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Whole Body Control Formulation for Humanoid Robots with
Closed/Parallel Kinematic Chains: Kangaroo Case Study

Sait Sovukluk1, Johannes Englsberger2, and Christian Ott1,2

Abstract— This study extends the whole-body control (WBC)
formulation for bipedal humanoid robots that include closed
(parallel) kinematic chains in their structure. Along with
general formulation, we also stress the implementation of this
formulation on Kangaroo, which is a highly dynamic humanoid
robot developed by PAL Robotics. This 76-DOF robot includes
24 independent closed-kinematic chains in its structure and
constitutes a good case study for our approach. We discuss
the WBC formulation for various control structures, including
inverse dynamics control (IDC) and Modular Passive Tracking
Control (MPTC). As a test scenario, we employ a 3D spring-
loaded inverted pendulum (SLIP) jumping trajectory with
disturbance rejection as the desired CoM trajectory.

I. INTRODUCTION

In recent literature, humanoid robot locomotion is often
carried out by assigning CoM trajectories and other comple-
mentary tasks to the robot. Studies in [1]–[4] employ capture
point trajectories for walking and disturbance rejection. For
walking, a similar but more comprehensive approach called
the divergent component of motion (DCM) is employed in
[5]. Spring-loaded inverted pendulum (SLIP) based trajectory
generation methods also showed successful behaviors on
humanoid robots for walking, running, jumping, and distur-
bance rejection [6]–[11].

Even though CoM trajectory generation is one of the
essential aspects of locomotion, CoM dynamics does not
cover all complexity of the robot. One must employ spe-
cific tasks for all limbs to keep the robot in motion or
at a particular posture. These tasks include tracking the
CoM trajectories, stepping/swinging the legs, keeping the
torso upright, swinging arms, dissipating excessive angular
momentum, interacting with the environment, etc. For this
purpose, whole-body control frameworks come into place
and combine all tasks with different prioritization methods
respecting various equality and inequality constraints. Due
to its implementation and interpretation simplicity, one of
the most popular task formulations is the inverse dynamics
control [12]–[15]. Studies in [16]–[19] employ passivity-
based approaches to have robust tracking and well-damped
behavior despite modeling errors and disturbances. If the
task set inside the WBC formulation is overconstrained, the
whole-body controller compromises these tasks depending
on their task prioritization structure. The approach in [20]
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projects lower priority tasks into the null space of high
priority tasks to achieve strict task prioritization, i.e., con-
flicting lower priority tasks cannot affect the performance
of higher priority tasks. On the other hand, [19] handles
task prioritization softly by assigning higher gains to higher
priority tasks in their quadratic formulation. One of the
most recent studies on whole-body robot formulation [21]
extensively discusses corresponding task selections and their
prioritization for humanoids.

So far, all the control methods we discuss require an
accurate system dynamics model. Even though many soft-
ware packages provide system dynamics for open-kinematic
chains from their system descriptions, for example, URDF
(Unified Robot Description Format), with ease, the closed-
kinematic chains are not widely supported. Closed-kinematic
chains require additional constraint forces to be defined,
and such systems are harder to describe and exhibit more
complicated dynamics than open kinematic trees. For a
more detailed discussion of these complexities, the reader is
referred to [22, Chapter 3.6]. Instead of computing reduced
order system dynamics and solving for constraining forces
in multiple stages as in [23], we implement a unified model
that employs complete order system dynamics and solves
for constraint forces along with other parameters in a single
stage.

This study discusses a whole-body control formulation for
the full dynamics of a humanoid robot with closed/parallel
kinematic chains and its implementation on the Kangaroo
robot [23], [24]. The robot’s structure with 24 independent
closed linkages and 76-DOF constitutes a suitable case
study for our approach. We introduce the constraints inside
the WBC formulation and close the open chain ends by
additional forces defined in open kinematic chain dynamics.
Such an approach allows us to utilize non-reduced and non-
simplified full-order system dynamics with all their com-
plexities. We also implement two different task formulations
for the whole-body control formulation and show that the
formulation works well both in task acceleration and task
force spaces. These task formulations are based on in-
verse dynamics control and modular passive tracking control
(MPTC). Performance differences of these task formulations
are tested via a 3D SLIP jumping trajectory stabilized by
deadbeat control.

