated using dense enough simulated data as
external validation/test set.

IV. LATENT SPACE CONTROL

We consider under-actuated posture regulation - i.e., we
want to generate a control action u ∈ Ra such that the
high-dimensional configuration q ∈ Rn of system (2) reaches
q̄ ∈ Rn, with a < n. Call ξ̄ = E(q̄) ∈ Rm the compressed
encoding of q̄ and assume that the system state (q, q̇) is
compressed online into (ξ, ξ̇) through E and its Jacobian. The
controller we propose has the form:

u(ξ̄, ξ, ξ̇) = AL(ξ̄)

∂V (D(ξ))

∂ξ
(ξ̄)︸ ︷︷ ︸

FeedForward

+α(ξ̄ − ξ)− βπ︸ ︷︷ ︸
Feedback

 , (13)

where A = (∇ξD(ξ))
⊤ G(D(ξ)), with AL its left inverse,

and α, β ∈ R+ are positive control gains. This controller is
essentially operating an output regulation when taking E(x)
as output. The task-space3 closed loop generated by (11)
and (13) is π̇ =

[
(∇ξη(ξ, π)−∇ξη(ξ̄, 0)) + α(ξ̄ − ξ)

]
−[

(∇ξD(ξ))
⊤
(D(D(ξ))∇πη(ξ, π)) + βπ

]
, where we used that

AAL = I and that ∇ξη(ξ̄, 0) = ∇ξ (V ◦ D) (ξ̄). The con-
vergence follows with standard arguments that we do not
report here for the sake of space, under the assumption that
αI + (∇ξη(ξ, π) − ∇ξη(ξ̄, 0)) is positive definite in ξ̄, 0.
The closed loop energy η(ξ, π) + α(ξ̄ − ξ)⊤(ξ̄ − ξ) can
be used as Lyapunov candidate, which has time derivative
V̇ = π⊤[∇ξD(ξ)⊤D(D(ξ))∇ξD(ξ) + β]π ≤ 0, and invoking
La Salle principle. In turn, convergence to the task-space
equilibrium implies ||E(qt)− E(q̄)|| → 0. Note that we could
leverage this common arguments [28] because our learning
technique is such that the task-space dynamics of E(x) is an
Hamiltonian system.

V. SIMULATIONS

A. Setup

We evaluate the performance of the approach in compress-
ing high-dimensional mechanical systems. We focus on con-
tinuously deformable planar bodies subject to a gravitational
field and generic external perturbing forces. This class of
systems is quite relevant from an application perspective as
it is central in robotic manipulation of deformable objects

3As common in mechanical systems control literature [27], we refer to
task-space dynamics as the second order dynamics describing the evolution
of a function of the configurations; E(q) in this specific case.
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ξ̇ = ∇πη(ξ, π), π̇ = −∇ξη(ξ, π) + (∇ξD(ξ))⊤ (G(D(ξ))u−D(D(ξ))∇πη(ξ, π)) ,

with η(ξ, π) =
1

2
π⊤

(
(∇ξD(ξ))⊤M(D(ξ)) ∇ξD(ξ)

)−1

π︸ ︷︷ ︸
Latent Space Kinetic Energy

+ V (D(ξ))︸ ︷︷ ︸
L.S. Potential E.

. (11)
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Fig. 4. MSE on the reconstructed position D(ξ), velocity (∇ξD)ξ̇
and total energy η(ξ, π) of the systems in the test trajectories using:
a flat autoencoder (left) and a graph autoencoder (right). For each
plot, the bold line is the median error over the trajectories, while the
shaded area represents the 20-80 percentiles.

[24] and control of soft robots [3]. We consider mass-spring-
damper models as high-dimensional models of these systems
[23]. This is a widely used technique to approximate soft-
body dynamics by discretizing their volume as a set of masses
(nodes) interconnected by ideal springs and dampers (edges).
We use simulation data of the systems to train an autoencoder
to reconstruct their configuration q. Then, exploiting the learnt
latent representation ξ, we simulate the corresponding full-
space system by solving the compressed dynamics equation
(11).

TABLE I
TRAINING, VALIDATION AND TEST MSE SCORE FOR THE BEST FLAT AND

GRAPH AUTOENCODERS, FOR EACH SYSTEM.

System Model Train. mse Valid. mse Test mse

1 Flat AE 2.17e−4 4.73e−4 4.24e−4
Graph AE 3.40e−4 5.24e−4 7.25e−4

2 Flat AE 1.13e−4 2.48e−4 3.08e−4
Graph AE 12.24e−4 15.37e−4 17.94e−4

3 Flat AE 1.69e−4 4.41e−4 3.75e−4
Graph AE 3.73e−4 8.13e−4 7.37e−4

4 Flat AE 4.75e−4 18.08e−4 12.51e−4
Graph AE 5.56e−4 13.72e−4 9.71e−4

5 Flat AE 8.53e−4 11.7e−4 12.70e−4
Graph AE 7.41e−4 9.48e−4 9.59e−4

a) Data: We use five high-dimensional, randomly gener-
ated systems in the form of (2). Figure 2 shows the considered
systems in their rest position. Each system is made of 200
masses and e = 636 connections resulting in n = 400 degrees
of freedom captured in the configuration vector q. We consider
systems immersed in a constant gravitational field. For each
system, we perform 7 simulations to generate training data and
28 simulations for test purposes. Gravity conditions change
for each simulation. The initial configuration q(0) is randomly
generated, while the systems always start at rest, i.e., p(0) = 0.
More details on the data generation can be found in Section
A.1 of the supplementary material.

b) Training and Model Selection.: A flat autoencoder and
a graph autoencoder are trained for each system, with a latent
size of 5 units. The same neural architecture is used across
systems, while hyperparameters are selected via grid search
for each system. Training, validation and test reconstruction
scores (MSE) of the best model, for each system, are reported
in Table I. More details on the training and model selection
can be found in Section A.2 of the supplementary material.