Section II presents some preliminary information about
the methods employed in this study. Building on this back-
ground, Section III discusses the whole-body controller
formulation for the systems with closed kinematic chains.
Implementation details for the Kangaroo model are discussed



in Section IV. Finally, section V presents simulation results
for different task formulations and discusses their trajectory
tracking performance under disturbances. We end the study
with a discussion and conclusion and provide a supplemental
video that shows the robot performing various maneuvers.

II. BACKGROUND

A. Floating Base Model

The general tree structured floating base robot dynamics
for n configuration variables q ∈ Q is expressed as

M(q)q̈ +C(q, q̇)q̇ + g(q) = Bτ + J⊤(q)f , (1)

where M , C, g, B, τ , J , and f represent inertia matrix,
Coriolis matrix, gravity vector, input mapping matrix, ac-
tuation efforts, a combination of all Jacobian matrices for
external and constraint torques and forces, combination of
all external and constraint torques and forces, respectively.

B. Inverse Dynamics Control (IDC)

The usage of inverse dynamics in a whole-body control
framework is well studied in literature [12]–[15]. For each
task space Jacobian Ji, the task space velocity can be
represented as:

ẋi = Jiq̇. (2)

Similarly, the time derivative of (2) yields the task accelera-
tion:

ẍi = Jiq̈ + J̇iq̇. (3)

The main concept applied in IDC is to cancel the task-
related system dynamics and to enforce some desirable task
dynamics, e.g. in the form of a stable second-order dynamics:

ẍi,d = ẍi,ref +KD,i(ẋi,ref − ẋi)+KP,i(xi,ref −xi). (4)

For ei = xi,d−xi the stable closed-loop error dynamics for
the particular task turns out to be

ëi +KD,iėi +KPei = 0, (5)

where KD,i and KP,i are positive definite gain matrices.
If the combination of all task mappings J = [J1;J2; . . . ]
is square and invertible, then the control system is well
defined, and the solution is unique. If underconstrained,
the control system has infinitely many solutions and is
thus only partially stabilized. Finally, suppose the control
system is overconstrained. In that case, one may solve it
via optimization such that depending on weight selection,
the controller will compromise between different tasks (soft
hierarchy), or one can also map lower-priority tasks to the
null space of higher-priority tasks (strict hierarchy).

C. Modular Passive Tracking Control (MPTC)

Modular Passive Tracking Control (MPTC) is a generic
passivity-based controller that aims at independently fulfill-
ing several subtask objectives [19]. The control framework
combines the advantages of inverse dynamics controllers and
passivity-based controllers: ease of implementation and use,

task space tracking capabilities, and passivity. For an actual
task force definition,

fi = JM+

i (Bτ + J⊤f), (6)

where JM+

i = ΛiJiM
−1 is the dynamically consistent

pseudo-inverse of J⊤
i , selecting the desired task force to be

fi,d = JM+

i g +Λi(JiM
−1C − J̇i)q̇ +Λiẍi,ref

+ (Λi(JiM
−1C − J̇i)J

M+⊤

i +KD,i)ėi

+KP,iei.

(7)

where Λi = (JiM
−1J⊤

i )−1 is the task inertia matrix,
results with the stable closed-loop error dynamics:

Λiëi+(Λi(JiM
−1C−J̇i)(J

M+
i )⊤+KD,i)ėi+KP,iei = 0,

(8)
where KD,i and KP,i are the positive definite gain matrices.

The first distinct difference between MPTC and IDC is
that the desired MPTC dynamics (8) is denoted in force
space, whereas the desired IDC dynamics (5) is written
in acceleration space. The motivation behind the MPTC
dynamics is the corresponding passive (and thus robust) in-
teraction behavior, as compared to the IDC dynamics, which
is motivated through the related nominally stable system
eigenvalues. Different from (5), in MPTC error dynamics
(8), the damping term KD,i is summed with the task space
Coriolis matrix, and the task space inertia matrix remains,
which causes the eigenvalues of error dynamics to vary
depending on the configuration. The task space Coriolis
matrix is kept due to passivity considerations. The reader
is referred to [19] for more details.

D. Reactive 3D SLIP Trajectory Generation Yielding Dead-
beat Stability

In previous studies, usage of the spring-loaded inverted
pendulum (SLIP) dynamics as a humanoid’s CoM trajectory
objective showed impressive results on walking, running, and
jumping [6]–[11]. Similarly, in this study, we employ SLIP
trajectory as a CoM tracking objective for periodic stationary
jumping and disturbance rejection. Following the Deadbeat
control approach suggested in [7], touchdown angle and
stiffness are determined based on apex velocity and height
errors. The corresponding CoM tracking objective can be
implemented using the centroidal Jacobian [25].

III. WHOLE-BODY CONTROL FORMULATION

The whole-body control formulation proposed in this work
gathers all tasks and combines them with their corresponding
weight matrices in a quadratic form. We utilize a soft
prioritization for tasks using weight matrices, i.e., higher
priority tasks have higher weights. Including their equations
as optimization objectives, the formulation considers state
accelerations, actuation inputs, contact forces, and constraint
forces as input variables and solves for them. This input
vector choice keeps the formulation straightforward and eas-
ily generalizable for high DOF and complex systems, as the
one considered in this work. Substitution of system dynamics
and constraint forces is tedious, and costly [26], especially



for closed-kinematic chain systems. Due to the existence
of passive joints in closed-kinematic chains, their open-
kinematic chain representation includes much more state
variables than regular open-kinematic chain robotics systems.
For example, although Kangaroo has only 12 actuated joints,
due to its closed kinematic chain construction, it comes with
64 more passive joints, which yields a total of 76-DOF robot
[24].

A. Contact Force Formulation

In order to obtain a dynamically consistent contact con-
straint as in [27], we model contact as a combination of pure
forces at each foot corner, i.e., fc,i ∈ R3 where i = 1, . . . , nc

and nc represents the number of foot corners in contact with
the ground. For a stationary feet condition on the ground,
following (3), the constraint becomes

Jcq̈ + J̇cq̇ = 0, (9)

where Jc ∈ R3nc×n represents the contact Jacobian. With
this constraint, the objective becomes to find a set of contact
force combinations such that contact point accelerations are
zero in any direction. In order to obtain a realistic solution,
one should limit the contact forces to be inside friction
limits. A friction pyramid formulation is applied to preserve
the linearity of optimization constraints. To keep the forces
inside an approximated friction cone, for each contact point
force fc,i = (fx, fy, fz)

⊤, one should ensure that:

|fx| ≤
µfz√
2

, |fy| ≤
µfz√
2

, and fz ≥ 0, (10)

where µ is the friction constant. The formulation also limits
the rotational moment per foot implicitly. Readers interested
in conic friction formulation may check [28].

B. Closed Kinematics Constraint Force Formulation

Since most dynamics libraries consider the system an
open kinematic chain when facing closed kinematics chains,
one should solve for the constraint forces that enforce
corresponding endpoints to move together. These constraint
forces will drive the open chain ends such that they follow
their counterpart link, and the chain is closed. To do so, the
movement of open ends must be matched with constraints as
in (3). This time, instead of forcing acceleration to be zero
as in (9), the acceleration of both ends should be equal1.
Assuming Jk,1 and Jk,2 to be Jacobian mappings of both
endpoints of the kth closed chain, the constraint equation
becomes

(Jk,1 − Jk,2)︸ ︷︷ ︸
Jp,k

q̈ + (J̇k,1 − J̇k,2)︸ ︷︷ ︸
J̇p,k

q̇ = 0. (11)

1To have a valid comparison, frames of both endpoints should share the
same orientation.