B. Simulation Results

In order to validate and evaluate the approach, we use the
trained models to reconstruct the test full-space simulations,
and we compare results in terms of reconstructed state (q, q̇)
and energy H. In particular, we evaluate the approach in two
different ways. First, for pointwise evaluation, we reconstruct
the system state and energy at each step of the real simulation
by applying the autoencoder end-to-end to the real system con-
figuration D(E(q)) and velocity ∇E(q)D ·∇qE q̇. Second, we
use equation (11) to simulate the evolution in the compressed
space and reconstruct the configuration D(ξ), velocity (∇ξD)ξ̇
and energy η(ξ, π) from the latent variables at each simulation
step (compressed evaluation).

Figure 4 shows the average pointwise and compressed
MSE w.r.t. time for each system. The two models have
similar results in the compressed simulations, with the graph
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Fig. 5. Example of evolutions of the kinetic, potential and total
energies in a simulation for the full-space and reduced systems
using: a flat autoencoder (top) and a graph autoencoder (bottom).
The total energies are the Hamiltonians H and η introduced in (3)
and (7) respectively. The solid line is the energy of system (2),
while the dotted and dashed lines are the pointwise reconstructed
and compressed energy.

Fig. 6. Comparison between frames from a real simulation (yellow),
a pointwise reconstructed simulation (orange), and a reduced simula-
tion (blue) using a flat autoencoder (above) and a graph autoencoder
(below).

autoencoder having a slightly higher error, although it largely
depends on the considered system. In all the cases, the
compressed error on q is a few orders of magnitude higher
than the pointwise error. Interestingly, the error on q̇ follows
a similar behaviour although the models are never explicitly
trained to reconstruct this information.

The reconstructed energy η has the opposite trend: it
is better reconstructed in the compressed case than in the
pointwise case. This is due to the fact that pointwise re-
constructing the state does not allow energy variations to
govern the dynamics of the system, while this is possible in
the compressed case. As a further evidence, Figure 5 shows
the evolution of the kinetic, potential, and total energy in a
simulation. While the single kinds of energy might not be
reconstructed as precisely in the compressed case, the total
energy maintains the same non-increasing behaviour typical of
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dissipative systems.Qualitatively, compressed simulations are
stable and loyal to the real ones, with a good match of the
full transient. Figure 6 shows some frames from an example
simulation. The portions where the real and reconstructed
systems are not perfectly aligned are also those that exhibit
major and more varied oscillations, such as the bottom portion
of the central chain or some lateral structures. Videos can be
found here.

C. Compression Analysis
We further analyze how much the approach can compress

the systems’ state. Figure 7 shows the test MSE on the five
systems varying the latent state size for both flat and graph au-
toencoders. In most cases, 3 variables are enough to efficiently
represent the system’s state with a reasonable approximation
error, while using more variables typically results in small or
marginal improvements in the error. Using 2 variables seems to
not be enough to effectively capture all systems’ behaviours as
can also be observed from the reconstructed trajectory of some
of the masses in Figure 8. We can notice that, with 2 variables,
minor oscillations are not correctly reconstructed, and there is
a consistent gap between the real and reconstructed trajectory.
This does not happen when using 3 or more variables. The
2 variables case is also useful to show what happens when
the assumption that the model achieves close-to-zero loss does
not hold. Indeed, the reduced model still approximate the real-
space model, although losing the ability to represent some of
its particularity. We also believe the models can be successfully
used for latent space simulations, although these could deviate
much more from the real ones.

D. Control experiments
a) Setup: We test the proposed controller by simulating

its application for planar posture regulation on the second
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and the actual configuration q(t). The shaded are refers to the first
and third quartile.
spring network in Figure 2. The system is actuated by a
generalized force τ ∈ R2 applied to a single mass at
each simulation step. Our controller employs an autoencoder
with latent size m = 2, trained as in the previous sec-
tions. The actuation matrix is therefore the selection matrix[
0 · · · 0︸ ︷︷ ︸
a−1

I 0 · · · 0︸ ︷︷ ︸
N−a

]
∈ R2×2n, where a is the index of the

actuated mass and I ∈ R2×2 is the identity matrix. We perform
50 simulations, randomly selecting the target configuration
among the configurations q̄ in the training/validation simu-
lations. The actuation mass is randomly selected among three
fixed candidates chosen in correspondence with the lateral
structures and as far as possible from the structure edges. The
initial state is always the rest position with zero initial velocity.
The simulations are 5 seconds long.

b) Results: We evaluate the controller according to the
MSE between the full-space system configuration at time t
and the target configuration x̄. We report the resulting Figure
9. The dashed line represents the median error among the
considered simulations, while the band represents the 25-75
percentiles of the error.

VI. CONCLUSIONS

This work investigated the application of deep autoen-
coders to the compression of high-dimensional dynamical
systems, while maintaining Hamiltonian/Lagrangian structural
properties in the low-dimensional approximation. The ap-
proach was extensively validated and evaluated over several
high-dimensional mass-spring-damper models. The reduced
systems were exploited to perform simulation in the latent
space, from which the original complete space evolution were
reconstructed. We also proposed a possible usage of such com-
pressed representations for planar posture regulation of highly
underactuated systems, evaluating the developed controller in
simulations. Future work will focus on developing and testing
data-driven control algorithms for high-dimensional systems
where model-based strategy are used in conjunction with the
learned latent model. We will also dive into extending the
approach to systems whose Hamiltonian differs from (3),
including fluid dynamics [29] and astronomy [30].
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