C. Passive Joint State Estimation

Even though each actuation unit comes with position and
force sensors, the passive joints do not provide any sensory
information. Since the full-order system dynamics require
the state information for all joints, we must solve inverse-
kinematics problems for each closed chain. In order to avoid
the nonlinearity that comes with the position-based inverse-
kinematics approach, we implement velocity-based inverse
kinematics with drift compensation. Utilizing Jp,k from (11)
for the kth closed linkage, the velocity constraint becomes:[

Ja
p,k Jp

p,k

] [q̇a

q̇p

]
= 0 (12)

where (·)a and (·)p represent active and passive joint por-
tions2, respectively. Solving for the passive joint velocity

q̇p = −(Jp
p,k)

−1(Ja
p,kq̇

a) (13)

and defining the position error for the kth closed linkage to
be ep,k = P a

k (q)−P p
k (q), the position estimation with drift

compensation turns out to be:

qp =

∫ t

0

(q̇p +αep,k)dt (14)

where α is a positive definite gain matrix.

D. Overall Whole-Body Control Formulation

As discussed in Section III, we select u = [q̈; τ ;fc;fp]
as optimization parameters and solve for all of them, where
τ , fc, and fp represent actuation input (i.e. joint torques
and forces), ground reaction forces, and closed-linkage con-
straint forces, respectively. To have the system dynamics and
all constraints implicitly substituted inside the optimization
problem, we introduce them as equality and inequality con-
straints of the optimization problem. This WBC structure
yields 182 optimization variables in the case of the Kangaroo.

1) Inverse Dynamics Based WBC: The combination of all
inverse dynamics-based task controllers (4) into a quadratic
problem constitutes the cost function of the optimization
problem:

min
q̈,τ ,fc,fp

∑
i

(ẍi,d − ẍi)
⊤Wi(ẍi,d − ẍi) (15)

Such that:

Mq̈ +Cq̇ + g = Bu+ J⊤
c fc + J⊤

p fp (15a)

Jcq̈ + J̇cq̇ = 0 (15b)

|fx,l| ≤
µfz,l√

2
, |fy,l| ≤

µfz,l√
2

, and fz ≥ 0 ∀l (15c)

Jpq̈ + J̇pq̇ = 0 (15d)

τmin ≤ τ ≤ τmax (15e)

where ẍi = J̇iq̇ + Jiq̈ and τmin and τmax represent
minimum and maximum limits of input torques and forces.
The cost function (15) is constituted by a combination of

2In our case: q̇a ∈ R12 and q̇p ∈ R64



different tasks and their corresponding weight matrices Wi.
In this formulation, since task errors with higher weights
have more effect on total cost, they are prioritized during
the solution process.

2) Modular Passive Tracking Based WBC: The WBC for
MPTC-based task formulation shares the same constraints
with (15). The difference appears in the cost function for-
mulation. In this case, the cost function is the combination of
modular passive tracking task controllers (7) in a quadratic
problem form. The resultant WBC formulation turns out to
be:

min
q̈,τ ,fc,fp

∑
i

(fi,d − fi)
⊤Wi(fi,d − fi) (16)

Such that: (15a) (15b) (15c) (15d) (15e)

where fi = JM+

i (Bτ + J⊤f) and Bτ and J⊤f comes
from the system dynamics (1) representing the combination
of all actuation efforts along with all external and constraint
force effects. In this case J⊤f = J⊤

c fc + J⊤
p fp.

IV. IMPLEMENTATION DETAILS AND TASK
FORMULATIONS: KANGAROO

This section includes some vital implementation details,
such as parameter selection for MuJoCo’s approximate
constraint space dynamics, Kangaroo’s description, WBC
parameter selections, and 3D SLIP control implementation
details.

A. Kangaroo Robot Description

Kangaroo is a 76-DoF bipedal robot. Among them, due
to 24 closed linkages in its structure, 64 are passive, and 12
are actuated [24]. We illustrate the closing points of these
parallel kinematics in Fig. 1.

Fig. 1. The linkage closing points of Kangaroo. A: hip differential, B:
hip yaw, C: ankle differential and knee support bar, D: ankle transmission
and knee length drive, which also coincides with the knee support bar
constraint. The dashed circles represent the invisible closing points due to
the perspective, and the green dots highlight one of the ankle transmission
lines for later discussion. The complete robot can be seen in Fig. 4.

B. MuJoCo Closed Linkage Constraints

We performed the simulation via MuJoCo dynamic sim-
ulator [29]. MuJoCo employs approximate elastic constraint
space dynamics to support constraints such as closed link-
ages. This feature enables us to define equality constraints
for link closing points. Since it is an elastic model, we
needed to adjust solimp and solref settings and change
the solver’s effective stiffness, damping, time constant, and
impedance parameters to get more consistent behavior and
reduce modeling differences between the elastic simulation
and rigid WBC constraints. Setting the time constant lower
and the impedance parameter higher than their default values
result in stronger and harder constraints. We address readers
to the discussion about computation and solver parameters
sections of [29] for a more detailed discussion.

C. Deadbeat 3D SLIP Control

To generate CoM trajectory and reject disturbances, we
adjust a Deadbeat controlled 3D SLIP model from [7] for
our jumping implementation. The SLIP model (see Fig. 2)
includes four different input parameters, which are uSLIP =
[θ, ϕ, ks1, ks2]

⊤, where, to add or remove energy, ks1 and ks2
are used to make ks differ in compression and relaxation
phases, respectively. Depending on horizontal3 and lateral
velocity components and maximum jumping height, the
Deadbeat controller modifies these parameters such that

uSLIP = u∗
SLIP,0 +K(xSLIP,0 − x∗

SLIP,0) (17)

where u∗
SLIP,0, K, xSLIP,0, and x∗

SLIP,0 represent peri-
odic input parameters, control gain, current apex state, and
periodic apex state, respectively. For undisturbed condition
u∗
SLIP,0 = [0; 0; ks; ks] and since the vertical velocity at

the apex is zero, the apex state can be represented using
only the horizontal velocity, lateral velocity, and jumping
height: xSLIP,0 = [ṗc,1; ṗc,2; pc,3]. For undisturbed condi-
tion x∗

SLIP,0 = [0; 0; p∗c,3] where p∗c,3 represents periodic
desired jumping height. For details of the Deadbeat gain
matrix K, we address readers to [7]. In order to reject
velocity disturbances, this gain adjusts touchdown angles
such that the SLIP model bounces in the reverse direction.
Similarly, suppose the jumping height is higher than the
desired value. In that case, it increases compression stiffness
ks1 and reduces relaxation stiffness ks2 such that a required
amount of energy is removed from the system. The reverse
behavior happens when the jumping height is lower. We
present the control diagram of the whole system in Fig. 3.

Since the SLIP controller (17) doesn’t include any posi-
tional information of CoM in forward and lateral directions
and controls only for velocities and jump height, a position
drift throughout the aerial phases may happen due to slight
non-zero velocity components in these directions. In order
to prevent this position drift, at each touchdown phase of
the robot, that is also, when the SLIP simulation starts,
we locate the CoM point of the SLIP model above the
origin, that is [pc1, pc2]

⊤ = [0, 0]⊤ (see Fig. 2). Since

3We refer horizontal as the forward direction.



the position command for non-vertical directions always
stays around zero, the WBC prevents position drift and
makes the robot return to its initial position. Equivalently,
changing x∗

SLIP,0 in (17) to be [−α1pc,1;−α2pc,2; p
∗
c,3],

where α1 and α2 represent positive constants, also results
in additional velocity commands in case of a position error,
i.e., [pc1, pc2]⊤ ̸= [0, 0]⊤, such that the robot jumps back to
its initial position. Since we observed more robust behavior,
instead of modifying x∗

SLIP,0, we utilize WBC to prevent
position drift of the robot.

Fig. 2. 3D SLIP template model where pc and pf represent CoM and
touchdown points, respectively. If there is no disturbance, angles are zero,
and stiffness is constant for a fixed-height periodic jumping.

Fig. 3. Control schematic of the system. The WBC receives CoM trajectory
and foot touchdown position (ptd) commands from the Deadbeat-controlled
3D SLIP controller and tracks them.

D. Whole Body Control Parameter Selection

Both WBC formulations ((15) and (16)) we employ in this
study require parameter selection for their desired damping
and stiffness terms. In order to have well-defined damp-
ing behavior, the study in [30] designs a damping matrix
KD,i that depends on the desired stiffness KP,i and the
actual cartesian mass matrix Λi(q). The aim is to obtain a
configuration-independent damping behavior for each task,
which might preferably be critically damped behavior. Fol-
lowing their study, at each time step (or configuration),
selecting KD,i to be

KD,i = Λ
1/2
i Dξ,iK

1/2
P,i +K

1/2
P,i Dξ,iΛ

1/2
i (18)

results in a well-damped closed-loop error dynamics for each
task. In the equation, Dξ,i is a diagonal matrix with repeating
or varying ξi elements and 0 ≤ ξi ≤ 1 (0 for undamped
behavior and 1 for real eigenvalues with critical damping).

Based on our observations, we manually tune weight and
stiffness parameters for the best jumping behavior without
disturbance. During the tuning process, we consider states
at the moment of touchdown, the required amount of torso

TABLE I
LIST OF TASKS, CONSTRAINTS, WEIGHT, AND CONTROLLER PARAMETER

SELECTIONS FOR THE STANCE AND FLIGHT PHASES, RESPECTIVELY.
DURING THE FLIGHT PHASE, THE CONTACT CONSTRAINTS ARE

DEACTIVATED, AND THE CONTACT FORCES ARE CONSTRAINED TO

ZERO. THE VALUES REPRESENT REPEATING ELEMENTS OF DIAGONAL

MATRICES.

Stance W KP,IDC KP,MPTC ξ

CoM trajectory 2 300 5000 1.0
Torso orientation 5 40 50 1.0

Constraints
(15a), (15b), (15c)

(15d), (15e)
Flight W KP,IDC KP,MPTC ξ

Foot position 2 1500 750 1.0
Foot orientation 2 2500 15 1.0

Constraints
(15a), (15d), (15e)

fc = 0

orientation and CoM state corrections, and the remaining
non-vertical velocity components of CoM at the moment of
the lift-off phase, along with overall tracking performance.
We list all tasks and their corresponding parameter selections
along with phase-dependent constraints in Table I. We em-
ploy OSQP [31] to solve the optimization problems in (15)
and (16).

V. SIMULATION RESULTS

We conduct simulations for both inverse dynamics and
modular passive tracking based whole body controllers.
This section discusses behavioral differences between these
controllers by observing their undisturbed and disturbed
performances. Snapshots from the robot’s jumping can be
seen in Fig. 4.

Fig. 4. Snapshots of jumping simulation. From left to right, the images
show touchdown, bottom, lift-off, apex, and touchdown moments for 10cm
periodic jumping. The bottom phase snapshot also includes ground reaction
forces. Contact state detection relies on absolute foot height.

Since the SLIP model does not cover the torso dynamics
of the robot, the torso tends to disturb the robot’s horizontal
CoM position and velocity as it oscillates back and forward.
It tends to fall forward, especially at the impact moment,
and this repeating torso regulation effort causes periodic
jumps in horizontal CoM velocity. This effect can be seen in
undisturbed simulation results with both controllers in Fig. 5
and 6. Due to their characteristic differences in the error



dynamics, we observe that MPTC shows a more damped
behavior and follows a smoother trajectory. The figures also
show that the Deadbeat-controlled SLIP model generates a
nice and smooth path back to zero when a velocity error
exists. Since the aerial phase is a basic free-fall motion,
we activate the SLIP trajectory commands when the robot
touches the ground.

Fig. 5. Standing-jumping-standing simulation result of undisturbed MPTC-
based WBC. Vertical dashed lines indicate activation of SLIP trajectory from
touchdown to liftoff phase.

Fig. 6. Standing-jumping-standing simulation result of undisturbed IDC-
based WBC. Vertical dashed lines indicate activation of SLIP trajectory
from touchdown to liftoff phase.

In case of a disturbance, the controllers show similar
characteristic behaviors with their undisturbed counterparts,
as seen in Fig. 7 and 8. When we push the robot, the
SLIP controller changes the touchdown angle and rejects
the disturbance. Inverse dynamics-based control shows more
oscillatory behavior with higher absolute error. Overall, both
controllers behave well enough to reject the disturbances.
The figures also show that the SLIP control generates nice
and smooth velocity paths back to zero in case of distur-
bances. Since the forward and lateral CoM positions are not
zero after the disturbances, the WBC causes velocities to fall
below zero and returns the robot to its initial position.

As an example, in Fig. 9, we illustrate force transmission
from one of the ankle drive motors towards the foot through
the closed-linkage points we mark with green dots in Fig. 1.
The green dot in subfigure C shows the connection point
of one of the ankle motors. The movement of the motor
is then transferred into the second closed-linkage connec-
tion point (on the top left corner of subfigure D). This

0 1000 2000 3000 4000 5000 6000
Time (ms)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

C
o
M

 H
o
ri

zo
n
ta

l 
Po

si
ti

o
n
 (

m
)

0 1000 2000 3000 4000 5000 6000
Time (ms)

-0.01

0

0.01

0.02

0.03

0.04

0.05

C
o
M

 L
a
te

ra
l 
Po

si
ti

o
n
 (

m
)

0 1000 2000 3000 4000 5000 6000
Time (ms)

-0.2

-0.1

0

0.1

0.2

0.3

H
o
ri

zo
n
ta

l 
V
e
lo

ci
ty

 (
m

/s
)

SLIP Horizontal Velocity
CoM Horizontal Velocity

0 1000 2000 3000 4000 5000 6000
Time (ms)

-0.2

-0.1

0

0.1

0.2

0.3

La
te

ra
l 
V
e
lo

ci
ty

 (
m

/s
)

SLIP Lateral Velocity
CoM Lateral Velocity

Fig. 7. Disturbed simulation result of MPTC-based WBC. Starting 50ms
before apex, we apply 100N force from torso for 100ms in both directions.
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Fig. 8. Disturbed simulation result of IDC-based WBC. Starting 50ms
before apex, we apply 100N force from torso for 100ms in both directions.

movement continues to the foot through the third closed-
linkage connection point. For distinction, we named these
points left ankle differential 1, left knee transmission 1,
and left foot ball joint 1. This force analysis may also be
helpful during a mechanical design process. The joint force
magnitudes for particular robot movements may be used
for bearing selections. Even the open kinematic chain joints
can be broken and analyzed using our approach. The slight
deformations in the figure originate from our stiff parameter
selection for MuJoCo’s constraint dynamics, as discussed in
part B of section IV.
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Fig. 9. Force transmission through the closed-linkage points marked with
green dots in Fig. 1 during the stance phase, i.e., from touchdown to liftoff.

A. Comments on Real-Time Capability

Since the full-order Kangaroo model includes 76-DoF, our
non-optimized implementation environment takes around 3-
5 ms to compute a solution. So far, we haven’t conducted
a detailed solution time analysis with an optimized envi-
ronment. In case of real-time implementation concerns for



higher frequencies, for example, 1kHz, changing the system
structure, one can reduce the system model and eliminate
some closed linkages which have a neglectable amount of
inertial effects on the system. For example, the model in [23]
reduces Kangaroo’s dynamics into 22-DoF and utilizes only
two closed linkages. This simplified model removes all linear
actuation units and differential drive systems and assumes
rotational actuation in all active joints other than knee length.
With this method, one must again map actuation efforts
back to the full-order system considering closed linkage
kinematics. For this simplified model, we compute a solution
in less than one millisecond in the same simulation environ-
ment. One can also introduce a less radical simplification to
preserve some characteristic features of the robot.

VI. CONCLUSION

This study proposes a convenient and easy-to-implement
whole-body control formulation for systems containing many
closed kinematic chains and joints. We also discuss the
implementation and control details for Kangaroo. Its 76-
DoF design, with 24 independent closed linkages, provides
an interesting usage case for our study and proves the
effectiveness and usability of our approach. We also employ
two different task controllers and show that this method
works both in task acceleration and task force space.
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